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Abstract. The rapid expansion of low-cost sensor networks for air quality monitoring necessitates rigorous calibration to 

ensure data accuracy. Despite numerous published field calibration studies, a universal and comprehensive assessment of 

factors affecting sensor calibration remains elusive, leading to potential discrepancies in data quality across different networks. 

To address these challenges, this study deployed eight sensor-based monitors equipped with electrochemical sensors for NO2, 10 

NO, CO, and O3 measurement in strategically chosen locations within Hong Kong, Macau, and Shanghai, covering a wide 

range of climatic conditions: Hong Kong's subtropical climate, Macau's similar yet distinct urban environment, and Shanghai's 

more variable climate. This strategic deployment ensured that the sensors' performance and calibration processes were tested 

across diverse atmospheric conditions. Each monitor employed a patented dynamic baseline tracking method for the gas 

sensors, which isolates the concentration signals from temperature and humidity effects, enhancing the sensors' accuracy and 15 

reliability. The tests, which involved evaluating the validation performance by analyzing randomly selected calibration sample 

subsets ranging from 1 to 15 days, indicated that the length of the calibration period, pollutant concentration range, and time 

averaging period are pivotal for sensor calibration quality. We determined that a 5–7 days calibration period minimizes 

calibration coefficient errors, and a wider concentration range improves the validation R2 values for all sensors, suggesting the 

necessity of setting specific concentration range thresholds. Moreover, a time averaging period of at least 5 minutes for data 20 

with 1-minute resolution was recommended to enable optimal calibration in field operation. This study emphasizes the need 

for a comprehensive calibration assessment and the importance of considering environmental variability in sensor calibration 

condition. These findings offer methodological guidance for the calibration of other sensor types, providing a reference for 

future research in the field of sensor calibration. 

1 Introduction 25 

Rapid advancements in low-cost air sensor technology have led to a significant increase in their applications across various 

fields. These sensors offer a promising and cost-effective solution for monitoring air pollution at finer spatial scales and in 

novel locations compared to traditional monitoring methodologies. This has resulted in a growing demand for high-quality 

sensor data. Calibration is an indispensable component of the air sensor operational paradigm, pivotal for securing accurate 
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and dependable data. By establishing a relationship between the raw sensor output and the corresponding reference 30 

measurement, calibration enhances the accuracy and precision of sensor data. 

Common calibration methods include multi-point calibration with standard gases, controlled chamber calibration 

(Papapostolou et al., 2017; Sousan et al., 2016), on-site probe gas calibrations, and field side-by-side calibration (Bisignano et 

al., 2022; Holstius et al., 2014; Spinelle et al., 2015, 2017). Multi-point calibration allows sensors to undergo multiple 

concentration points and zero checks in the laboratory, while controlled chamber calibration involves creating a laboratory 35 

chamber to simulate ambient conditions with variable concentrations, temperature, and humidity levels (Papapostolou et al., 

2017). Additionally, on-site calibration through probe gas calibration is another approach where the gas sensor is calibrated 

directly in the field using probe gases of known standard gas concentrations. As all three methods are laboratory-based methods 

or rely on standard gas, they inherently possess constraints and may not fully capture the intricate interactions of multiple 

pollutants and environmental factors encountered in situ. This raises questions regarding the representativeness of laboratory 40 

setup in relation to actual monitoring locales and the application of calibration results obtained through standard gas to field 

conditions (Castell et al., 2017). The limitations of the laboratory-based or standard gas methods underscore the advantages of 

an alternative: the side-by-side calibration, which involves the co-locating sensor systems with reference analyzers in real-

world environmental settings for a designated duration. This approach leverages the natural fluctuation of pollutant 

concentrations and environmental factors to accurately calibrate the sensors’ sensitivity and baseline response. It is 45 

advantageous due to its procedural simplicity, negligible consumable usage, and cost efficiency compared to laboratory 

assessments (Castell et al., 2017). Consequently, it has become as a preferred method for calibration in various scenarios 

(Spinelle et al., 2015, 2017). 

Despite the widespread application of field side-by-side calibration, several critical concerns persist regarding the process. The 

primary issue is the selection of appropriate calibration conditions. Factors like the calibration duration (Levy Zamora et al., 50 

2023), the pollutant concentrations distribution (Levy Zamora et al., 2023), sensor ageing(Li et al., 2021), interference from 

non-target gases (Cross et al., 2017), the impacts of temperature and relative humidity (Ariyaratne et al., 2023), and various 

gas sampling methods can significantly influence the calibration results. Determining the optimal conditions is crucial for 

achieving accurate and reliable calibration results. Extensive research has focused on the calibration period, the most frequently 

reported in recent studies (Datta et al., 2020; Gao et al., 2015; Kim et al., 2018; Mukherjee et al., 2019; Pinto et al., 2014; 55 

Spinelle et al., 2015, 2017; Topalovic et al., 2019). One study by Zamora et al. (2023) evaluated the impact of calibration 

period on calibration quality using calibration periods of up to 6 months from one year of PM2.5, CO, NO, NO2, and O3 data 

in Maryland, US. Their results indicated diminishing improvements in median root-mean-square error (RMSE) for calibration 

periods longer than six weeks for all sensors. Zamora et al. (2023) also highlighted the importance of considering 

environmental conditions during the calibration period that are similar to those encountered during the evaluation period to 60 

achieve the best calibration performance. Another study by Okorn et al. (2021) reported that longer calibration periods (i.e., 

six weeks) resulted in fits with a reduced bias compared to fits obtained from shorter calibration periods (1 week), while the 

one-week calibrations yielded the best R2 (coefficient of determination) values. While these studies have offered valuable 
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insights into sensor field calibration conditions, more discussion is needed on other calibration factors, particularly the range 

of pollutant concentrations during the calibration period and the selection of time averaging length for raw data before 65 

calibration, which are more easily to be standardized and quantifiable compared to other factors. 

In addition to investigating calibration conditions, an equally crucial aspect to address is the development of an effective 

calibration model that can accommodate these optimized sensor calibration conditions. Most studies have adopted generic 

multiple linear regression (MLR) or machine learning models to calibrate raw sensor data, taking into account various complex 

variables such as temperature, relative humidity (RH), their gradient and cross-sensitivity to other pollutants (Datta et al., 2020; 70 

Han et al., 2021; Levy Zamora et al., 2023; Si et al., 2020; Topalovic et al., 2019; Wei et al., 2020; Zimmerman et al., 2018). 

These models, while comprehensive, often face limitations such as the risk of over-fitting, extensive training requirements, 

restricted applicability, and difficulties in replicating and scaling up for large sensor numbers. Furthermore, the complexity of 

machine learning models can pose significant barriers for everyday users. 

Addressing these challenges, this study employed a simplified yet effective approach by establishing a linear calibration model 75 

and identifying the critical factors that influence calibration quality, thus optimizing calibration conditions for NO2, NO, CO, 

and O3 electrochemical sensors. We investigated this using a patented dynamic baseline tracking method designed to mitigate 

temperature and humidity effects on sensor signals, allowing the sensor devices, Mini Air Stations (MASs), to observe data 

most directly related to the concentration signal. This approach enabled the development and use of a refined linear calibration 

model. Our research uncovers three pivotal factors that significantly impact sensor calibration and validation performance: 80 

calibration period, concentration range, and time averaging. By examining these factors’ effects on the variation of sensor's 

calibration coefficients, we aim to deepen the understanding of sensor calibration processes and enhance the performance of 

low-cost electrochemical air sensors. This methodology not only simplifies the calibration process but also ensures that the 

calibration model remains robust and applicable in varied and long-term field conditions. 

2 Material and methods 85 

2.1 Data collection 

2.1.1 Sensor devices 

Eight microsensor-based Mini Air Stations (MAS-AF300, Sapiens, China), hereinafter referred to as ‘MAS’, shown in Figure 

1, were utilized in this study for continuous measurements of the air pollutants NO2, NO, O3, and CO under field conditions. 

Each MAS unit included three or four gas sensors along with a combined RH and temperature sensor (SHT-75, Sensirion AG). 90 

This study focuses on electrochemical gas sensors for NO2 (Alphasense NO2-B43F), NO (Alphasense NO-B4), CO 

(Alphasense CO-B4), and O3 (Alphasense OX-B431). It should be noted that Alphasense OX-B431 sensor is designed to detect 

oxidizing gases (O3 + NO2) rather than O3 alone. Therefore, to accurately measure O3 concentration, it is necessary to pair the 

NO2 sensor (NO2-B43F) with the oxidizing gas sensor (OX-B431). By calculating the difference between the two sensors, the 
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O3 concentration can be determined. Furthermore, the MAS system incorporates numerous sophisticated functionalities. It is 95 

equipped with an active air sampler, ensuring a flow rate of 0.8 L min-1. The sample air undergoes filtration through a Teflon 

dust filter before directly entering the sensor module, without the implementation of any temperature or humidity control 

measures. The Teflon dust filter for each MAS will be replaced regularly every month to prevent dust from entering the gas 

module and causing measurement errors and shortening the sensor life. Moreover, to mitigate potential drift during long-term 

deployment, the MAS gas model incorporates an auto-zeroing function. During the zeroing process, the gaseous pollutant 100 

measurement module receives air samples from a separate zero module, from which NO, NO2, and O3 have been eliminated. 

The data collected during the zeroing period is subsequently analyzed to rectify any drift effects during the long-term 

deployment phase, as part of the data cleaning procedure. A comprehensive description of this technology and its functional 

advantages can be found in a paper by Sun(Sun et al., 2017). All these incorporated functionalities in the MAS system are 

aimed at optimizing sensor performance, enhancing measurement accuracy, and ensuring their long-term stability. 105 

 

 
Figure 1. Structure diagram of MAS monitoring devices (dimensions: 420 × 320 × 180 mm, H × W × D; weight: 12 kg; power 

consumption: 15W). 

 110 

2.1.2 Measurement campaign details 

To assess sensor performance under varying ambient conditions, these MASs were deployed in three distinctively different 

urban and climatic settings: Hong Kong's humid subtropical climate, Macau's somewhat similar yet distinct urban environment, 

and Shanghai's more variable climatic conditions. Each city featured a co-location campaign with an AQMS, as detailed in 

Table 1, and the AQMSs were equipped with Federal Equivalent Method (FEM) reference analyzers. 115 
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The first co-location campaign in Hong Kong involved the four MASs, each equipped with all four types of gas sensors (NO2, 

NO, CO, and O3), which were placed at the Tseung Kwan O AQMS (22.3716°E,114.1148°N) regulated by the Hong Kong 

Environmental Protection Department, showcasing a wide range of urban air quality conditions. In the second co-location 

campaign, two MASs were located at the Taipa Air Quality Monitoring Station (22.15896°E, 113.56882°N) in Macau, 

focusing on NO2, NO, and O3 to capture the general urban background conditions unique to the region. The third campaign 120 

took place in Shanghai, where two MASs, monitoring NO2, NO, and CO, were placed separately alongside two sets of 

reference analyzers at the Waigaoqiao Port 2 site (31.36662°E, 121.57242°N) and Port 4 site (31.33302°E, 121.65496°N). 

This campaign was also the longest co-location campaign, lasting 22 months, offering a prolonged observation of the diverse 

and more polluted air quality conditions typical of a major industrial hub. These locations were chosen to ensure a 

comprehensive analysis across a spectrum of urban pollution levels and environmental conditions. 125 

All eight MAS units were designed to automatically transmit the measured raw sensor signals and concentration data of the 

pollutants from the MAS to a secure cloud server in real-time at 1-minute resolution. The reference analyzer in Hong Kong 

provided 1-minute time resolution pollutant concentration data, while those in Macau and Shanghai provided hourly averaged 

data, enabling us to conduct calibration analysis at varying time resolutions. 

 130 
Table 1. Details of MAS devices in co-location calibrations.  

Location MAS 

ID 

Reference 

analyzer 

data time 

resolution 

Co-location periods Monitoring pollutants 

and concentration 

range (5th to 95th 

percentile range) 

MAS inside 

temperature and 

RH range 

Hong 

Kong 

MAS1 Minute 2021-07-27 00:00 to 

2022-10-10 00:00 

(15 months) 
NO2: 3.7 ppb - 34.6 ppb 

NO: 0.4 ppb - 18.0 ppb 

CO: 152 ppb - 643 ppb 

O3: 4.3 ppb - 69.1 ppb 
 

Temp: 10 ˚C - 43˚C 

RH: 17% - 85 % 

MAS2 Minute 2021-12-24 00:00 to 

2022-10-10 00:00 

(10 months)  

Temp: 10 ˚C - 46˚C 

RH: 16% - 86 % 

MAS3,  

MAS4 

Minute 2021-07-10 00:00 to 

2022-10-10 00:00 

(15 months) 

Temp: 10 ˚C - 45˚C 

RH: 16% - 93 % 

Macau MAS5,  

MAS6 

Hourly 2021-04-04 13:00 to 

2022-04-26 05:00 

(13 months) 

NO2: 0 ppb - 26.3 ppb 

NO: 0 ppb - 17.6 ppb 

O3:  0 ppb - 68.8 ppb 

Temp: 10 ˚C - 47˚C 

RH: 21% - 89 % 
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Shanghai MAS7, 

MAS8 

Hourly 2019-10-12 01:00 to 

2021-07-31 23:00 

(22 months) 

NO2: 14.1 ppb - 63.4 ppb 

NO: 3.2 ppb - 142.5 ppb 

CO: 258 ppb - 862 ppb 

Temp: -8 ˚C - 51˚C 

RH: 0% - 90 % 

 

2.2 Dynamic baseline tracking method to mitigate environmental effects on sensors 

The design of the MAS enables the isolation of the concentration signal from environmental variables of temperature and RH 

through a dynamic baseline tracking method, which operates by differentiating between the environmental and pollutant 135 

concentration induced sensor signals using a dual-sensor module. This gas sensor system comprises a primary sensor - an 

electrochemical gas sensor exposed directly to the air, capturing the original signal (designated as ORG) influenced by 

pollutants, temperature, and RH, and a reference sensor - an identical electrochemical gas sensor paired with a patented pair 

differential filter (designated as PDF) allowing only water molecules to pass through. This setup prevents the target gas 

pollutants from reaching the reference sensor, thereby isolating and measuring the dynamic environmental impact on the sensor 140 

baseline response. This process is referred to as "dynamic baseline tracking method" in this study. Prior to initiating the co-

location campaign, a 15-day pre-test under field conditions and a laboratory test in the environmental chamber were conducted 

to demonstrate the method's capability to enhance the sensor performance under varying temperature and humidity conditions.  

Figure 2 shows the layout of each MAS sensor module and illustrates how the dynamic baseline tracking method works under 

laboratory and ambient conditions. Each MAS sensor module produces four distinct outputs for a specific pollutant: (i) the 145 

ORG sensor signal in volts, VORG, (ii) the PDF sensor signal in volts, VPDF, (iii) the voltage output from the difference of the 

ORG and PDF sensor signals in volts, VDIFF, and (iv) the concentration output of target gas in ppb, Conc. Each MAS has an 

onboard algorithm capability that converts sensor signals to concentration, with the conversion automatically performed 

onboard the MAS for real-time concentration output. Eq. (1) presents the conversion equation for NO2, NO, and CO, where 

‘a’ denotes the slope of the equation, which is also indicative of the sensitivity (ppb mV-1) of the electrochemical sensors, and 150 

‘b’ represents the intercept of the equation. For the gas sensors exhibit cross-sensitivity with non-target gases, an interfering 

gas correction component can be incorporated. Eq. (2) presents the equation for calculating O3 concentrations using the 

Alphasense OX-B431 sensor with NO2 as an interferent. The coefficient ‘f ’ accounts for the cross-interference from NO2, and 

our empirical data, derived from a substantial number of tests, indicates that ‘f ’ typically falls within the range of 0.8 to 1.2. 

𝐶𝑜𝑛𝑐(𝑁𝑂!, 𝑁𝑂, 𝐶𝑂) 	= 	𝑎	 ×	𝑉"#$$ 	+ 	𝑏 ,         (1) 155 

𝐶𝑜𝑛𝑐(𝑂%) = 	𝑎	 ×	𝑉"#$$ + 	𝑏	– 	𝑓	 × 	𝐶𝑜𝑛𝑐(𝑁𝑂!) ,        (2) 
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Figure 2. A conceptual diagram of the PDF enabled MAS sensor device. 

 160 

2.3 Impact analysis of three crucial factors on calibration conditions 

This study specifically focuses on conducting field tests to identify optimal calibration conditions by examining three primary 

factors that influence sensor calibration performance: (a) calibration period duration; (b) concentration variation range; and (c) 

time averaging pre-processing.  

Calibration Period Optimization 165 

Calibration is typically conducted within a specific timeframe, constrained by time and resource availability. Standard 

protocols involve calibrating sensors over durations ranging from a few days to several weeks prior to their utilization in field 

monitoring applications. The calibration’s effectiveness largely depends on this timeframe, referred to as the calibration period. 

The calibration period test in this study uses subsets of the full co-location period to generate a range of hypothetical calibration 

period. We investigated calibration period scenarios ranging from 1 to 15 days. In each scenario, 500 samples were randomly 170 

selected using the numpy.random.choice() function in Python to simulate real-world sensor calibration practices and ensure 

the randomness and independence of sample selection. Sample sizes of 250, 500, and 1000 were tested, results stabilized with 

500 samples, indicating minimal impact from decreasing or increasing the sample size further. The 500 randomly selected 

calibration periods were illustrated in Figure S1 in the supplementary materials, which shows the start times for these periods 

for NO, with the approach also applied to NO2, CO, and O3 sensors. 175 
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These calibration samples were used as the training set for each hypothetical calibration period in the calibration model to 

evaluate the range of potential R2 and RMSE when applied in the sensor validation periods. Firstly, these samples were 

standardized to hourly data to facilitate consistent comparisons across various MAS units. The calibration coefficients (slope 

and intercept) of these samples were calculated as per Eq. (1) or Eq. (2). Subsequently, these coefficients were validated using 

the following month’s data by comparing the hourly calibrated sensor data and hourly reference data, with superior validation 180 

performance suggesting an optimal calibration period. This evaluation was not limited to the calibration period's immediate 

outcome; it also included a comparison of R2 and RMSE metrics against the hourly data validation set from the subsequent 

month. This dual-phase evaluation underscores that the calibration's true merit is better judged during the post-calibration 

validation phase, adhering to the standard practice of a bounded calibration period followed by an extended validation phase. 

Concentration Range Analysis 185 

We propose the hypothesis that users can strategically select a co-location period to minimize the calibration duration, 

recognizing that the calibration period is not the sole factor to consider when optimizing instrument co-location for calibration 

purposes. A critical aspect is to evaluate the representativeness of environmental conditions during the calibration period in 

relation to those observed during the long-term evaluation periods. Since the influence of  temperature and RH on sensor 

signals has been eliminated, concentration emerges as the key factor that accurately reflects environmental conditions. To 190 

analyze how the range of pollutant concentrations during the calibration period affected the sensor validation performance, we 

compared the validation R2 and RMSE outcomes with the same calibration period length but varied concentration ranges. 

Firstly, we segmented the samples into distinct categories based on their concentration ranges while maintaining a constant 

calibration period. We employed the 5th to 95th percentile of the pollutant concentration in each category to define each range. 

This approach mitigates the impact of sporadic peak values, ensuring they do not disproportionately affect the overall 195 

concentration range assessment. Subsequently, the effectiveness of calibration across these ranges was systematically 

evaluated by comparing R2 and RMSE metrics during the validation periods in the subsequent month. This strategy enabled a 

thorough examination of how the concentration range impacts calibration accuracy, providing insights into the optimal range 

needed for precise sensor calibration. 

Time Averaging Evaluation 200 

We also evaluated the influence of time averaging on calibration efficacy to identify the optimal data resolution for the best 

calibration outcomes. Given that reference analyzers and sensors can provide data at granular levels, down to minutes or 

seconds, pre-calibration data processing plays a crucial role in the accuracy of calibration.  

In this time averaging analysis, we compared the calibration performance of data averaged over different time intervals, from 

minutes to hours. After processing the calibration data set with varied time averaging intervals, the resulting calibration 205 

coefficients were evaluated against the data from the following month's validation set. For example, for a sample with 

calibration period of 1 day, sensor and reference data were averaged over 1/3/5/7/9/11/30/60/120/180 minutes and used to 

determine the sensor coefficients for each time averaging interval. Following that, these coefficients were independently 

applied to the following one-month validation period with hourly data, to determine the R2 and RMSE under each time 
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averaging intervals. The ideal time averaging interval was determined based on the highest R2 and lowest RMSE values 210 

obtained in this validation phase, pinpointing the most effective time resolution for calibration. 

3 Results and discussion 

3.1 MAS sensor performance against temperature and RH variability 

Before initiating the long-term co-location campaign, four MAS units equipped with NO2, NO, CO, and O3 sensors were tested 

in Hong Kong, demonstrating the dynamic baseline tracking method's ability to enhance performance against varying 215 

temperatures and RH. During the 15-day pre-test in the summer (June 1-15, 2021), temperatures varied between 28 ˚C and 42 

˚C, with RH levels from 45% to 87%. Figure 3(b)-(e) depicts the calibration readings contrasting with and without the PDF 

application. For NO2, the sensors with the PDF module showed stronger performance, with a high R2 (0.95-0.99) and low 

RMSE (0.94-1.73), compared to the lower R2 (0.44-0.57) and higher RMSE (5.08-5.80) for the sensors without the PDF module. 

For NO and O3, the sensors with the PDF module also demonstrated stronger performance compared to the sensors without 220 

the PDF module. Specifically, the sensors with the PDF module had strong and consistent R2 (0.97-0.98 for both NO and O3) 

and low RMSEs (1.63-1.79 for NO, 1.02-1.11 for O3), while the sensors without the PDF module had weaker R2 (0.73-0.83 

for NO, 0.47-0.60 for O3) and higher RMSEs (4.25-5.37 for NO, 4.14-4.70 for O3). For CO, the sensors exhibited comparable 

performance, with R2 around 0.93-0.94 and RMSE values between 16.70-19.00, regardless of the PDF module. These 

significant discrepancies, especially for NO, NO2, and O3, highlight the importance of the dynamic baseline tracking method 225 

in improving the accuracy and reliability of measurements, notably under low concentration conditions influenced by 

temperature and RH. 

Additionally, laboratory tests in environmental chambers assessed the MAS NO sensor (Figure S2), exposing it to broad 

temperature (0°C to 30°C) and RH (10% to 90%) ranges. Despite these fluctuations, MAS sensors maintained consistent and 

stable readings after applying the dynamic baseline tracking method, as shown in Figure S2(b), with concentration steps from 230 

50 to 300 ppb. The outcomes from both field and laboratory tests confirm that the dynamic baseline tracking method effectively 

neutralizes temperature and RH effects, primarily for NO2, NO, and O3 sensors, achieving desired performance while focusing 

primarily on concentration factors for subsequent analysis. Similar pre-tests were also conducted with the MAS units in Macau 

and Shanghai to assess the effectiveness of the dynamic baseline tracking method. 

Upon completion of the pre-tests, the long-term field co-location campaigns were initiated. The dynamic baseline tracking 235 

method was first evaluated in this study to prove its effectiveness in long-term field tests. The performance of MAS1, 

particularly for NO and NO2, throughout the campaign, was depicted in Figures S3 and S4. It should be noted that a single 

fixed calibration coefficient was used throughout the entire campaign duration. This fixed coefficient enabled the calibrated 

sensor data to consistently perform well throughout the co-location campaign. The absolute error (sensor - reference) generally 

stayed within ± 5ppb, and the relative error (absolute error/reference) was primarily under 15%, indicating effective mitigation 240 

of temperature and RH impacts on the sensor’s output, even during extended field conditions over a year. Importantly, the 
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long-term analysis in Figures S3 and S4 showed that selecting suitable calibration coefficients can ensure the sensors' stability 

and accuracy over prolonged periods. However, dedicating several months or even up to a year for calibration is not feasible 

in standard practice. Therefore, our main goal is to determine the optimal coefficients from short-term calibration periods to 

enhance long-term validation performance. 245 

 

 
Figure 3. (a) Setup and (b-e) NO2, NO, CO, and O3 long-term field data comparison of four MAS units with the AQMS in Hong 

Kong in 2019. (f) shows the temperature and RH measured inside the four MAS gas sensor modules. 

 250 

3.2 Impact of calibration period on sensor calibration 

As detailed in Section 2.3, we used 500 randomly selected samples for each calibration period, and this process generated 500 

sets of calibration slopes and R2 / RMSE values from the validation period. Figure S5 displays the median and the 25th to 75th 

percentile range of these R2 / RMSE results across all eight MAS units with NO2 and NO sensors and all six units with CO and 

O3 sensors. Figure 4 extracts the 25th to 75th percentile of each MASs results and combines them into a boxplot, making the 255 

trend across the calibration period more apparent. An increase in the median of R2 (e.g. for NO, R2 improved from 0.83 to 0.95 
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as the calibration period went from 1 to 15 days) coupled with a reduction in the median of RMSE (e.g. for NO, RMSE 

decreased from 3.71 to 2.12 over the same calibration period) shown in Figure 4 indicate improved validation performance. 

The narrowing of the 25th to 75th percentile range across calibration periods (e.g. for NO, R2 range tightened from 0.66-0.96 to 

0.90-0.98 as the calibration period went from 1 to 15 days) further supports this, with a tightening of validation performance 260 

towards a steadier state and reduced chance of abnormal calibration. 

In Figure 4, the most notable enhancements in validation performance were observed within the initial 1 to 3 days. Beyond 

this period, the rate of improvement was found to be less clear, with the median R2 increasing by less than 0.02 and the median 

RMSE decreasing by less than 0.1 (but less than 1 for CO) for further increases in the calibration period. For NO2, NO, and 

O3, the upward trend in validation R2 and the downward trend in RMSE were observed, plateauing after 5 days. CO sensors in 265 

most MAS units reach stable R2 after 7 days. This suggests lengthening the calibration period beyond 5 days for NO2, NO, O3 

or 7 days for CO does not markedly benefit sensor data performance. If the sensor users can strategically select the co-location 

period to minimize the calibration duration, a period of 5–7 days is identified as most effective for minimizing errors in 

calibration coefficient and avoiding notably low validation R2 values. 

A noteworthy observation in Figure S5 is that the NO2 and NO sensors in MAS7 and MAS8 of Shanghai campaign showed 270 

consistent performance over all calibration periods, likely due to the high pollutant concentrations in the Shanghai port area. 

Despite the short calibration duration of 1–3 days, the extensive concentration range assessed contributed to more precise 

calibration coefficients and improved validation performance, as will be discussed in next section. 
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 275 
Figure 4. The range of the validation R2 and RMSE for a given calibration period for all MAS units consists of (a) NO2, (b) NO, (c) 

CO, and (d) O3 sensors. The vertical error bar is the 25%–75% distribution of R2 and RMSE under different calibration periods. 

 

3.3 Impact of concentration range on sensor calibration 

Another critical aspect is the impact of the concentration range experienced by the sensors during calibration periods. Figure 280 

S5 shows that MAS7 and MAS8 in the Shanghai campaign could achieve accurate and reliable calibration for NO and NO2 

within just a day, given their exposure to environments with significant concentration variability. Consequently, our second 

test examined the effect of the concentration range.  
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Samples in Figure 4 were grouped based on different concentration ranges, and the results were shown in Figure 5 and Figure 

S6 to explore the relationship between calibration period length, concentration range, and sensor validation performance, 285 

categorizing the MAS units accordingly. For NO2 and NO sensors of MAS7 and MAS8, a separate analysis was essential due 

to their higher pollutant concentrations compared to other units, as detailed in Table 1. Therefore, MASs 1-6 were evaluated 

together in Figure 5 under a lower concentration range, with 90% of NO2 and NO ranges falling below 40 ppb and 50 ppb, 

respectively. In contrast, MAS7 and MAS8 were assessed in Figure S6 under higher concentration ranges, where 90% of the 

readings for both gases exceeded these thresholds. 290 

Figure 5 illustrates the calibration conditions at lower concentrations typical of environments like Hong Kong and Macau. The 

red zone of Figure 5, indicating higher R2 values, is primarily concentrated in areas with wider concentration ranges. 

Specifically, when examining the performance of NO2 sensors, the lowest R2 value of 0.55 was recorded in the 0-10 ppb range, 

while the highest R2 value of 0.75 was recorded in the >50 ppb range. When the calibration period is held constant, an increase 

in the concentration range boosts the validation R2 from 0.55 to 0.75 with a notable turning point at 40 ppb. However, extending 295 

the calibration period without increasing the concentration range doesn't obviously improve the validation R2. NO CO and O3 

also displayed patterns similar to NO2, with R2 improvements linked to wider concentration ranges. For all gases, the highest 

R2 values were predominantly observed in the broadest concentration ranges. Therefore, achieving higher validation R2 values 

above the median, such as R2 > 0.65 for NO2, R2 > 0.84 for NO, R2 > 0.75 for CO, and R2 > 0.95 for O3, requires significant 

concentration ranges, notably more than 40 ppb for NO2 and 10 ppb for NO, 500 ppb for CO, and 20 ppb for O3. Reaching 300 

these ranges allows the calibration coefficients to stabilize and align closely with those derived from year-long calibration 

results.  

Additionally, the differences in the concentration range thresholds suitable for the different gas sensors may be attributed to 

the distribution characteristics of the gas pollutants in the surrounding environment. Notably, as determined in the just-obtained 

results, the NO concentration range of 10 ppb is the lowest, possibly due to the prevalence of high ambient NO concentrations 305 

frequently appearing in the form of peaks. Consequently, when employing the 5th to 95th percentile as the criteria for 

concentration range, the NO range is observed to be the lowest among the gases. Moreover, the higher concentration range 

analysis in Figure S6 shows that increasing the concentration range beyond 40 ppb for NO2 and 50 ppb for NO does not 

improve validation R2 values, further indicating a threshold in the concentration range beyond which no additional sensor 

performance benefits are observed. Overall, this underscores the inadequacy of merely extending the calibration duration, and 310 

it is crucial to ensure an adequate concentration range during the calibration period. However, beyond a certain concentration 

range threshold, further increases in the calibration range do not lead to additional improvements in the calibration results. 
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Figure 5. (a) NO2, (b) NO, (c) CO, and (d) O3 bubble plot of median R2 of MAS units 1–6 (as located in the low-concentration regions 315 
(Hong Kong and Macau)) and two factors: calibration period and concentration range. The size of the bubbles represents the 

number of samples. The color represents the median R2 values in corresponding categories. Red represents the higher R2 value, 

while blue represents the lower R2 value. 

 

3.4 Impact of time averaging on sensor calibration 320 

Another factor influencing calibration is the time averaging of the raw data, particularly for high-frequency measurements, 

taken at intervals of a minute or seconds. Performing temporal averaging is critical before formulating the calibration equation. 

As indicated in Table 1, the reference data from Hong Kong provides a one-minute temporal resolution. Thus, for calibrating 

sensors MAS1 - 4, identifying the optimal time averaging is crucial, as it enhances the accuracy of calibration coefficients and 

guarantees a substantial data volume for a reliable calibration process. 325 

Using MAS1 as an illustrative case, Figure 6 shows the calibration sample processing for its NO2 sensors, with different colors 

denoting time averages ranging from one minute to three hours. This indicates the sensor and reference data for each calibration 

sample underwent time averaging across intervals of 1/3/5/7/9/11/30/60/120/180 minute(s). Subsequent calibration and 

validation led to the determination of the calibration slope, R2 of the validation set, and RMSE for these time-averaged intervals. 

Extending this process to 500 samples per calibration period, we derived their median values, as depicted in Figure 6. Analysis 330 

of Figure 6's vertical axis reveals that, for a one-day calibration period, R2 values improved post hourly (R2 = 0.68) and 5-

minute averaging (R2 = 0.66) compared to the baseline 1-minute data (R2 = 0.59), with a corresponding reduction in RMSE. 

For periods exceeding a day, median R2 values exhibited a modest rise from 0.64-0.66 for 1-minute data to 0.68-0.70 for hourly 

data, suggesting the shorter the calibration period, the more pronounced the benefit of longer time averaging. Hence, calibrating 

with minute-level data over short periods of 1-3 days may lead to suboptimal validation performance. Similar trends were 335 

observed for NO, CO, and O3, as shown in Figures S7-S9, with MAS2, MAS3, and MAS4 in Hong Kong mirroring the findings 

from MAS1. 

The results indicate that data averaged over an hour are more suitable for calibration than minute-level data. As depicted in 

Figure 6 and Figures S7–S9, a critical juncture is identified at the 5-minute mark (highlighted by a green line with a star). After 

this point, the improvements in validation R2 and RMSE become substantially less obvious. Thus, for data originally recorded 340 

at 1-minute intervals, applying a time averaging of 5 minutes or longer boosts the performance of the validation set, aligning 

the calibration coefficient more closely with the optimal one. The enhanced performance of hourly over minute-level data 

across various calibration periods warrants further investigation in next section to understand the underlying factors. 
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 345 
Figure 6. The calibration slope median, the R2 median of the validation set, and the RMSE median of the validation set under 

different time averaging for a given calibration period for MAS1’s NO2 sensor. 

 

3.5 Potential causes of sensor calibration coefficient variation 

We selected a sample from the MAS1 NO2 sensor with a one-day calibration period to analyze the benefits of hourly over 350 

minute-level data averaging. Regression analysis between sensor and reference data was performed for both 1-minute and 1-

hour averages. Initially, data fitting during the calibration period was assessed. The time series plot in Figure 7(a) shows that 

both minute and hourly averaged data closely align with the reference. However, obvious differences emerged when computing 

the calibration equations separately for each time frame. The calibration slope for minute-level data (a = 2.70) was substantially 
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lower than that for hourly data (a = 3.91), corroborating the trends noted in Figure 6. This discrepancy is evident in Figure 355 

7(b), where the regression curves for minute-level and hourly data diverge. The orange line for hourly data intersects more 

closely with the dense cluster of orange dots representing minute-level data, unlike the minute-level data's blue fitting line, 

which misses this dense area. In the validation phase, applying the distinct calibration coefficients derived for minute and hour 

averages to the next month's dataset also highlighted clear differences. Figure 7(c) and (d) illustrate that minute-level 

calibration coefficients (blue line) resulted in less consistent sensor data with the reference (R2 = 0.72, RMSE = 5.60) than the 360 

hourly data (R2 = 0.93, RMSE = 2.74), especially at lower concentrations. 

The discrepancy between the two sets of calibration coefficients is further illustrated in the data distribution plots in Figure 

S10, where sensor and reference data distributions for varying time averaging lengths are compared. As the time averaging 

interval increases, the sensor data distribution more closely mirrors the reference data distribution. This observation supports 

the notion that time averaging can refines the accuracy of the calibration by aligning data distributions, leading to more precise 365 

calibration outcomes. This pattern consistently appeared across various samples, MAS units, and gases, as described in section 

3.4, demonstrating the superior calibration accuracy achieved with longer averaging periods.  

Furthermore, we investigated the potential factors for the observed pattern by analyzing the residual term in sensor calibration 

model from the mathematical perspective. One plausible explanation is that the existence of influential factors has not been 

incorporated in the calibration model. As a result, the predictive capability of the calibration model may be compromised as it 370 

fails to accurately capture the relationship between sensor and reference data. The detailed analysis of this pattern is provided 

in Text S1 of the Supplementary Material. 
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Figure 7. One of the calibration samples for MAS1’s NO2 sensor with a calibration period of 1 day. (a) is the time series and (b) is 375 
the scatter plot of minute-level and hourly data for the NO2 sensor and reference during the calibration period. (c) is the time series 

and (d) is the scatter plot of minute-level and hourly data for the NO2 sensor and reference during the validation period. The color 

bars in (b) and (d) represent the sample size in each region. 

 

4. Conclusions 380 

This study aimed to identify and analyze three critical factors influencing the sensor calibration performance of PDF based 

electrochemical NO2, NO, CO, and O3 sensors: calibration period, concentration range, and time averaging. By co-locating 

eight MAS units with reference analyzers in three cities over a period of up to 22 months, a comprehensive framework for 

sensor calibration was established. The study utilized a dynamic baseline tracking method, enhancing the consistency between 
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MAS sensor data and reference measurements. This method effectively countered the impacts of temperature and RH, focusing 385 

on pollutant concentration as the primary factor for MAS performance assessment. 

In the calibration period analysis, equations were derived from 500 randomly selected samples for each period ranging from 1 

to 15 days, with subsequent evaluation against the validation data. Initial improvements in validation performance were notable 

within the first 1 to 3 days of the calibration period, stabilizing around 5 to 7 days. This pattern suggests that extending the 

calibration period beyond 7 days yields negligible benefits, hence a 5–7 days calibration period is advocated to reduce 390 

calibration coefficient errors. 

The concentration range assessment indicated that broader ranges enhance the validation R2 values across all gas sensors. This 

finding emphasizes the necessity of establishing a concentration range threshold to facilitate effective calibration. Optimal 

ranges were determined as over 40 ppb for NO2, 10 ppb for NO, 500 ppb for CO, and 20 ppb for O3, with these thresholds 

ensuring reliable calibration coefficients and minimizing uncertainty in the results. 395 

Time averaging’s impact on calibration was significant, with improved coefficients and validation performance as averaging 

intervals increased. Notably, a one-day calibration period showed the most substantial improvement, with hourly and 5-minute 

averages providing higher R2 values than one-minute intervals. A 5-minute threshold emerged as critical, advocating for a 

minimum of 5-minute averaging to enhance calibration accuracy and align coefficients with the optimal standard. 

This study offers comprehensive insights into calibrating electrochemical gas sensors, highlighting the calibration period, 400 

concentration range, and time averaging's roles. Recommended practices for optimal calibration include: (1) a calibration 

period of 5–7 days using hourly data, (2) a concentration variation range (5th to 95th percentile range) exceeding 40 ppb for 

NO2, 10 ppb for NO, 500 ppb for CO, and 20 ppb for O3, and (3) a time averaging of 5 minutes or longer, preferably utilizing 

hourly data. The findings highlight the importance of balancing these factors to achieve optimal calibration outcomes, while 

extending certain calibration aspects beyond recommended thresholds may not yield additional benefits.  405 

Acknowledging the limitations of this study, which focused exclusively on our MAS sensor technology with its active flow 

gas sampler, it should be noted that the specific calibration protocol described may not be directly applicable to studies 

involving different sensor types, commercial sensor packages from various manufacturers, or different air sampling methods 

using passive samplers. Optimal calibration conditions may vary depending on the sensor’s specific features and the calibration 

methods employed. Future research endeavors should aim to diversify sensor types and increase the number of test sensors, 410 

thereby enhancing the generalizability and practicality of the findings. Nonetheless, the primary objective of this study is to 

provide methodological insights that can serve as a valuable reference for calibrating various sensor types. The developed 

dynamic baseline tracking method, along with the determined optimal calibration period, concentration range thresholds, and 

time averaging period, can inform and guide future research and calibration efforts for a wide range of sensors used in air 

quality monitoring. By establishing a foundation for standardized calibration approaches, this study contributes to advancing 415 

sensor technologies and promoting the generation of reliable and comparable air quality data across diverse monitoring 

networks. 
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