
First and foremost, we would like to express our sincere gratitude to Luca Lelli, the 
anonymous reviewers, the editor, and the editorial support team for taking the time to 
review our manuscript and provide valuable feedback. The comments we received were 
extremely helpful in improving our manuscript, and we are very grateful for them. As 
outlined below, we have revised the manuscript based on the feedback. The reviewers’ 
comments are copied below and shown in italics, while our responses and the 
corresponding text in the manuscript are shown in red and orange, respectively. 
 
Response to the editorial support team 
Regarding figures 3, 7: please ensure that the colour schemes used in your maps and 
charts allow readers with colour vision deficiencies to correctly interpret your findings. 
Please check your figures using the Coblis – Color Blindness Simulator 
(https://www.color-blindness.com/coblis-color-blindness-simulator/) and revise the 
colour schemes accordingly with the next file upload request. 
 
Answer: In response to the comment, we updated the color scheme for Figures 3 and 4 
(excluding Figure 3a) to the ‘Scientific Color Maps’ recommended on the AMT 
submission page (https://www.atmospheric-measurement-
techniques.net/submission.html).We recognize that adjusting the color scheme of the 
RGB images in Figures 3a and 7 as well would also be preferable. However, since the 
values of the three channels are directly assigned to R, G, and B, we are unsure how to 
modify them to make them colorblind-friendly. Instead, we utilized the ‘Coblis – Color 
Blindness Simulator’ to confirm that the RGB images in Figures 3 and 7 can be correctly 
interpreted by readers with anomalous trichromacy. 
 
 
  

https://www.color-blindness.com/coblis-color-blindness-simulator/
https://www.atmospheric-measurement-techniques.net/submission.html
https://www.atmospheric-measurement-techniques.net/submission.html


Response to Anonymous Referee #3 
A new algorithm was proposed to retrieve the CBH using the SGLI 763 nm channel in 
combination with several other SGLI channels in the visible, shortwave infrared, and 
thermal infrared regions. However, there are some critical aspects that require more 
detailed elaboration and clarification to enhance the clarity of your findings. 
 
We would like to thank you very much for carefully reading our manuscript and providing 
us with valuable comments. We have revised our manuscript, by taking full account of 
the referee's suggestions. The original comments are copied below and shown in italics, 
while our responses and the corresponding text in the manuscript are shown in red and 
orange, respectively. 
 
 
1. The optimal estimation algorithm is undoubtedly the heart of your study. Please 

expand on the methodology section to provide a comprehensive and step-by-step 
description of the algorithm. This should include the mathematical formulations, 
assumptions made, and any pre-processing or post-processing steps involved. This 
will enable readers to fully understand your work. 

 
Answer: In accordance with the comment, the description of the optimal estimation 
method using the Levenberg–Marquardt (LM) approach has been revised and elaborated 
as follows in Section 2.2.1 of the revised manuscript: 
[Section 2.2.1; Lines 194 - 209] 
“Our algorithm employs the optimal estimation method framework (Rodgers, 2000), 
which seeks the optimal solution that minimizes the cost function 4 that is given by the 
following equation: 
 

4 = [7 − 9(;)]'>#(&[7 − 9(;)] +	 [; − ;)]' 	>)(&[; − ;)], (1) 
 
where 7 and 9(;) represent the measurement vectors consisting of the measured and 
simulated TOA reflectances, respectively. ; represents the state vector, ;) represents 
the a priori values for ;, and ># and >) represent the covariance matrices for y and 
;), respectively. 
The iterative solution of the inverse problem through the Levenberg–Marquardt approach, 
based on the Gauss-Newton method for minimizing Equation (1), is determined using the 
following formula (Rodgers, 2000): 
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where ;*  is the state vector at the G-Hh iteration, C*  is the Jacobian matrix of 9(;) 
evaluated at ;* , B is a parameter chosen at each step of the iteration to reduce the cost 
function 4.” 
 
 
2. Clarify how you address the non-Gaussian distributions of the observations. Discuss 

the limitations and potential biases introduced by these assumptions. 
 
Answer: The optimal estimation method (Rodgers, 2000) in Formula (1) is formulated 
based on the assumption that the a priori distributions for the measurement vector and 
state vector (i.e., >#  and >) ) follow Gaussian distributions. Consequently, non-
Gaussian distributions are not considered in this study.  
We believe it is reasonable to assume a Gaussian distribution for measurement errors of 
TOA radiances (i.e., >#) that has been accurately calibrated radiometrically and exhibits 
sufficiently small measurement errors. However, for the prior distribution of the state 
vector (i.e., >) ), non-Gaussian distributions may be more appropriate in certain 
circumstances. For instance, the log-normal distribution might better fit the histogram of 
cloud optical thickness. However, since this is the first application of our algorithm to 
GCOM-C/SGLI, we used a normal distribution for simplicity with means of typical 
orders of magnitude and fairly large standard deviations to avoid excessive reliance on 
the prior distribution. To clarify these points, the following text has been added. 
[Section 2.2.1; Lines 221 - 225] 
“Note that the values in Table 1 could be assigned more appropriate prior distributions 
(mean, standard deviation, and even covariance) by using cloud property products from 
other satellite observations. However, since this is the first application of our algorithm 
to GCOM-C/SGLI, we used a normal distribution for simplicity with means of typical 
orders of magnitude and fairly large standard deviations to avoid excessive reliance on 
the prior distribution.” 
 
 
3. Provide details on how you estimate and incorporate the covariance matrix of the 

observations, particularly addressing the correlations between different channels. 
Discuss any challenges in estimating these correlations and the strategies employed 



to mitigate their impacts on the estimation accuracy. 
 
Answer: For the covariance matrix of the measurement vector !!, the diagonal elements 
(i.e., variances), which represent uncertainties of measurements for each channel, were 
given based on the post-launch calibration information of the GCOM-C mission. 
Meanwhile, the non-diagonal elements (i.e., covariances), which represent correlation of 
measurement errors between channels, were all set to zero. To clarify these points, we 
have revised the text as follows: 
[Section 2.2.1; Lines 216 - 218] 
“The diagonal elements of >,, consisting of the uncertainties in the TOA measurements, 
were obtained from the post-launch calibration information of the GCOM-C mission, 
while the non-diagonal elements of ># were set to zero.” 
 
In general, issues that cause significant bias across multiple channels (e.g. electrical 
leakage and/or stray light) are identified and addressed during the sensor development 
stage. For GCOM-C/SGLI, no such critical problems have been reported since its launch. 
Additionally, radiance calibration after launch is typically performed independently for 
each channel, providing the uncertainty (i.e., variances) of the radiance for each channel, 
but it does not usually provide the correlation (i.e., covariance) of the measurement errors 
between channels. It may be possible to estimate the covariance of measurement errors 
through vicarious calibration using in-situ measurements or mutual comparisons with 
other satellite sensors; however, the reliability of such estimates is low. In conclusion, we 
consider it challenging to assign a value to the correlation of measurement errors for >, 
and deem it most appropriate to assume it as 0. 
 
 
4. Explain how you account for angular biases or other systematic errors in the 

observations, particularly as they relate to the state variables. 
 

Answer: In the optimal estimation method, systematic biases such as angular biases are 
typically addressed by adding them collectively to I# , rather than considering them 
individually. However, if all possible systematic biases were to be directly added 
together,  I#  will become too large relative to I) ,, causing the solution to be overly 
constrained to J). Therefore, as described in the main text, we determined I# based on 
the post-launch calibration information for GCOM-C, while assigning relatively loose 
prior distributions to I) as shown in Table 1, and designed the algorithm to be tightly 



constrained by the SGLI measurements rather than by the a priori information. 
 
 
5. Elaborate on the methodology used to determine the background error covariance for 

the state variables. Specifically, discuss how you handle correlations between 
different state variables and how you arrived at the values presented in Table 1. 
Consider discussing the sensitivity of your results to these assumptions and any 
validation performed to support the chosen values. 

 
Answer: Please allow us to partially reiterate our response to Comment 2 above in 
addressing this comment. The values in Table 1 were provided roughly based on cloud 
property products from other satellite observations, without overly constraining the 
solution space. For the optimal estimation method to be most effective, a prior distribution 
close to the true value should be used. However, since this is the first application of our 
algorithm to GCOM-C/SGLI, we used a normal distribution with means of typical orders 
of magnitude and fairly large standard deviations to avoid excessive reliance on the prior 
distribution. To clarify these points, the following text has been added in the revised 
manuscript. 
[Section 2.2.1; Lines 221 - 225] 
“Note that the values in Table 1 could be assigned more appropriate prior distributions 
(mean, standard deviation, and even covariance) by using cloud property products from 
other satellite observations. However, since this is the first application of our algorithm 
to GCOM-C/SGLI, we used a normal distribution for simplicity with means of typical 
orders of magnitude and fairly large standard deviations to avoid excessive reliance on 
the prior distribution.” 
 
 
6. Detail how you estimate the uncertainty in cloud-base height (CBH) from your 

optimal estimation algorithm. This should include a discussion of the error 
propagation and any assumptions made in the uncertainty analysis. 

 
Answer: As the reviewer has pointed out, based on the error propagation theory 
(employing the optimal estimation framework, the covariance matrix >#, and the forward 
calculation), it is possible to estimate the uncertainty in the CBH estimation. However, 
the uncertainty in CBH estimated in this manner is typically underestimated because the 
primary sources of estimation error arise from factors not accounted for in the forward 



calculation, such as the vertical inhomogeneity of the cloud property profile and 
multilayer cloud structures. Therefore, this study assessed the uncertainty in CBH through 
validation against CBH measurements obtained from ground-based and ship-borne 
ceilometers (Figures 6 and 9), as well as satellite-borne radar and lidar (Figure 10). In 
fact, the bias in CTH (Figure 9) and the dependence of CBH bias on multi-layer cloud 
structure (Figures 6 and 7) observed from these validation analysis are not captured by 
estimates based solely on the error propagation theory.  
 
 
7. Consider performing a sub-analysis by classifying clouds into different types and 

reporting the results separately. This would help isolate the impacts of cloud type on 
your findings and provide valuable insights into the variability in estimation 
performance across cloud types. 

 
Answer Thank you for your valuable suggestion. We agree that it is important to 
investigate in more detail how our algorithm behaves for different cloud types. However, 
we do not have an ‘objective information/method’ that decomposes the validation results 
shown in Figures 6, 9, and 10 into different cloud types. For instance, the all-sky camera 
used to identify cloud types is not necessarily operated at the same time as the ceilometers. 
Additionally, although observations from CloudSat and CALIPSO are effective for 
identifying cloud types, they are unfortunately not collocated with SGLI, except in high-
latitude regions, because the A-Train satellites operate in the afternoon orbit while 
GCOM-SGLI operates in the morning orbit. Although it is possible to apply COT and 
CTH retrieved from SGLI to the traditional cloud type classification of the ISCCP, this 
classification itself is dependent on the retrieval errors of COT and CTH themselves, and 
the uncertainty in cloud type classification may not be fully resolved. One potential 
approach could be to use cloud type classification from geostationary meteorological 
satellites as an objective third-party. However, such analysis is beyond the scope of this 
study and we would like to leave it as a topic for future work. 
 
 
8. Some new cloud base height retrieving method should be cited in the 

Introduction.  such as:   Retrieving cloud base height from passive radiometer 
observations via a systematic effective cloud water content table, Remote Sensing of 
Environment, 294 (2023), 113633. 

 



Answer: Thank you for your valuable suggestion of a literature. We have incorporated it 
into both the Introduction and References as follows:  
[Section 1; Lines 76 - 79] 
“Another approach is to estimate other cloud properties correlated with CBH and CGT, 
such as CTH and COT, which are usually measured using passive instruments not 
equipped with oxygen absorption channels. This approach has been implemented using 
adiabatic (Seaman et al., 2017) or statistical models (Noh et al., 2017, 2022; Shao et al., 
2023; Tan et al., 2023).” 
 
[References] 
“Tan, Z., Ma, S., Liu, C., Teng, S., Letu, H., Zhang, P., and Ai, W.: Retrieving cloud base 
height from passive radiometer observations via a systematic effective cloud water 
content table, Remote Sens. Environ., 294, 113633, 
https://doi.org/10.1016/j.rse.2023.113633, 2023.” 
 
  


