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Abstract. The Geostationary Environment Monitoring Spectrometer (GEMS) is the world’s first ultraviolet–visible instru-

ment for air quality monitoring in geostationary orbit. Since its launch in 2020, GEMS has provided hourly daytime air

quality information over Asia. However, to date, validation and applications of these data are lacking. Here we evaluate the

effectiveness of the first 1.5-year
:::
two

:::::
years

:::
of GEMS aerosol optical depth (AOD) data in estimating ground-level particu-

late matter (PM) concentrations at an hourly scale. To do so, we employ
::::
trainrandom forest

:::
and

::::::::
XGBoost

::::::::
machine

:::::::
learning5

:::::::::
algorithms

:::::
using GEMS AOD data and meteorological variables as input features

:
,
::::
then

::::::
employ

::::
the

::::::
trained

::::::
models

:
to esti-

mate PM10 and PM2.5 concentrations, respectively, in South Korea. The model-estimated PM concentrations are strongly

correlated with ground measurements, but they exhibit negative biases , particularly during high aerosol loading months.

Our results indicate that GEMS AOD values represent underestimates compared to ground-measured AOD values, possibly

leading to negative biases in the final PM estimates. Further, we demonstrate that more training datacould significantly improve10

random forest model performance, thus indicating the potential of GEMS for high-resolution surface PM prediction when

sufficient data are accumulated over the coming years
::::
well

::::::
capture

:::
the

::::::
spatial

:::
and

::::::::
temporal

::::::::
variations

:::::::
observed

::
in
::::::::::::
ground-based

::::::::::::
measurements,

::::::::
showing

:::::
strong

:::::::::::
correlations.

:::::::::
However,

::::
they

::::::
exhibit

:::::::::
noticeable

::::::
biases

::
at
::::

the
::::::::
extremes,

:::::
with

:
a
::::::::

tendency
:::

to

::::::::::
overestimate

::::::::::::
concentrations

:::
at

:::::
lower

:::
PM

:::::
levels

::::
and

::::::::::::
underestimate

::::
them

::
at
::::::

higher
::::
PM

:::::
levels.

::::::::::::
Incorporating

::::::
locally

::::::::
available

::::
data,

::::
such

:::
as

::::::
carbon

::::::::
monoxide

::::
and

:::::::
nitrogen

:::::::
dioxide

:::::::::::::
measurements,

:::
into

::::
the

:::::
model

:::::::
training

::::::
further

::::::::
enhances

::::::::::::
performance,15

::::::::
improving

:::::::::::
correlations

:::
and

::::::::
reducing

::::::
errors.

:::::::::
Moreover,

::::
we

::::::::::
demonstrate

:::
the

:::::::::
feasibility

:::
of

:::::
using

::::::::
machine

:::::::
learning

:::::::
models

::::
with

::::::::::
neighboring

::::::
station

::::
data

::
to

:::::::
estimate

::::
PM

::::::::::::
concentrations

::
at

::::::::
ungauged

::::::::
locations

::::::
where

::::::
ground

:::
PM

:::::::::::::
measurements

:::
are

:::
not

:::::::
available. Our results will serve as a reference to aid the evaluation of future GEMS AOD retrieval algorithm improvements

and also provide initial guidance for data users.
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1 Introduction

The adverse impacts of particulate matter (PM) on human health are well known. Exposure to high PM concentration can

cause serious health risks such as cancers, respiratory and cardiovascular diseases (Chen and Hoek, 2020; Kim and Kim, 2020;

Ciabattini et al., 2021; Moreno-Ríos et al., 2022). PM can also have a harmful effect on ecosystems through deposition of PM

and its subsequent uptake by plants (Rai, 2016; Roy et al., 2024). Accordingly, in many countries, it is mandatory to control25

ambient PM concentrations, and regular PM concentration measurements are key to designing appropriate policies to constrain

the presence of PM. Given this background, the number of air quality monitoring stations has been growing worldwide; how-

ever, these ground-based measurement stations are often concentrated in city areas only and insufficiently densely distributed

to provide spatially continuous data (Martin et al., 2019).

30

In contrast, satellite observational data, with its broad spatial coverage, can be potentially used to improve air quality moni-

toring (including PM) on a regional to global scale. In this context, the Geostationary Environmental Monitoring Spectrometer

(GEMS) onboard the Geostationary Korea Multi-Purpose Satellite-2B (GEO-KOMPSAT-2B), which was launched in 2020 by

the Republic of Korea, aims for near real-time monitoring of air quality over Asia (Kim et al., 2020) where air quality is the one

of biggest environmental health risks (Hopke et al., 2008). As the first ultraviolet (UV)–visible instrument in a geosynchronous35

orbit, GEMS can provide more detailed and frequent air quality data than existing low Earth orbit platforms. Since the first

release of the GEMS data, some verification of its initial air pollutant products including nitrogen dioxide or ozone has recently

been performed (e.g. Baek et al., 2023; Kim et al., 2023; Ghahremanloo et al., 2024). However, data validation and applications

of many GEMS products are still largely lacking.

40

We focus on the GEMS aerosol optical depth (AOD), which measures the degree of light scattering or absorption at a given

wavelength due to the presence of aerosols in the atmospheric column (Chudnovsky et al., 2012). Satellite-derived AOD has

:::::
serves

::
as

:
a
::::::
crucial

::::::
proxy

::
for

::::::::::::
understanding

::::::
aerosol

::::::::::
distribution

:::
and

:::
its

::::::
impact

::
on

:::
air

::::::
quality.

::::::::
However,

:::
the

::::::::
accuracy

::
of

:::::::
satellite

::::
AOD

::::
data

:::::
needs

::
to

:::
be

:::::::
validated

::
to
::::::
ensure

::::
their

:::::::::
reliability

::
for

:::::::::::
downstream

::::::::::
applications,

::::::::
including

:::::::::::
ground-level

:::
PM

::::::::::
estimation.

::::::::
Typically,

:::
this

:::::::
involves

:::::::::::
comparisons

::::
with

:::::::::::
ground-based

::::::::::::
measurements

:::::::::::::::::::::::::::::::::::::::::::::
(e.g. Ogunjobi and Awoleye, 2019; Mangla et al., 2020)45

:
.
:::
For

:::::::
instance,

:::::::::::::::
Choi et al. (2019)

::::::::
evaluated

::::::
various

:::::::::::::
satellite-derived

::::::
AODs

::::::
against

:::::::::::
ground-based

:::::
AOD

::::::::::::
measurements

::::::::
collected

:::::
during

:::
the

:::::
2016

::::::::::
KORUS-AQ

:::::::::
campaign

::
in

::::
East

::::
Asia.

:::::::::
Similarly,

::::::::::::::
Cho et al. (2024)

::::::::
validated

:::
the

::::::::::
performance

::
of

::::::
GEMS

:::::::
aerosol

:::::::
products

::::::
against

:::::::
ground

::::::::
measured

::::
data.

:::::
Both

::::::
studies

::::::::
revealed

:
a
:::::
good

:::::::::
correlation

::::::::
between

:::::::
satellite

:::
and

::::::::::::
ground-based

:::::
AOD

::::
data,

::::::::::::
demonstrating

:::
the

:::::
utility

::
of

:::::::::::::
satellite-derived

:::::
AOD

:::
for

:::::::::
monitoring

::::::::::
data-scarce

:::::::
regions.

50

::::
Here

:::
we

:::
first

:::::::
evaluate

::::::
GEMS

:::::
AOD

:::
data

:::::::
through

:
a
:::::
direct

::::::::::
comparison

::::
with

:::::::::::
ground-based

:::::::
Aerosol

::::::
Robotic

::::::::
Network

:::::::::::
(AERONET)

::::::::::
observations

::::
over

:::::
South

::::::
Korea.

:::::::::
However,

:::
we

::::
place

:::::::
greater

::::::::
emphasis

::
on

:::::::::
evaluating

:::
the

::::::
utility

::
of

::::::
GEMS

:::::
AOD

:::
for

:::::::::
estimating

::::::::::
ground-level

::::
PM

:::::::::::::
concentrations,

::
as

::
it
:::::
offers

::
a
::::::
unique

::::::::::
opportunity

:::
to

::::::
address

:::::::
aerosol

::::
data

::::
gaps

:::
in

::::
Asia

:::::::::::::::
(Wen et al., 2023)

:
.

::::::::
Moreover,

:::::
South

::::::
Korea

:::
has

:::::::::
nationwide

:::
air

::::::
quality

:::::::::
monitoring

:::::::
stations,

:::::::
allowing

:::
us

::
to

:::::
obtain

:::::::::
continuous

::::
and

::::
large

::::
data

:::::::
samples
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::::::
(PM10

:::
and

:::::::
PM2.5)

::
for

:::::::::
validating

:::
the

:::::::
satellite

::::
data.

:::
To

:::::
better

:::::
utilise

::::::
GEMS

:::::
AOD

:::
for

:::::::::::
ground-level

:::
PM

:::::::::
estimation,

:::
we

:::::::
employ55

:::::::
machine

:::::::
learning

:::::::
models,

::::::
which

::::
offer

:::
the

:::::::::
advantage

:::
of

::::::::::::
experimenting

::::
with

::
a
::::
wide

::::::
range

::
of

:::::
input

::::::::
variables.

::::
For

::::::::
example,

::::::::::
ground-level

:::::::
aerosols

:::
are

:::
not

::::::
related

::
to

:::::
AOD

::::
only,

:::
but

:::::::::
influenced

:::
by

::::::::::::
meteorological

:::::::::
conditions

::
or

::::::::
precursor

::::::::
pollutants

:::::
such

::
as

:::::
sulfur

::::::
dioxide

:::::
(SO2)

::::
and

:::::::
nitrogen

::::::
dioxide

:::::::
(NO2).

:::::::
Machine

:::::::
learning

::::::
allows

:::
for

::
the

:::::::
efficient

::::::::::
integration

:::
and

:::::::::
processing

::
of

:::::
these

::::::
diverse

:::::::
datasets,

:::::::::
enhancing

:::
the

:::::
ability

::
to
::::::
utilize

:::::
AOD

::
for

:::::::
aerosol

:::::::::
estimation.

:

60

:::::::::::::
Satellite-derived

:::::
AOD

:::
has

::::::
already

:
been widely used to predict ground-level PM concentrations (Shin et al., 2020), as can be

seen in the example of Moderate Resolution Imaging Spectroradiometer or Geostationary Operational Environmental Satellite

(Gupta et al., 2006; Chudnovsky et al., 2012; Yang et al., 2020b; Zhai et al., 2021; Hammer et al., 2023). Nonetheless, in-

consistent relationships between satellite-derived AOD and ground-level PM observations have been reported among different

regions and based on data from different satellite instruments (Yang et al., 2020b). Therefore, there is an urgent need to evaluate65

the effectiveness of GEMS AOD data in estimating PM concentrations over Asia, which can in turn provide initial guidance

for both data users and algorithm developers.

In this study
:::::::::::
Consequently,

:::
our

:::::
study

:::::
aims

::
to

::::::::::
demonstrate

::::
the

:::::::::
usefulness

::
of

::::::
GEMS

:::::
AOD

::
in

::::
PM

::::::::
modelling

::::
and

::::::::
highlight

:::::::::
limitations

::
in

:::
the

::::::
current

::::::
version

:::
of

:::
the

::::
data.

:::
To

::::::
achieve

::::
this, we use GEMS AOD data over South Korea during the first 1.570

:::
two years of observations from January 2022 through to June

::::::::
December

:
2023 (the very first data are available from November

2021). In Korea, publicly available PM measurement data (PM10 and PM2.5) , which can serve as continuous ground reference,

can be obtained from nationwide air quality monitoring stations. To convert the AOD from satellite observations into surface

PM concentrations
::
To

::::::::
estimate

::::::
surface

::::
PM

::::::::::::
concentrations

:::::
using

::::::
AOD,

:::::::::
additional

::::
input

::::::::
variables

::::::::::::::
(meteorological

:::::
data)

:::
are

:::::::
obtained

::::
from

:::::::::
reanalysis

::::
data.

::::
For

:::
the

:::::
model, we employ the random forest (RF) , which is a very popular machine learning75

method
:::
and

:::::::
Extreme

::::::::
Gradient

::::::::
Boosting

::::::::::
(XGBoost),

::::::
which

:::
are

::::::
widely

:::::
used

:::::::
machine

:::::::
learning

::::::::
methods

:
for PM estimation

given its
::::
their

:
great flexibility and strong predictive performance (Shin et al., 2020; Hu et al., 2017; Guo et al., 2021). At each

station, we train an RF model using GEMS AOD data and relevant meteorological variables as input features and predict the

PM concentrations at an hourly scale using the trained models. We then evaluate the RF model performance and examine biases

observed in the estimated PM concentrations. Consequently, our study aims to demonstrate the usefulness of GEMS AOD in80

PM modelling and limitations in the current version of the data
::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Ma et al., 2020; Shin et al., 2020; Hu et al., 2017; Guo et al., 2021)

:
.
:::
This

::::::::
approach

::::::::
considers

:::
the

::::::
general

::::::::::
application

::
of

::::::
GEMS

::::
AOD

::
in

:::::
other

:::::
Asian

::::::
regions

::::::
within

::
the

::::::
GEMS

::::::::::
observation

::::::::
coverage

::::::
beyond

:::::
South

::::::
Korea.

:::::::::
Reanalysis

::::
data

:::
are

::::::::::
particularly

:::::::::::
advantageous

:::
for

::::::::
obtaining

:::::::::::::
meteorological

::::::::
variables

::
in

::::::
regions

:::::::
lacking

:::::::::::
ground-based

:::::::
weather

:::::::::::
observations.

:::::::::::
Furthermore,

:::::::
machine

:::::::
learning

:::::::
models

::::::
provide

::::::::
practical

:::::::
benefits,

::
as

::::
they

::::
can

::
be

:::::::
applied

::
to

:::::::
different

:::::::
regions

::::::
without

::::::::
requiring

::::::::
extensive

::::::
model

:::::::::
parameter

::::::::::
adjustments

::::::::
compared

:::
to

:::::::
physical

:::::::
models.

::
In

::::::::
addition,

:::
we85

:::::
assess

:::
the

::::::::
potential

:::::::::::
improvement

::
in

:::::::
machine

::::::::
learning

:::::
model

:::::::::::
performance

:::
by

:::::::::::
incorporating

::::::::::::
supplementary

:::::::
surface

::::::::
chemical

:::
data

::::::::
available

::
in

:::::
South

::::::
Korea.

::::
The

:::::
results

::
of
::::

this
:::::::
analysis

:::
are

:::::::
reported

::
in

:::::
detail.
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::
In

:::
the

::::::::
following

::::::::
sections,

:::
we

::::
first

:::::::
describe

:::
the

::::
data

::::
and

:::
its

:::::::::::
preprocessing

:::
in

::::
Sect.

:::
2.

::::::
Section

::
3
::::::
details

:::
the

::::::::::::
methodology,

::::::::
including

:::
the

:::::::
machine

::::::::
learning

::::::
models

:::::::::
employed

:::
for

::::
PM

:::::::::
estimation.

:::
In

:::::
Sect.

::
4,

:::
we

:::::::
present

:::
the

::::::
results

::::
and

::::::
discuss

:::::
their90

::::::::::
implications,

::::::::
followed

::
by

::::::::::
conclusions

::::
and

:::::
future

:::::::
research

:::::::::
directions

::
in

::::
Sect.

::
5.

2 Dataand methods

The hourly PM concentration data in South Korea for the period of January 2022 to June
::::::::
December

:
2023 used in this study

are obtained from the AirKorea real-time ambient air quality monitoring system (https://www.airkorea.or.kr/) operated by

the Korea Environment Corporation
:
,
:
a
::::::::::::::::::
government-affiliated

::::::
public

:::::::::
institution

:::::
under

:::
the

::::::::
Ministry

::
of

:::::::::::
Environment. The PM95

concentrations are determined using a β-ray absorption method
::::::::::::::::
(Hauck et al., 2004), and the measurements have undergone

quality controls to remove anomalous values before the release of the final data.
:::
Out

::
of

:::::
more

::::
than

:::
600

::::::::::::
ground-based

::::::::
AirKorea

:::::::
stations,

::
we

::::::
select

:
a
::::
total

::
of

::::
499

:::::
urban

:::
air

::::::
quality

:::::::::
monitoring

:::::::
stations

::
to

::::::::
represent

::::::
human

::::::::
exposure

::
to

::::
PM.

:::::
While

:::
the

:::::::
stations

::
are

:::::::::
distributed

::::::
across

:::
the

:::::::
country,

:
a
:::::
large

::::::
number

:::
of

::::::
stations

:::
are

:::::::::::
concentrated

::
in

:::
the

::::::
densely

:::::::::
populated

:::::
Seoul

::::::
Capital

:::::
Area.

100

GEMS on board the GEO-COMPSAT-2B satellite has been in operation since 2020. The GEMS instrument measures the UV-

visible radiance spectrum, and its geostationary orbit allows AOD retrievals to be obtained
::::::
enables

:::::
AOD

::::::::
retrievals at an hourly

frequency during cloud-free daytime conditions (Kim et al., 2020). The GEMS
:::::::
measures

::::::::
radiance

::
in

:::
the

::::::::
300–500

:::
nm

:::::
range

::::
with

:
a
:::::::
spectral

::::::::
resolution

:::
of

:::
0.6

:::
nm

:::
and

::::::::
retrieves

::::::
aerosol

:::::::::
properties.

::::
The

::::::
GEMS

::::::
aerosol

:::::::
retrieval

:::::::::
algorithm

::::::::::
(AERAOD)

::::
uses

::
the

:::::::
optimal

:::::::::
estimation

::::
(OE)

::::::::
method,

:::::
which

::::::::
integrates

:::::::::::::::
satellite-observed

::::::::
radiances

::::
with

:::::
initial

::::::::
estimates

::
of

:::::::
aerosol

:::::::::
properties,105

::::::::
including

:::::
AOD,

::::::
derived

::::
from

:::
the

:::::::::::
two-channel

:::::::
inversion

::::::::
approach

::::::::
employed

:::
by

:::
the

::::::::::
OMAERUV

::::::::
algorithm

:::::::::::::::::
(Torres et al., 2007)

:
.
:::
The

::::::
GEMS

:
aerosol products provide AOD

:::
final

:::::
AOD

::::
data

:
at three wavelength channels with a nominal spatial resolution of

3.5 km x 8 km at Seoul. Details
:::::
Further

::::::
details

:
about the GEMS aerosol retrievals can be found from GEMS ATBD ARA

(2020)
:::::::::::
NIER (2020)

:::
and

::::::::::::::
Go et al. (2020). We use GEMS AOD Level 2 (L2) data (at 443 nm)

:
,
::::::::
extracted within a ± 15 min

time window of the PM10
:::
PM

:
measurement times, extracted at

:::
and

:::::
taken

::::
from

:
the pixel nearest to the AirKorea monitor-110

ing stations(within a distance of 2.02
:
,
::::
with

::
an

:::::::
average

:::::::
distance

:::
of

::::
2.03 kmon average )..

:::::::::
However,

::::::
GEMS

::::
data

::::::
values

:::
are

::::
often

:::::::
missing

::
at

:::
the

:::::::
closest

::::
pixel

::::
due

::
to

::::::
issues

::::
such

::
as

::::::
cloud

::::::::::::
contamination

::
or

::::
sun

:::::
glint,

:::::::
resulting

:::
in

::
an

:::::::
average

::
of
::::::

1,990

::::::::
AOD-PM

::::
data

::::
pairs

:::
per

::::::
station

::::
(see

:::
Fig.

:::
S1

::
in

::::::::::::::
Supplementary).

::::
Note

:::
that

:::::::
GEMS

:::::::
provides

::::::
hourly

::::::::::
observations

::
of

:::::
AOD

::::::
during

::
the

::::::::
daytime,

::::::::::::
corresponding

::
to

:::
six

::
to

:::
ten

:::::
times

:::
per

:::
day

:::::::::
depending

::
on

:::
the

:::::::
season.

115

The relationship between AOD and PM concentrations can be affected by meteorological conditions (Koelemeijer et al.,

2006; Tian and Chen, 2010; Handschuh et al., 2022). We consider boundary layer height (BLH), relative humidity (RH), air

temperature (TEMP), surface pressure (SP), and wind speed and direction (WS and WD, respectively) as input features, in

addition to AOD, to estimate the PM concentrations using RF models.
:::::::
machine

:::::::
learning

:::::::
models.

::::::
Those

:::::
input

::::::::
variables

:::
are

::::::
selected

::::::
based

::
on

::::::::
previous

::::::
studies

::::::::::::::::::::::::::::::::::::
(Yang et al., 2020a; Handschuh et al., 2022),

:::::::::
including

:::::::::::::
Seo et al. (2015)

:
,
::::::
which

::::::::
examines120

::
the

::::::::::
importance

::
of

::::::::::::
incorporating

::::::::::::
meteorological

::::
data

:::
for

:::::::
accurate

::::
PM

::::::::
estimation

:::
in

:::::
South

:::::
Korea

:::::
using

:::::::::::::
satellite-derived

::::::
AOD.

4
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BLH data from
::
the

:::::::::::::
fifth-generation

::::::::
ECMWF

::::::::
reanalysis

:
(ERA5

:
) reanalysis at a 0.25-degree resolution are employed as a proxy

for the vertical aerosol concentration in the lower troposphere as AOD is assumed to represent attenuation in the boundary

layer (Gupta and Christopher, 2009b). The other variables are all obtained from ERA5-Land at a 0.1-degree resolution. RH

is computed using temperature and dew temperature (Lawrence, 2005), while wind speed and direction are calculated us-125

ing u and v wind components. Both ERA5 and ERA5-Land data are available at an hourly temporal resolution (Hersbach

et al., 2020), and we thus select the data at the closest PM ground measurement times and locations.
:::::

Both
:::::::
gridded

:::::::
datasets

::
are

:::::::::::
interpolated

::
to

:::
the

::::::::
locations

::
of

::::::::
AirKorea

:::::::
stations

:::::
using

::::::
inverse

:::::::
distance

:::::::::
weighting

:::::
based

:::
on

:::
the

::::
four

::::::
closest

::::
grid

::::::
points.

:
If
::::
data

:::
are

:::::::
missing

::
in

::
the

:::::::
nearest

:::
grid

::::::
points

::::
(e.g.

:::
over

::::::
ocean

:::::
areas),

:::
the

::::::::::::
corresponding

::::::::
locations

:::
are

:::::::
excluded

::::
from

:::
the

::::::::
analysis.

130

:::
We

:::::
obtain

:::::
input

:::::
data

::::
from

:::::::::
reanalysis

::::::::
datasets,

::::::
which

:::
are

::::::
readily

::::::::
available

::::::
across

:::
all

:::::
areas

::::::
within

:::
the

:::::::
GEMS

:::::::
satellite

:::::::::
observation

:::::::::
coverage.

::::
This

:::::::
ensures

::::
that

:::
the

:::::::::
experiment

:::::::::
conducted

:::
in

:::
this

:::::
study

::::
can

:::
be

:::::
easily

::::::::
extended

::
to
:::::

other
:::::::::

locations,

::::::::
including

::::
other

:::::
Asian

::::::::
countries,

::::::::::
particularly

::
in

::::
areas

::::::
where

::::::::::::
meteorological

::::::::::::
measurements

:::
are

::::::::::
unavailable.

::::::::::
Additionally,

:::::::::
reanalysis

::::::
datasets

:::::::
provide

:::::::::
consistent

:::
and

:::::::
reliable

::::
data

:::::::
updates

::::
over

:::::
space

::::
and

::::
time.

:::::::::::
Nonetheless,

::
it
::
is
::::
well

::::::
known

::::
that

:::::
gases

::::
such

:::
as

:::::
carbon

:::::::::
monoxide

:::::
(CO),

:::::
NO2,

:::
and

::::
SO2:::

can
::::::::
influence

:::
PM

:::::::::
formation

::::::::::
mechanisms

:::::
either

::::::
directly

:::
or

::::::::
indirectly

:::::::::::::::
(Lee et al., 2024a)135

:
.
::::::::
Therefore,

:::
we

::::
also

::::::::::
incorporate

:::::::
chemical

::::
data

:::::::::
measured

::
at

:::
the

::::::::
AirKorea

::::::
stations

::
as

:::::::::
additional

:::::
input

:::::::
features.

::
In

::::
this

::::
way,

:::
we

:::
can

:::::::
evaluate

:::
the

::::::::
potential

::::::::::::
improvements

::
in

:::
PM

:::::::::
estimation

:::::
using

:::::
AOD

:::::
when

::::::::::::
supplemented

::::
with

:::::::::
additional

::::::::::
information,

::::
and

::
we

::::::
report

:::
the

:::::::::::
corresponding

:::::::
results.

:::
The

:::::
input

::::::::
variables

::::
used

::
in

:::
this

:::::
study

:::
are

:::::
listed

::
in

:::::
Table

:
1.

::::::
Finally,

:::
for

:::::
direct

::::::::::
comparison,

:::
we

::::::
obtain

:::::::::::
ground-based

:::::
AOD

::::::::::::
measurements

:::::
from

:::::::::
AERONET

::::
sites

:::
in

:::::
South

::::::
Korea.

::
A

::::
total140

::
of

::::
nine

:::::::
stations

:::
are

::::::::
selected,

:::::
where

::::
data

:::
are

::::::::
available

::::::
during

:::
the

::::::
study

::::::
period.

::::::::::
AERONET

::::::::
provides

:::::
highly

::::::::
accurate

:::::
AOD

:::::::::::
measurements

:::::
using

:::::
Cimel

:::::::::::
Electronique

:::::::
Sun–sky

:::::::::::
radiometers,

::::
with

::
an

:::::::::
uncertainty

::
of

::::::::::::
approximately

::::::::
0.01-0.02

:::::::::::::::::::::::::::::
(Eck et al., 2019; Giles et al., 2019)

:
.
:::
For

:::
this

:::::
study,

:::
we

:::
use

:::
the

:::::::
version

::
3,

::::
level

:::
2.0

:::::::::::::
quality-assured

::::
AOD

::
at
::::
440

::::
nm.

:::
For

:::
the

::::::::::
comparison,

:::::::
GEMS

::::
AOD

::::
data

::::::
within

:
a
:
5
:::
km

::::::
radius

::
of

:::
the

::::::::::
AERONET

::::
sites

:::
are

:::::::::
considered,

::::
and

:::::::::
sub-hourly

::::::::::
AERONET

::::
data

:::
are

:::::::
averaged

::::::
within

:
a
::::::::
temporal

:::::::
window

::
of

::::
±20

:::::::
minutes

::::::
around

:::
the

::::::
GEMS

:::::::::
observation

:::::
time.145

3
:::::::
Methods

For the AOD-PM simulations, we employ an RF algorithm with 100 trees and train this algorithm using AOD and meteorologi-

cal data as input features and ground PM measurements as the target variable, respectively. To evaluate the model performance
:
,

:
at
:::::
each

::::::
station.

:::
RF

:::::::
operates

::
by

:::::::::::
constructing

:::::::
multiple

:::::::
decision

::::
trees

::::::
during

::::::
training

::::
and

:::::::::
aggregating

::::
their

::::::::::
predictions

::
to

:::::::
enhance150

:::::::
accuracy

:::
and

:::::
avoid

::::::::::
overfitting.

:
It
::
is

::::::
widely

:::::::::
recognized

:::
for

::
its

::::::
ability

::
to

:::::::::
efficiently

:::::
handle

:::::::::
non-linear

:::::::::::
relationships

::
in

::::
data

:::
and

::
is

::::
often

::::
used

:::
for

:::::::::
estimating

:::
PM

:::::::::::::
concentrations

:::::::::::::::::::::::::::::::
(e.g. Hu et al., 2017; Guo et al., 2021).

:::
We

::::
also

:::
use

:::::::::
XGBoost,

:::::
which

::
is

::::::::
similarly

:::::
based

::
on

:::::::
decision

:::::
trees.

::::::::
However,

::::::::
XGBoost

:::::
builds

::::
trees

:::::::::::
sequentially,

:::::::
allowing

::::
each

::::
tree

::
to

::::
learn

::::
from

:::
the

:::::
errors

:::
of

::
the

::::::::
previous

:::
one,

::::
and

:
is
::::::::
generally

:::::::::
considered

::
to
::::::::::
outperform

:::
RF

:::::::::::::::::::::
(Chen and Guestrin, 2016)

:
.
::
To

::::::
ensure

::::::::::::
computational

:::::::::
efficiency,

::
we

::::::::
optimize
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::
the

::::::::::::::
hyperparameters

:::
of

::::
both

::::::
models

:::
by

::::::
testing

:::
the

::::::
models

::
on

::
a
::::::::
randomly

:::::::
selected

::::::
subset

::
of

:::
50

:::::::
stations,

::::::::::
representing

::::
10%

:::
of155

::
the

::::
total

::::::::
stations.

:::
The

:::::
main

::::::
analysis

::
is
:::::
based

:::
on

:::::
model

::::::::::
predictions

:::::::
obtained

:::::::
through

:::::::
five-fold

::::::::::::::
cross-validation.

:::::::::
Specifically, we randomly split

the entire data into five subgroups and use four of them (80%) as training data and the remainder (20%) as validation data. This

process is repeated five times such that every data subset is used as validation data at least once(i.e. five-fold
:
.
::::::::::::
Consequently,160

::::
while

::::
this

::::::::
approach

:::::::
provides

::::::
robust

::::::::
estimates

::
of

::::::
model

:::::::::::
performance,

:::
the

:::::
actual

:::::::::::
performance

::
of

:
a
::::::
model

::::::
trained

:::
on

:::
the

:::::
entire

::::::
dataset

::::
could

:::
be

:::::::::::::
underestimated

:::
due

::
to

:::
the

:::::::
reduced

:::
size

:::
of

:::
the

::::::
training

::::
data

::::::
during cross-validation).

::
RF

:::
or

::::::::
XGBoost

:::
can

:::
be

::::::::
relatively

::::
easy

::
to

:::::::::
implement

:::::::::
compared

::
to

:::::::::::
process-based

:::::::
models,

::::::
which

::::
often

:::::::
require

:::::::::::
sophisticated

::::::::
parameter

::::::::::
calibrations.

:::::::::
Moreover,

::::
they

:::::
offer

::::
high

::::::::
flexibility

:::
by

:::::::::::::
accommodating

::::::
diverse

::::
data

:::::
types

::::
and

::::::::
variables.

::::
This

::::::
makes165

:::::::
machine

:::::::
learning

:
a
:::::
useful

::::
tool

::
for

::::::::
assessing

:::
the

:::::::::
usefulness

::
of

::::
new

::::
data,

::::
such

::
as

::::::
GEMS

:::::
AOD.

::::::::
However,

:::
the

::::::
primary

:::::::::::
disadvantage

::
of

:::::::
machine

:::::::
learning

::
is
:::

its
::::::::::
‘black-box’

::::::
nature,

::::::::
meaning

:::
we

::::::
cannot

::::
fully

::::::::::
understand

::::
why

::
it

::::::::
produces

::::::
certain

::::::::::
estimations.

:::
To

::::::
address

:::
this

:::::::::
limitation

:::
and

::::::::
examine

:::
the

:::
role

::
of

:::
the

:::::
input

::::::::
features,

::
we

::::::
further

::::
use

:::::::
SHapley

::::::::
Additive

::::::::::
exPlanations

:::::::
(SHAP)

::::
and

:::::::
quantify

:::
the

::::::
relative

::::::::::
importance

::
of

:::
the

:::::::::
considered

:::::
input

::::::
features

:::
on

:::
the

:::::::
model’s

::::::::::
estimations.

:::::
SHAP

::
is
:::
an

:::::::::
explainable

::::::::
machine

:::::::
learning

::::::
method

:::::
based

:::
on

:::::::
Shapley

::::::
values,

::::::
which

:::::::
measure

:::
the

::::::::
marginal

::::::::::
contribution

:::
of

::::
each

::::::::
predictor

::
to

:::
the

:::::::
model’s

::::::
output170

::
or

:::::::::
estimation,

:::
by

::::::::
evaluating

::::
how

:::
the

::::::
model

::::::
output

:::::::
changes

::::
when

::
a
::::::
feature

::
is

:::::::
included

:::
or

:::::::
excluded

::::::
across

::
all

::::::::
possible

::::::
feature

:::::::::::
combinations

:::::::::::::::::::::::::::::::
(Molnar, 2019; Lundberg et al., 2020).

4 Results and discussion

4.1
:::::::::

Evaluation
::
of

::::::
GEMS

:::::
AOD

:::::::::
retrievals175

Air quality, including PM concentrations, is routinely monitored in Korea via the AirKorea air quality monitoring network.

Out of more than 600
::::
First,

:::
we

:::::::
directly

:::::::
compare

:::
the

::::::
GEMS

:::::
AOD

::::
data

::::
with ground-based AirKorea stations, we select a total

of 456 urban air quality monitoring stations to represent human exposure to PM (
::::
AOD

::::::::::::
measurements

:::::
from

:::
the

::::::::::
AERONET

:::::::::::::::
(Giles et al., 2019).

:::
As

::::::
shown

::
in

:
Fig. 1). While the stations are distributed across the country, a large number of stations are

concentrated in the densely populated Seoul Capital Area, located in the northwest of the study domain. We obtain the GEMS180

AOD values that match the locations and measurements times of the ground PM data as closely as possible (see Methods),

resulting in an average of 1496 datapairs at each station. Note that GEMS provides hourly observations of AOD during the

daytime, corresponding to six to ten times per day depending on the season
:
a,

:::
the

::::::::
temporal

::::::::
variations

::
of

::::::
AODs

::
at

::::
each

::::::
station

::::::
exhibit

::::::
overall

::::
good

:::::::::::
correlations,

::::
with

::::::::
Persons’s

:
r
::::::
ranging

:::::
from

::::
0.68

::
to

:::::
0.89.

:::::
When

:::
the

:::::
entire

::::
time

:::::
series

::::
from

:::
all

::::::::::
AERONET

::::
sites

:::
are

:::::::::
compared,

:::
the

:::::::::
correlation

:::::::
remains

::::::
strong

:::::::
(r-value

:
=
::::::
0.77),

:::::::
although

::::::
GEMS

:::::
tends

::
to
::::::::::::

underestimate
:::::
AOD

:::::::::
compared185

::
to

:::
the

:::::::::::
ground-based

:::::::::::::
measurements,

::
as

:::::::::
indicated

::
by

:::
the

::::::
linear

:::::::::
regression

:::::
slope

:::::::::
(slp=0.66)

::
in

::::
Fig.

:::
1b.

:::::::::::
Furthermore,

::::
Fig.

:::
1c

:::::::::::
demonstrates

:::
that

::::
this

:::::::::::::
underestimation

::
is
:::::::::
consistent

::::::
across

::::
most

::::::::::
AERONET

:::::
AOD

::::::
ranges,

::::::::
although

::::::::::::
overestimation

::::
can

::::
also
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::::
occur

::
at
::::
very

::::
low

::::
AOD

:::::::
values.

:
A
:::::
study

:::
on

:::
the

::::
early

::::::
version

:::
of

::::::
GEMS

::
L2

:::::::::
algorithm

::::
prior

::
to

:::
the

::::::
launch

::
of

::::::
GEMS

::::
also

:::::::
reported

::::
high

:::::::::
correlation

:::
but

:::::
slight

::::::::::::::
underestimation

::
of

:::::::
GEMS

:::::
AOD

::::::
relative

:::
to

::::::::::
AERONET

:::::::::::::::
(Kim et al., 2020).

::::::
Recent

:::::::
studies

:::::
using

::::::
GEMS

::
L2

::::
data

::
in

::::
Asia

:::::::
regions

::::
have

:::::::
reported

::::::
similar

:::::::
findings

::::::::::::::::::::::::::::::::
(e.g. Cho et al., 2024; Jang et al., 2024)

:
.190

::::
AOD

::::::::
retrievals

:::::
from

:::::::
satellite

:::::::::::
observations

:::
can

:::
be

:::::::::
influenced

:::
by

::::::
several

:::::::
factors,

::::::::
including

::::::
surface

::::::::::
reflectance

:::::::::
estimation

::
or

::::::
aerosol

::::::
model

:::::::::::
assumptions.

:::
For

:::::::
instance,

::::::::::::
distinguishing

:::::::
surface

:::::::::
reflectance

:::
and

:::::::
aerosol

::::::::
scattering

::
or

:::::::::
absorption

:::::
effect

::::
can

::
be

::::::::::
challenging

:::::
under

:::
low

::::::
aerosol

:::::::
loading

::::::::
conditions

:::::::::::::::::
(Rudke et al., 2023).

::::::
Issues

::::
such

::
as

:::::
cloud

::::::::::::
contamination

::
or

::::::::::::
heterogeneous

::::::
surface

::::::::
conditions

::::
can

:::
also

::::::::
introduce

:::::::::::
uncertainties

::
in

:::::::::::::
satellite-derived

::::
AOD

:::::::::::::::::::::
(Handschuh et al., 2022).

:::::::::::::::
Cho et al. (2024)

:::::::::
specifically195

::::::::
compared

::::::
GEMS

::::
and

::::::::::
AERONET

:::::
AOD

::::::::::::
measurements

:::
for

:::
the

::::::
period

:::::
from

::::
2021

:::
to

::::
2022

:::
in

::::
Asia

::::
and

:::::::
pointed

:::
out

::::
that

:::
the

::::::
absence

:::
of

::::::::::::
region-specific

:::::::
aerosol

::::
type

::::::::::
information

::
in

:::
the

::::::
GEMS

:::::::
aerosol

::::::
model,

:::::
along

::::
with

:::::::::::
inaccuracies

::
in

:::::::::::::
cloud-masking

::::::::
processes,

::::
may

::::::::
adversely

::::::
impact

::::
the

:::::::
accuracy

::
of

:::::::
GEMS

::::
AOD

:::::
data.

:::::::
Overall,

:::
the

:::::::::::
performance

::
of

::::::
GEMS

:::::
AOD

::
is

::::::::::
comparable

::
to

:::::::::::
ground-based

:::::::::::::
measurements,

:::::::::
confirming

:::
its

::::::::
potential

:::
for

::::::::::
applications

:::::
such

::
as

:::::::::
estimating

:::::::
surface

::::::
aerosol

:::::::::
properties

::::
and

:::::::::
supporting

::
air

::::::
quality

::::::
studies.200

Figure 1

4.2
:::::::::::

Performance
::
of

:::
PM

::::::::::
estimation

:::::::
derived

:::::
using

::::::
GEMS

:::::
AOD

::::
and

:::::::
machine

::::::::
learning

::::::
models

:::::
Figure

::
2a shows the average PM10 concentrations at the selected

:::::
ground

:
stations during the study period, calculated only

when
::::::
GEMS AOD observation data are available (i.e. collocated PM and AOD data pairs). The average

::
of

::::::::
measured

:
PM10205

across the stations is 41.43
:::::
40.96 µg m−3, ranging from 25.80 to 65.10

::::
24.91

::
to

:::::
65.12

:
µg m−3, which is higher than actual

PM10 averages during the same period when nighttime data are also included (Fig. S1 in Supplementary
::
S2). Overall, relatively

high PM10 concentrations are observed in western regions, which are related to strong inflow from the continent due to the

prevailing mid-latitude westerlies in South Korea (Lee et al., 2019).

210

Next, we estimate ground-level PM10 concentrations using RF models, which are trained individually at each station using

AOD values and meteorological variables as input features (See Methods). RF can effectively handle non-linear relationships

between input features and target variables, making it a useful tool for air quality modelling applications. We also confirm

that RF outperforms linear regression
::::::::
empirical

:::::
linear

:
models in estimating PM10 (Fig. S2

:::
S3); all model performances are

evaluated through the five-fold cross validation.215

::::::::
Although

::::::::
XGBoost

:::::::::::
demonstrates

:::::::::
comparable

:::::::::::
performance

::
to

:::
RF,

:::
the

:::::
main

::::::
analysis

:::::::
focuses

::
on

:::
RF

::::::
results,

:::
as

::
the

::::::::::
differences

:::::::
between

:::
the

:::
two

:::::::
models

:::
are

::::::::
minimal,

::::::
further

:::::::::
supporting

:::
the

::::::::::
robustness

::
of

:::
the

:::::::
machine

:::::::::::::
learning-based

::::::::
modeling

:::::::::
approach.

Overall, the RF models demonstrate satisfactory
::::::::::
performance

::
in

:::::::::
estimating

:
PM10 estimation performance

:::::::::::
concentrations.

The spatial distribution of PM10 concentrations observed in the measurements is effectively described by the model estimates

(Fig. 1
:
2b), with an average estimated PM10 value of 41.66

::::
41.28

:
µg m−3, ranging from 25.92 to 65.61

::::
24.88

::
to

:::::
65.52

:
µg m−3,220

which closely matches the average measured value. The Pearson’s correlation coefficients (r-value) between the measured and
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estimated PM10 is 0.65
:::
0.66, on average, across all the stations (Fig. 1

:
2c). The model performance is stable across the stations,

as indicated by the correlation values between 0.59 to 0.70
::
and

:::::
0.73 (10th and 90th percentiles, respectively) at most stations.

We also obtain similar
::::::::
Similarly,

:::
RF

::::::
models

:::::::::
effectively

:::::::
estimate

:
PM2.5 estimation results using the RF models

::::::::::::
concentrations

::::
(Fig.

::
2d

::
to

:::
f),

::::::::
achieving

::
an

:::::::
average

:::::::::
correlation

:::::
value

::
of

::::
0.70,

::::
with

:::::::::
correlation

::::::
values

::::::
ranging

:::::
from

::::
0.64

::
to

::::
0.74 (see Fig.S3

::::
10th225

::
to

::::
90th

:::::::::
percentiles).

The
:::::
Figure

:
3
::::::::
compares

:::
the

:
entire data combined from all stations are also compared. As shown in Fig. 2a, the AOD and

:::
and

::::
their

:::::::::
estimation

:::::
errors

:::
for PM10 show a positive, but weak correlation with an

:::::
(upper

:::::::
panels)

:::
and

:::
for

::::::
PM2.5

::::::
(lower

:::::::
panels).

::::::
GEMS

::::
AOD

::::
and

:::
PM

::::::::::::
measurements

::::::
shows

::::
weak

:::::::::::
correlations,

::::
with r-value of 0.25, thus

::::
0.20

:::
for

:::::
PM10

::::
(Fig.

:::
3a)

::::
and

::::
0.33

:::
for230

:::::
PM2.5

:::::
(Fig.

::::
3d), indicating that the relationship between columnar AOD and ground-level PM10 is non-trivial. Meanwhile,

AOD-estimated
:::
PM

::
is
:::
not

::::::::::::::
straightforward.

::
In

::::::::
contrast,

:::
the

::::::::
estimated

:
PM10 valuesare in better agreement with the ground

measurements(
:
,
::::::
derived

:::::
using

::::
both

:::::
AOD

:::
and

:::::::::::::
meteorological

::::::::
variables,

:::::
show

::
a

:::::
closer

:::::::::
agreement

::::
with

::::::
ground

:::::::::::::
measurements,

::
as

::::::::
evidenced

:::
by

::
a
::::::
higher r-value of 0.67 ), but exhibit significant negative biases

:::
(Fig.

::::
3b).

:::::::::
However,

:::
the

:::::::::
regression

:::::
slope

:::::::
deviates

::::
from

:::
the

::::::::::
one-to-one

::::
line,

::::::::
revealing

::::::
certain

::::::
biases

::
in

:::
the

::::::
PM10

::::::::::
estimations.

:::::
Note

:::
that

::::
the

::::
axes

:::
are

::::::::::
transformed

:::
to235

:::::::::
logarithmic

::::::
scales

::
for

:::::
better

::::::::::::
visualisation.

:::
For

::::::
PM2.5,

:::
the

:::::::::
regression

:::
line

:::::::
exhibits

::
a
::::::
similar

::::
level

::
of

::::::::
deviation

:
(Fig. 2b), which

will be further investigated in the following section. The RF models also show similar performance in the case of
:::
3e),

::::::::
although

::
the

:::
RF

:::::::
models

:::::::
perform

::::::
slightly

:::::
better

::
in

:::::
terms

::
of

:::::::::
correlation

:::::
with

::::::
ground

::::::::::::
measurements,

::::::::
achieving

::
a
:::::
higher

::::::
r-value

:::
of

::::
0.72.

::
To

:::::::::
investigate

:::::
these

:::::
biases

::::::
further,

:::::::
relative

::::
error

::
is

::::::
defined

::
as

:::
the

::::::::
difference

::::::::
between

::
the

:::::::::
estimated

:::
and

::::::::
measured

:::
PM

:::::::
divided240

::
by

:::
the

::::::::
measured

::::::
values.

::::
The

::::::
relative

::::
error

::
is

::::::::
computed

::::::
across

:::::::::
predefined

:::::
ranges

:::::
based

:::
on

::::::
deciles

::
of

:::
the

::::::::
measured

:::
PM

:::::
(Figs.

:::
3c

:::
and

:::
3f).

:::
For

::::::
PM10,

:::
the

:::::::
relative

::::
error

:::::::::
transitions

::::
from

:::::::
positive

::::::::::::::
(overestimation)

::
to

:::::::
negative

:::::::::::::::
(underestimation)

::
at

::::::::::::
approximately

::
50

::::::::
µg m−3,

:::::
which

::::::::::
corresponds

::
to

:::
the

::::
point

::::::
where

:::
the

::::::::
regression

::::
line

::::::
crosses

::::
from

:::::
above

::
to

:::::
below

:::
the

:::::::::
one-to-one

::::
line

::::
(Fig.

::::
3b).

::::::
Despite

:::::
these

::::::
biases,

::::
most

:::::::::
estimated

:::
PM

::::::
values

::::
have

:::::::
relative

:::::
errors

:::::
close

::
to

::::
zero.

::::
For

:::::::
instance,

:::
the

:::::::
median

::::::
relative

::::::
errors

::
in

::
the

::::::
ranges

::::::::
between

:::
the

::::
40th

:::
and

:::::
90th

:::::::::
percentiles

:::
are

::::::
within

:::::
±0.3

:::
for

::::::
PM10.

::
A

::::::
similar

::::::
pattern

::
is
::::::::
observed

:::
for

:::::::
PM2.5,

::::
with245

::::::::
consistent

:::::
trends

:::
in

::::::
relative

:::::
error

::::::::::
distributions

::::::
across

:::
the

:::::::
analysed

:::::::
ranges.

::::::::::::
Consequently,

:::::
larger

:::::
biases

:::::
occur

::
at
:::
the

:::::::::
minimum

:::
and

::::::::
maximum

::::::::
extremes

::
of

:::
the

::::::::
measured

:::
PM

::::::
ranges

:::
for

::::
both

:::::
PM10

:::
and

:
PM2.5(Fig. S4)

:
.
::::
This

::::::::
behaviour

:::
can

:::::
likely

:::
be

::::::::
attributed

::
to

:::
the

::::::::::::::::
underrepresentation

:::
of

:::::::
extreme

::::::
values

::
in

:::
the

:::::::
dataset,

::
as
:::::

these
::::::

occur
:::
less

::::::::::
frequently.

:::::::::::
Furthermore,

:::::::
machine

::::::::
learning

::::::
models

::::::::
prioritise

::::::
overall

:::::::
accuracy,

:::::
often

:::::::
leading

::
to

:::::
larger

:::::
biases

::
in

:::::
those

::::::::
extremes.

::::::::::::
Measurement

:::::
errors

::
in

:::::::
extreme

:::
PM

::::::
values

:::
may

::::
also

:::::::::
contribute

::
to

:::
the

:::::::
observed

::::::
biases,

::
as
:::::::::::
uncertainties

::::
tend

::
to

:::
be

::::::
greater

::
in

::::
these

::::::
ranges.250

Furthermore, we use SHapley Additive exPlanations (SHAP )
:::::
SHAP

:
to quantify the relative importance of the consid-

ered input features on the model’s predictions. SHAP is an explainable machine learning method based on Shapley values,

which measure the marginal contribution of each predictor to the model’s output or prediction across all the possible predictor

combinations (Lundberg et al., 2020; ?). We
:::::::::
estimations.

:::
As

::::::
SHAP

::
is

::::::::
computed

:::
for

::::::::
individual

:::::::::::
observations,

:::
we

:
take the mean255

of absolute SHAP values for each input variable across all the predictions to explain its global feature contributions (Fig. 3).
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While AOD has the greatest influence on the
::
4).

:::
For

::::
both

:::::
PM10

::::
and

::::::
PM2.5

::::::::::
estimations,

::::
AOD

:::
has

::
a

::::
great

::::::::
influence

::
on

:
model

performance, as expected from its relatively strong correlation with ground aerosols (Fig. 2a and Fig. S5), the temperature

and boundary layer height (TEMPand BLH, respectively) appear as the most influential predictors among the considered

meteorological variables. The TEMP and BLH show relatively strong correlations with
:::::::::::
demonstrating

:::
the

:::::::::::
effectiveness

:::
of260

::::::
satellite

::::::::::
information

:::
for

::::::
ground

::::::
aerosol

:::::::::::
simulations.

:::
The

:::::
direct

:::::::::::
relationships

:::::::
between

:::
PM

::::
and

::::::::::::
meteorological

::::::::
variables

:::
are

:::
not

:::::
easily

:::::::::::
characterised

:::
(see

::::
Fig.

::::
S4),

:::
but

:::::
SHAP

:::::::
analysis

::::::::
indicates

:::
that

::::::::::
temperature

::::::::
(TEMP)

:
is
:::
the

:::::
most

::::::::::::
meteorological

:::::::::
influential

::::::::
predictors

:::
for

::::
both

:
PM10

:::
and

::::::
PM2.5

::::::::::
estimations.

:::::::
Similar

::::::
results

:::
are

::::::::
observed

::
for

:::::
XGB

:
(Fig. S5), and their contributions to

the prediction confirm the usefulness of RF models in capturing complex, nonlinear input-output relationships. For instance,

temperature can promote PM particle production by enhancing the photochemical reactions in the atmosphere (Gupta and265

Christopher, 2009a). It can also act as an indicator of seasonal variations in PM concentrations; for instance, an increase in

emissions from combustion processes during the winter time can result in high aerosol loading, while aerosols can easily be

removed by wet deposition during a rainy season in summer (Kim and Kim, 2020).

::::::
Among

:::::
other

::::::::::::
meteorological

::::::::
variables,

:::::::
relative

:::::::
humidity

:::::
(RH)

:::::::
emerges

::
as

:::
one

:::
of

::
the

:::::
most

::::::::
important

:::::::::
predictors,

::::::::::
particularly270

::
for

::::::
PM10

::::::::::
estimations.

:::
RH

:::::::::
influences

::::
wet

:::::::::
deposition

::
of

:::
PM

::::
and

::::
also

:::::::::::
characterises

:::::::
seasonal

::::::::
variations

::
in
::::

PM
:::::::::::::
concentrations.

:::
For

:::::::
instance,

::
in
::::::
Korea,

::::::
PM10

::::
tends

:::
to

:::::::
increase

:::
due

::
to

:::::::
wildfire

::::::::
emission

:::::
during

:::
dry

:::::::
seasons

::
or

:::::
from

::::::::
relatively

:::::
coarse

::::::::
particles

:::::::::
transported

:::
by

:::::
Asian

::::
dust

::
in

:::
the

:::
dry

:::::
spring

:::::::
season.

:::
On

:::
the

::::
other

:::::
hand,

::::::::
boundary

:::::
layer

::::::
height

:::::
(BLH)

::::
has

:
a
::::::
greater

::::::::::
importance

::
for

::::::
PM2.5

::::::::::
estimations.

:
Given that aerosols are primarily confined to the planetary boundary layer, BLH is a good proxy with

which estimate the height of the aerosol layer (Lee et al., 2024b) and can help relate columnar satellite data to surface aerosol275

values (Handschuh et al., 2022; Gupta and Christopher, 2009a).
::::
The

::::::
stronger

::::::::::
importance

::
of

::::
BLH

:::
for

::::::
PM2.5

:::::::::
estimation

:::::::
suggests

::
its

:::::::::::
effectiveness

::
in

::::::::
capturing

:::
the

:::::::
vertical

::::::::::
distribution

::
of

::::
finer

::::::::
aerosols.

:::::::
Previous

:::::::
studies

::::
have

:::::::::
suggested

:
a
::::::
strong

::::::::::
relationship

:::::::
between

::::
BLH

::::
and

::::::
PM2.5

::::
due

::
to

:::::::::::::
well-recognised

:::::::
positive

:::::::::
feedbacks

:::::::::::::::::::::::::::::::::
(e.g. Su et al., 2017; Wang et al., 2019-),

::::::
which

::::::
further

::::::::::
underscores

::
the

::::::::::
importance

::
of

:::::
BLH.

:::
The

::::::::::
relationship

:::::::
between

:::::
AOD

:::
and

:::
PM

::
is

::::::
highly

:::::::
sensitive

::
to

::::::::
variations

::
in

::::
BLH

::::::::::
conditions,

::
as

:::::
noted

::
in

:::::::
previous

:::::::
studies

::::::::::::::::
(Zheng et al., 2017).

::::
For

:::::::
instance,

::::::
higher

:::::
BLH

::::::::
facilitates

::::::
greater

:::::::
vertical

:::::::::
dispersion

::
of

::::::::
aerosols,280

::::::
thereby

::::::::
reducing

::::::
surface

:::
PM

::::::::::::
concentrations

:::
for

::
a
:::::
given

:::::
AOD.

:::::
While

:::
our

::::::::
machine

:::::::
learning

::::::::
approach

::::::::
inherently

::::::::
captures

::::
such

:::::::
complex

::::::::::
interactions,

::::::
future

:::::
work

:::::
could

::::::
explore

::::
the

::::::
explicit

:::::::::
sensitivity

::
of
:::::

BLH
::::
with

::::
the

::::::::
AOD-PM

::::::::::
relationship

::
to
::::::::

improve

:::::::
physical

::::::::::::
interpretability.

We further compare the temporal evolution of hourly PM10 measurements and estimates in each month. The
::::::::
measured285

PM10 observations in Fig. 4
:
5a displays clear seasonal patterns, with high concentrations recorded during the winter and spring

months and low concentrations in the autumn. While PM10 values in South Korea often show strong diurnal or semidiurnal

cycles (Kim and Kim, 2020), these diurnal variations are not clearly shown in these PM10 composites from multiple stations,

which contain many gaps due to the missing values in the satellite data.
::::::::::
Nonetheless,

::::::::
relatively

::::::
higher

:::::::::::::
concentrations

:::
are

:::::::
observed

::::::
before

:::::
noon,

:::::::::
following

:::
the

::::::::
morning

::::
rush

:::::
hour.

::::
This

::::
may

:::
be

::::::
related

:::
to

:::::
stable

:::::::::::
atmospheric

:::::::::
conditions

::::::
caused

:::
by290

:::::::
relatively

::::
low

::::::::::
temperature

::::::
during

:::
this

::::
time

:::
of

:::
day,

::::::
which

:::::::
suppress

:::::::::
convective

::::::::::
circulation.

:
The high concentrations during the
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cold season (winter to early spring) can be attribute to increased fossil fuel combustion for heating combined with the stagnant

weather conditions during this season (Wang et al., 2015). Particularly in March, the highest PM10 is associated with the

long-range transport of Asian dust originating in the deserts of Mongolia and China (Lee et al., 2019, 2024b; Kim et al., 2017).

These seasonal variations are also well captured in the estimated PM10 concentrations (Fig. 4b), and the overall pattern is in295

good agreement with that of the ground measurements. The spatial correlation between the measured and estimated PM10

concentrations (Fig. 4a and Fig. 4b, respectively) is 0.95
:::
0.96. Yet, we observe substantial differences in the magnitude, as

shown in Fig. 4c, with underestimation of high values during the winter and spring and overestimation of low values in the

autumn.
:::::
These

::::::
patterns

:::::
align

::::
with

:::
the

:::
bias

::::::::
observed

::
in

:::
the

:::
data

::::::::::
comparison

::::::
shown

::
in

:::
Fig.

::
3.

:
We also observe similar contrasting

biases between the seasons, but with smaller magnitudes for the
::::::
seasonal

::::::
biases

:::
for PM2.5 (Fig. S6).300

The underestimation of very high values, such as those observed in March, by machine learning methods is unsurprising

given that these rare values are not well-represented in the training data. Nonetheless, as AOD is found to be the most influential

input feature for the predictive ability of the RF models (Fig. 3), we assume that the quality of the AOD can directly affect the

models’ performance . To confirm this
:::
5c), we further compare the GEMS AOD data with

::
but

::::
with

:::::::
smaller

::::::::::
magnitudes.

4.3
:::::::::

Enhancing
:::
PM

::::::::::
estimation

:::
and

:::::::::::
applications

::
at

:::::::::
ungauged

::::::::
locations305

::
In

:::
this

:::::::
section,

:::
we

:::::::
conduct

::::
two

::::::::
additional

:::::::::::
experiments.

:::::
First,

:::
we

::::::::::
incorporate

::::::::::::
supplementary

:::
air

::::::
quality

::::
data

::
to
::::::::

evaluate
:::
the

:::::::
potential

:::
for

:::::::::
improving

:::::
model

:::::::::::
performance

::::
using

::::
this

::::::::
additional

::::::::::
information.

:::::::
Second,

:::
we

:::::
assess

:::
the

:::::::
model’s

::::::
ability

::
to

:::::::
estimate

:::
PM

::::::::::::
concentrations

::
at

::::::::
locations

::::::
without

:
ground-based AOD measurements from the AErosol RObotic NETwork (AERONET)

(Giles et al., 2019). We use AERONET Version 3 Level 2.0 quality-assured data from the six sites in South Korea (see Fig.S7

for the location of the sites). Note that as we extract the closest GEMS AOD data point to each AERONET site, the GEMS310

data used in this additional analysis are not directly comparable with those used in the previous analysis. Nevertheless, we find

that the GEMS tends to underestimate AOD, compared to the ground-based AOD measurements
::
by

::::::::
utilizing

::::
input

::::
data

:::::
from

::::::::::
neighboring

:::::::
stations.

::::
This

::::::
allows

::
us

::
to

:::::::
examine

:::
the

:::::::::::
effectiveness

::
of

::::::::::::::
satellite-derived

::::
AOD

::::
and

::::::::
reanalysis

:::::::::::::
meteorological

::::
data

::
in

:::::::
scenarios

::::::
where

:::::
target

::::
data

:::
are

::::::::::
unavailable.

315

:::::
Figure

::
6

:::::::
presents

:::
the

::::::
results

::
of

:::
the

::::
main

:::::::
analysis

:::::::
repeated

:::::
with

::::::::
additional

::::::::
measured

::::
data

:::::
from

::::::::
AirKorea

:::::::
stations,

::::::::
including

:::::
ozone

::::
(O3),

::::
CO,

:::::
SO2,

:::
and

:::::
NO2.

:::
The

::::::::
inclusion

::
of

::::::::
chemical

:::::::
pollutant

::::
data

:::::
leads

::
to

::::::
overall

::::::::::::
improvements

::
in

:::::
model

:::::::::::
performance

::
for

::::
both

::::::
PM10

:::
and

:::::::
PM2.5.

:::::::::
Compared

::
to

:::
the

::::
main

:::::::
analysis

:::::
using

::::
only

:::::
AOD

::::
and

::::::::::::
meteorological

::::
data

:
(Fig. 5). A study on the

early version of GEMS L2 algorithm prior to the launch of GEMS also reported high correlation, but slight underestimation of

GEMS AOD compared to AERONET (Kim et al., 2020).320

Overall, negative biases are prevalent during the spring, particularly in March and April, while weak positive biases are

observed during the autumn and early winter (September to December). These trends are broadly consistent with the bias

patterns identified in the
:::
3),

:::
the

::::::::::
correlations

::::::::
between

::::::::
measured

::::
and

::::::::
estimated

::::
PM

:::::::::::::
concentrations

:::::::
improve

:::::
from

::::
0.67

:::
to

::::
0.74

::
for

:
PM10 estimates

:::
and

::::
0.72

::
to

::::
0.85

:::
for

:::::::
PM2.5.

:::::::::::
Furthermore,

:::
the

:::::::
relative

::::
error

:::::::::
magnitude

:::::::::
decreases

:::::
across

:::
all

::::::
ranges

::
of

::::::::
measured

::::
PM

:::::::::::::
concentrations.

::::
This

:::::::
overall

:::::::::::
improvement

::
is
::::::::::

anticipated,
:::

as
::::::::
chemical

:::::::::
pollutants

:::
are

::::::
known

:::
to

::::::::
influence325
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:::
PM

::::::::::::
concentrations

:::
by

:::::
acting

:::
as

:::::::::
precursors

::
to

:::::::::
secondary

:::::::
aerosols

::::::::::::::::::::::::::::::::::
(Ngarambe et al., 2021; Kang et al., 2022)

:
.
::::::
SHAP

:::::::
analysis

::::::::
highlights

:::
the

::::::::::
significance

::
of

::::::::
pollutant

::::
data,

::::::::::
particularly

:::
CO

::::
and

::::
NO2 (see Fig. 4). AOD retrievals from satellite observations

can be influenced by many factors, including surface reflectance estimation or aerosol model assumptions. For instance,

neglecting the nonsphericity of dust in the satellite algorithm usually leads to underestimation of AOD retrievals under

dusty conditions (Feng et al., 2009). In addition, distinguishing surface reflectance and aerosol scattering or absorption effect330

can be challenging under low aerosol loading conditions (Rudke et al., 2023). Other issues such as cloud contamination or

heterogeneous surface conditions also can lead to uncertainties in satellite-derived AOD (Handschuh et al., 2022). Consequently,

data uncertainties in GEMS AOD likely affect the performance of RF, given that input data quality has a significant impact on

the trained machine learning model ’s predictions
:::
S6),

:::::
while

:::
the

:::::::::
importance

::
of
:::::::

GEMS
::::
AOD

:::::::
remains

:::::::::
prominent.

::::::::
Although

::::
CO

:
is
:::
not

:::::::
directly

::::::
related

::
to

:::
PM

:::::::::
formation,

:
it
::
is

::::::::
positively

:::::::::
correlated

::::
with

:::
PM

:::::::::::::
concentrations,

::::::
serving

::
as

::
an

::::::::
indicator

::
of

::::::::::
combustion335

::::::
sources

:::
and

::::::::::
influencing

::::::::::
atmospheric

::::::::
chemistry

:::::::
through

::::::::::::
photochemical

:::::::
reactions

::::::::::::::::::::::::::::::::::::::::::::::
(Fu et al., 2020; Ngarambe et al., 2021; Dai et al., 2023)

:
.
:::::::::
Meanwhile,

:::::
NO2 :::::::::

contributes
::
to

:::
the

::::::::
formation

::
of

::::::
nitrate

:::::::
aerosols,

:::
and

:::::::::::::::
Lee et al. (2024a)

:::::
shows

::::
that

::::
high

::::::
PM2.5

::::::::::::
concentrations

::
in

:::::
Seoul

:::
are

:::::::
strongly

::::::::
associated

::::
with

:::::::
elevated

::::::
nitrate

::::::
levels.

:::::
While

:::
the

:::
use

::
of

:::::::
globally

::::::::
available

::::::::
reanalysis

:::::::::::::
meteorological

::::
data

:::::::
enhances

::::
the

:::::::::
estimation

::
of

::::
PM

::::::::::::
concentrations

:::::
using

:::::::
GEMS

:::::
AOD,

:::::
these

::::::
results

:::::::::::
demonstrate

:::
that

::::::::::::
incorporating

:::::::::
additional

:::::
locally

::::::::
available

::::
data

:::
can

::::::
further

:::::::
improve

::::::
model

::::::::::
performance.340

Finally, we examine the potential of improving RF performance using larger training data. GEMS has started its data

observation in early 2020 and , moreover, it has significant data gaps, for instance, in cloudy conditions. Thus, there are

currently insufficient data for a broad range of applications. The performance of machine learning is highly dependent not only

on the training data quality but also on the quantity and diversity of the data (O et al., 2020). In this context
:::::::::::::
satellite-derived345

::::
AOD

::::
and

:::::::
machine

:::::::
learning

::::::
models

:::
for

::::::::
estimating

::::
PM

::::::::::::
concentrations

::
at

::::::::
ungauged

::::::::
locations.

:::::
While

:::::
South

:::::
Korea

::::
has

:
a
::::::::
relatively

:::::
dense

::
air

::::::
quality

:::::::::
monitoring

::::::::
network,

::::
these

:::::::
stations

:::
are

:::::::
primarily

:::::::::::
concentrated

::
in

:::::
urban

:::::
areas.

::::
And,

:::::
many

::::::::
countries

::
in

::::
Asia

::::
lack

:::::::
sufficient

:::::::
ground

::::::
stations

:::
for

:::::::::::::
comprehensive

::::::
aerosol

::::::::
mapping.

:::
To

:::::::
simulate

:::::::::
ungauged

::::::::
conditions, we retrain an

::
the

:
RF model

at each station with a larger training data volume by utilising data from its n neighbouring stations,
:::::::::

excluding
:::
any

::::
data

:::::
from

::
the

::::::
target

:::::
station

:::::
itself. The model validation is performed five times using a random 20% split of each station’s training data350

each time, per the approachused in
::
is

::::
then

:::::::
validated

::
at
:::
the

:::::
target

::::::
station

:::::
using

:
a
::::::::
five-fold

:::::::::::::
cross-validation

::::::::
approach,

:::::::::
consistent

::::
with the main analysis.

Fig. 6 demonstrates that the RF models’ performance can be improved by including more training data . Compared to the

model performance without additional training data from neighbouring stations (n= 0), the RF models with data supplement355

:
7
:::::::::
illustrates

:::
the

:::
PM

:::::::::
estimation

:::::::::::
performance

::
at
:::::::::

ungauged
::::::::
locations,

::::::::::
comparing

:::::::::
correlation

::::::::::
coefficients

:::::
(Fig.

:::
7a)

::::
and

:::::
mean

::::::
relative

:::::
error

::::
(Fig.

::::
7b).

::::
The

::::::::
‘gauged’

::::
case

:::::::::
represents

:::
the

::::::
model

::::::
trained

:::::
using

:::::
only

:::
the

:::::
target

::::::::
station’s

::::
data

::::
(i.e.

:::
the

:::::
main

:::::
results

::::::::
presented

:::
in

:::
the

:::::::
previous

:::::::
section).

:::
As

::::::::
expected,

:::::
when

:::
the

::::::
model

:
is
:::::::
trained

::::
with

:::
data

:::::
from

:
a
::::::
single

::::::::::
neighboring

::::::
station

::::::
(n= 1),

:::::::::::
performance

::
is

:::::
lower

::::
than

::::
that

::
of

:::
the

::::::
gauged

::::::
model

:::
due

::
to

:::::::
limited

:::::::
regional

:::::::::::::::
representativeness.

::::::::
However,

:::
the

:::::::
models

show higher correlation coefficients and decreased negative biases . Comparing the original model and the model constructed360
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with data from eight neighbouring stations , the site-averaged r-value increases from 0.7 to 0.8 and the regression slope

increases from 0.4 to 0.7.
:::::
biases

::
as

::::
more

:::::::::::
neighboring

:::::
station

::::
data

:::
are

::::::::
included.

::::
This

::::::
finding

:::::
aligns

::::
with

:::
the

::::::::::::
understanding

::::
that

:::::::
machine

:::::::
learning

::::::
models

::::
can

:::::::::
effectively

:::::::
leverage

::::::
spatial

:::
and

::::::::
temporal

:::::::::
variability

::
to

:::::::
enhance

:::::::::
robustness

::::
and

:::::::::::::
generalisability

::::::::::::
(O et al., 2020)

:
.
:::::
When

::::
data

::::
from

::
at

::::
least

::::
four

::::::::::
neighboring

:::::::
stations

::
are

:::::::
utilized,

:::
the

::::::
model

:::::::
achieves

:::
PM

:::::::::
estimation

:::::::::::
performance

:
at
:::::::::
ungauged

:::::::
locations

::::::::::
comparable

::
to

:::
that

::
at
::::::
gauged

:::::
sites.

::::::::
However,

:
it
::
is
::::::::
important

::
to
::::
note

::::
that

::
in

:::
this

:::::
study,

::::::::::
neighboring

:::::::
stations365

::
are

:::::::
selected

:::::
based

:::::
solely

:::
on

::::::::
proximity

:::::::
without

:::::::::
considering

:::
the

::::::::
similarity

::
of

:::::::::
conditions

:::::::
between

:::::::
stations.

::::::
Future

:::::::
research

::::::
should

:::::::::
investigate

:::
how

::::::::::
inter-station

:::::::::
similarity

::::::
impacts

::::::
model

:::::::::::
performance,

:::::
which

::::
may

::::::
further

:::::::
optimize

:::::::::::::
regionalisation

:::::::::
approaches

:::
for

::::::
aerosol

:::
and

:::
air

::::::
quality

::::::::
modeling.

::
In

::::::::
addition,

:::::::::::
incorporating

::::
more

::::::::::
neighboring

:::::::
stations

:::::::
provides

:
a
:::::
larger

:::::::
amount

::
of

::::::
training

:::::
data,

:::::::
meaning

:::
that

:::
the

::::::::
observed

::::::
model

:::::::::::
improvement

:
is
::::::
driven

:::
not

::::
only

:::
by

::::::::
increased

:::
data

::::::::
diversity

:::
but

::::
also

::
by

:::
the

:::::
larger

::::
data

::::
size.

:

5 Conclusions370

Applying satellite-derived AOD observational data to estimate ground-level PM offers an excellent opportunity for air quality

monitoring, including at ungauged sites (Hammer et al., 2023; Filonchyk et al., 2020; Wei et al., 2023). This is particularly

important for Asian regions, where a significant proportion of the population is exposed to air pollution levels exceeding WHO

guideline values (Cohen et al., 2017). As the world’s first geostationary earth orbit environmental instrument, GEMS is ex-

pected to provide more detailed air quality information over Asia with higher spatial and temporal resolutions than existing375

low Earth orbit platforms. GEMS will also join a constellation of geostationary air quality satellites, together with TEMPO

over North America and Sentinel-4 over Europe, to collectively provide near-global coverage (Kim et al., 2020). In line with

ongoing efforts to confirm the reliability of the new satellite data products, in this study, we evaluate the effectiveness of GEMS

AOD data by modelling AOD-PM relationships at over 400
::::::
around

:::
500

:
stations in South Korea using RF

:::::::
machine

:::::::
learning

models.380

While using the GEMS AOD data alone yields limited predictive performance , including
::
In

:::
this

:::::
study,

:::
we

:::
aim

::
to
::::::
assess

:::
the

:::::::
potential

::
of

::::::
GEMS

:::::
AOD

::::
data

:::
for

::::::::
sub-daily

::::
PM

:::::::::
estimation

:::::
using

:::::::
practical

::::
ML

:::::::
models,

::::::
without

::::::::::
prioritising

:::
the

:::::::::::
achievement

::
of

:::::::
optimal

:::::
model

::::::::::::
performance.

::::::
While

:::::
more

::::::::
advanced

::::
ML

:::::::::
techniques

:::
or

:::::::::
alternative

::::::::
modeling

::::::::::
approaches

:::::
(e.g.

::::::::
chemical

:::::::
transport

:::::::
models)

:::::
could

:::::::
enhance

::::::::::::
performance,

::::
they

:::
are

::::::
beyond

:::
the

::::::
scope

::
of

:::
this

::::::
work.

:::::::::::
Furthermore,

::
to

:::
our

::::::::::
knowledge,

::::
this385

:
is
:::
the

::::
first

:::::::::
evaluation

::
of

::::::
GEMS

:::::
AOD

::::::::::
applications,

:::::::::
providing

:::::::
baseline

::::::
results

:::
for

:::::
future

:::::
model

:::::::::::
comparisons

:::
and

::::::::::::
development.

::::
This

::::::::
approach

:::
also

:::::::
applies

::
to

:::::
input

::::::::
selection.

::::::
While

:::
we

:::::::
consider

::
a
::::::::
relatively

:::::
wide

:::::
range

::
of

:::::
input

::::::::
variables,

::::::::
including

:::::
both

::::::::::::
meteorological

:::
and

::::::::
chemical

::::
data,

:::::::::
additional

:::::::
variables

::::
can

::
be

::::::
tested,

:::
and

:::::
model

:::::::::::
performance

:::
can

:::
be

::::::::
compared.

:::
In

:::
this

:::::::
context,

:::
ML

::::::
models

:::
are

::::::::::
particularly

::::::::::::
advantageous,

::
as

::::
they

:::
can

::::::::::
incorporate

:
a
:::::
broad

::::::::
spectrum

::
of

::::::::
variables,

::::::::
including

:::::
those

::::::::
typically

:::
not

::::
used

::
in

::::::::::::
process-based

:::::::
models.

::::::::
However,

:::
ML

:::::::::::
performance

::
is
::::::
highly

:::::::::
dependent

::
on

:::
the

:::::::
quality

::
of

:::
the

:::::::
training

::::
data;

:::::::::
therefore,390

::::::
careful

:::::::
attention

:::
to

::::
data

::::::
quality

::
is

::::::::
essential.

:::::
Here

:::
we

:::
use

:::::::::
reanalysis

::::
data

:::
as

::::
input

::::::::
features

::
in

:::::::
addition

::
to
::::

the
:::::::
satellite

::::
data

::
to

:::::
ensure

:::
the

:::::::
general

:::::::::::
applicability

::
of

::::
ML

::::::
models

::::
over

::::::
diverse

:::::::::
locations.

:::::
Since

::::::::
reanalysis

::::
data

::::
are

:::::::
gridded,

::::
there

::
is
::
a
::::::
spatial

::::::::
mismatch

:::::::
between

:::
the

::::
grid

::::
pixel

::::
and

:::
the

:::::
actual

::::::
ground

:::::
target

::::::
points

::::
(i.e.

::::::::
AirKorea

:::::::
stations).

:::::::::
Although

:::
this

:::::::
distance

::
is

::::::
within

12



:
a
:::
few

::::::::::
kilometers

::::
after

::::::::
applying

:::
the

:::::::::::
interpolation

::::::
method

::
to
::::

the
::::::::
reanalysis

:::::
data,

:::
and

:::
no

:::::::::
significant

:::::::::::
performance

::::::::::
degradation

:::
due

::
to

:::
this

:::::::::::
discrepancy

:
is
::::::::
observed

:::::
(Fig.

:::
S7),

:::::::::
employing

:::::::::::::::
higher-resolution

::::
data

::
or

::::::::
improved

:::::::::::
interpolation

:::::::::
techniques

:::
for

::::
data395

:::::::::
processing

::::
could

::::
also

:::
be

:::::::::
considered

::
in

:::
the

::::::
future.

:::
Our

::::::
results

::::::::::
demonstrate

::::
that

::::::
GEMS

:::::
AOD,

::::::::
combined

::::
with

:
meteorological variables such as temperature and boundary layer

heightallows the ,
:::::::

enables
:
model-estimated PM concentrations to reach strong correlations (r-values > 0.65)

::::::
achieve

::::::
strong

:::::::
temporal

:::
and

::::::
spatial

::::::::::
correlations with ground measurementsboth temporally and spatially. Nonetheless, underestimation biases400

in the GEMS AOD compared to the ground-measured AOD, especially during high-PM months, could lead to negative biases

in the final PM estimation. Such data uncertainties
:
.
::::::::
However,

:::::
biases

:::::::
between

:::
the

::::::::
estimated

::::
and

::::::::
measured

::::
PM

::::::::::::
concentrations

::
are

:::::::
evident,

::::::::::
particularly

::
at

:::::::
extreme

::::::
ranges,

::::::
which

::::
may

::
be

::::::::
attributed

::
to

:::::::::
limitations

::
in
:::::
both

::
the

:::::::
models

:::
and

:::
the

:::::
data.

:::::
These

::::
data

should be carefully considered
::::::::
addressed in future satellite retrieval algorithms and data applications.

Given that only the first 1.5-year GEMS data are used in this study, we also demonstrate that larger training data volumes405

can potentially improve the performance of PM estimation, implying that the availability of longer data archives in the

near future will allow estimation models to be further refined. More sophisticated machine learning algorithms or different

modelling approaches
:::
We

::::
also

:::::
show

:::
that

:::
the

:::::::
model’s

:::::::::::
performance

:::::
could

:::
be

::::::::
improved

:::
by

::::::::
acquiring

::::::::
additional

:::::::
training

:::::
data.

:::::::
AirKorea

:::::::
stations

:::::::
provide

:::
not

::::
only

:::
PM

::::::::::::
measurements

:::
but

::::
also

::::
data

::
on

:::::::::::::::
air-quality-related

:::::::::
pollutants.

::::::::
Utilizing

::::
these

:::::::::
additional

:::::::::::
measurements

:::::::
reduces

::::
ML

:::::::::
estimation

:::::
errors

::::
over

::::
most

:::::::
stations.

:::::::
Beyond

:::
the

::::::::
pollutant

::::::::::::
measurements

::
in

:::::
target

::::::::
locations,

:::::
other410

:::::::::
PM-related

::::
data,

:::::
such

::
as

::::::::::
information

:::
on

::::::::
pollution

::::::
sources

:
(e.g. chemical transport models)could also lead to improved PM

predictions from satellite
:::::::
emission

:::::
levels

::
or

:::::::
ambient

:::
air

::::::::
conditions

::
at
::::::::
emission

:::::
sites),

:::::
could

::::
also

:::::::
enhance

::::::
model

:::::::::::
performance.

:::::
Future

:::::::
studies

::::::
should

:::::
assess

::::
the

:::::::::
feasibility

:::
and

:::::::::::
contribution

::
of

:::::::::
acquiring

::::
such

:::::::::
additional

::::
data

:::
on

::
a
::::::::::::
region-specific

::::::
basis.

:::::::
Machine

:::::::
learning

:::
is

::::
also

::::::
known

::
to
::::::::::

regionalise
:::::::::
effectively

:::::
using

::::::::
training

::::
data

:::::::
obtained

:::::
from

:::::::
regions

::::
with

:::::::::::::
environmental

::::::::
conditions

::::::
similar

::
to

:::
the

:::::
target

::::::
region.

::::
Our

::::
study

:::::::::::
demonstrates

::::
that

:::
PM

::::::::::
estimations

::
at

::::::::
ungauged

::::
sites

:::
are

:::::::
possible

::
by

:::::::::
leveraging415

::::::
training

::::
data

:::::
from

::::::
nearby

:::::::
stations.

::
In

:::::
these

:::::
cases,

::::::::
ungauged

::::
sites

:::::
refer

::
to

::::::
regions

:::::::
lacking

::::::
ground

:::::::::::
observations.

::::::
Future

::::::
efforts

::::
could

:::::::
explore

:::::::::
fine-tuning

:::
ML

:::::::
models

::::
using

:::::::
satellite

::::
data

::::::
(AOD)

::::
from

::::
these

:::::::::
ungauged

:::::
areas,

:::::::
enabling

::::
more

::::::
precise

::::
and

:::::::
accurate

:::::::::
predictions.

:::::::::
Ultimately,

:::
our

:::::
study

:::::::::::
demonstrates

:::
the

:::::::::::
applicability

::
of

:::
the

::::::
current

::::::
version

:::
of

::::::
GEMS

::::
AOD

::::
data

:::
for

:::::::::
estimating

:::::::::::
ground-level420

:::
PM

:::
and

::::::::
provides

:::::::
valuable

::::::::
baseline

::::::::::
information

:::
for

:::::::
ongoing

::::::::::::
improvements

::
in
:::::

data
:::
and

::::::::
modeling

::::::::::
techniques.

::::
This

::::::::
research

::::::::
highlights

:::
the

:::::::::
significant

::::::::
potential

::
of

:::::::
GEMS AOD , and our findings in this study can serve as a baseline for comparison

of different methods in future studies. Moreover, after accumulating a larger volume of GEMS data, the AOD data should

be evaluated from more diverse perspectives, including diurnal variations at a certain location or PM estimation at ungauged

locations.
:::
data

::
to

:::::::
enhance

::
air

::::::
quality

::::::::::
monitoring

:::::
across

:::::
Asia,

:::::::::
particularly

::
in

::::::
regions

::::::
where

::::::::::
conventional

:::::::::::
ground-based

::::::::::::
measurements425

::
are

::::::::::
unavailable

:::
or

:::::::
limited.

:::
By

::::::::::
establishing

::
a
::::::::::
foundation

:::
for

:::::
future

:::::::
studies

:::
and

::::::::
offering

:::::::
insights

:::
into

::::::
model

::::::::::::
improvement

::::::::
strategies,

:::
our

:::::
work

::::::::::
underscores

:::
the

:::::::::
importance

::
of

:::::::::
employing

::::::::::::
geostationary

::::::
satellite

::::
data

::
in
:::
air

::::::
quality

:::::::::::
assessments.
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Figure 1. Comparison of measured and model-estimated PM10 concentrations over South Korea. Grey
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GEMS

::::
AOD

:::
and

:::::::::
AERONET

::::
AOD

::::::
divided

::
by

:::::::::
AERONET

:::::
AOD,

:::
are

:::::
shown

:::
for

::::::
different

:::::::::
AERONET

::::
AOD

::::::
ranges.

:::::
These

:::::
ranges

:::
are

::::::
divided

::::
based

:::
on

::::
each

:::
20th

::::::::
percentile

::
of

:::::::::
AERONET

:::::
AOD.

::::::
Shaded

::::
areas

::::::
indicate

:::
the

:::::::::
interquartile

::::
range

::
of

:::
the

::::
errors

::::::
within

:::
each

:::::
range.

:
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Figure 2.
::::::::
Measured

:::
and

:::::::::::::
model-estimated

:::
PM

::::::::::::
concentrations

::::
over

::::
South

::::::
Korea

:::::
during

:::::::
January

:::::::::::::
2022–December

::::
2023.

:::
The

::::
grey area in

the small map (the leftmost panel) shows the spatial coverage of GEMS
::::::
coverage

:
(5◦S–45◦N, 75◦E–145◦E)over Asia, including

:::
with

:
South

Korea marked by a black box, which is enlarged for detailed analyses at urban air quality monitoring stations for the period of January 2022

to June 2023. Average of .
:::::
Panels

:
(a) the measured and (b)

:::::
present

:::
the

::::::
average

:::::::
measured

::::
and estimated PM10 concentrations,

:::::::::
respectively,

and (c) correlations of the measured and estimated PM10 values at each station. Note that only the data pairs which both PM and GEMS

AOD data are available are included
::::
shows

::::
their

::::::::
correlation. The inset plots

::::
Insets

:
in (a) and (b) show

:::::
display the probability density function

(PDF)of PM10. In the inset plot of ,
::::

and (c) , the box represents
::::

shows
:
the interquartile range

:::::::
correlation

:::::::::
distribution

:::
via

:
a
::::::
boxplot, where

the vertical centre
:::::
center line is the median, and the whiskers represent the 10th

::
0.1

::
to

:::
0.9

:::::::
quantiles.

::::
Only

::::
data

::::
pairs

:::
with

::::
both

:::
PM and 90th

percentiles
:::::
GEMS

::::
AOD

:::::
values

:::
are

:::::::
included.

:::::
Panels

:::
(d), with outliers shown as dots

::
(e),

:::
and

:::
(f)

::::::::
correspond

::
to

:::
(a),

:::
(b),

:::
and

:::
(c),

::::::::::
respectively,

::
but

:::
for

:::::
PM2.5.
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Figure 3. Performance of RF models in estimating ground-level PM concentrations. (a) Density scatter plot between the measured PM10

and GEMS AOD values across all stations. (b) Density scatter plot between the measured PM10 values and the
::::::::::::
model-estimated

:
PM10values

estimated using RF models. The vertical and horizontal lines represent the corresponding median values. The thick solid line is the regression

line, and the dotted diagonal line is the one-to-one.
::::
Both

::::
axes

::
are

::::::::
displayed

::
in

::
log

::::
scale

:::
for

:::::
better

::::::::::
visualization.

::
(c)

:::::::
Average

::::::
relative

:::::
errors,

:::::
defined

::
as
:::
the

::::::::
difference

::::::
between

::::::::
estimated

:::
and

:::::::
measured

:::
PM

::::::
divided

:::
by

::
the

::::::::
measured

:::::
values,

:::
are

:::::
shown

::
at
::::::::
predefined

:::::
ranges

:::::
using

::::
each

::::
decile

::
of

::::::::
measured

:::::
PM10.

::::::
Shaded

::::
areas

::::::
indicate

:::
the

:::::::
25th-75th

:::::::::
percentiles

:::::
within

:::
each

:::::
range.

::::
The

:::::
x-axis

:
is
::
in

:::
log

:::::
scale.

:::::
Panels

:::
(d),

:::
(e),

:::
and

::
(f)

::::::::
correspond

::
to

:::
(a),

:::
(b),

:::
and

:::
(c),

:::::::::
respectively,

:::
but

:::
for

:::::
PM2.5.
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Figure 4. Input importance of RF models. SHAP values are computed to examine the contribution of each input feature to individual

predictions
::
for

::
(a)

:::::
PM10

:::
and

:::
(b)

:::::
PM2.5. In this box plot, the relative importance of the input variables is shown by ranking the averaged

absolute SHAP values. The box represents the interquartile range, the vertical centre line is the median, and the whiskers represent the 10th

and 90th percentiles
:::
0.1

::
to

::
0.9

:::::::
quantiles, with outliers shown as

:::::::
individual dots.
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Figure 5. Time-month diagram of GEMS AOD and AERONET AOD.The mean hourly (a) GEMS AOD and (b) AERONET AOD for each

month averaged across all the AERONET sites. (c) represents differences between the GEMS and AERONET AOD data. Locations of the

AERONET sites can be found in Fig. S7.
::::::::::
Time-month

:::::::
diagram

::
of

:::
PM

:::::::::::
measurements

:::
and

::::::::
estimates.

:::
The

:::::
mean

:::::
hourly

::
(a)

:::::::
measured

:::
and

:::
(b)

:::::::
estimated

:::::
PM10

:::::::::::
concentrations

::
for

::::
each

:::::
month

:::::::
averaged

:::::
across

::
all

:::
the

::::::
stations.

:::
(c)

::::::::
represents

::::::::
differences

::::::
between

:::
the

:::::
PM10

:::::::::::
measurements

:::
and

:::::::
estimates.

:::::
Panels

:::
(d),

:::
(e),

:::
and

:::
(f)

::::::::
correspond

::
to

:::
(a),

:::
(b),

:::
and

:::
(c),

:::::::::
respectively,

:::
but

::
for

::::::
PM2.5.
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Figure 6.
::::::::::
Performance

:::::::::::
improvement

::
of

:::
RF

::::::
models

::::
with

:::
the

::::::::
inclusion

::
of

:::::::
pollutant

:::::
data.

:::
This

:::::
figure

:
is
::::::

similar
::
to

::::
Fig.

::
3,

:::
but

:::::
shows

:::::
results

::
for

::::::
models

:::::
trained

::::
with

:::::::
additional

::::::
locally

:::::::
available

:::
data

:::
(O3,

::::
CO,

::::
SO2,

::::
NO2)

::::
from

:::::::
AirKorea

:::::::
stations.

::
(a)

::::::
Density

:::::
scatter

:::
plot

:::::::
between

:::::::
measured

:::::
PM10

:::
and

:::::::::::::
model-estimated

:::::
PM10.

:::
(b)

::::::
Relative

:::::
errors

:::
are

:::::
shown

::
at

::::
each

:::
10th

::::::::
percentile

::
of

::::::::
measured

:::::
PM10.

:::::
Panels

:::
(c)

:::
and

:::
(d)

::::::::
correspond

::
to

::
(a)

:::
and

:::
(b),

::::::::::
respectively,

::
but

:::
for

::::::
PM2.5.
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Figure 7.
:::::::
Potential

::
of

::::::
satellite

::::
data

::
in

::::
PM

::::::::
estimation

::
at
:::::::::

ungauged
:::::::
locations.

::
(a)

:::::::::
Correlation

:::
and

:::
(b)

::::
mean

::::::
relative

::::
error

:::::::
between

:::
the

:::::::
measured

:::
and

::::::::
estimated

::::
PM10

::::::::::::
concentrations

:
at
::::

each
::::::
station.

:::
The

:::
RF

::::::
models

:::
are

:::::
trained

:::::
using

:::
data

::::
from

:::
the

::
n

:::::
closest

::::::::::
neighboring

::::
sites,

:::::::
excluding

:::
the

::::
target

::::::
station,

:::::
where

:::::
model

::::::::::
performance

:
is
::::::::

evaluated.
::::
The

:::
term

:::::::
’gauged’

:::::::
indicates

:::
that

:::
the

:::::
model

::
is

:::::
trained

:::
and

:::::
tested

::
at

:::
the

::::
same

:::::
station

::
(as

::::::
shown

:
in
:::

the
::::
main

::::::
analysis

::
in
::::
Fig.

::
2).
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