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Abstract. The Geostationary Environment Monitoring Spectrometer (GEMS) is the world’s first ultraviolet–visible instrument

for air quality monitoring in geostationary orbit. Since its launch in 2020, GEMS has provided hourly daytime air quality in-

formation over Asia. However, to date, validation and applications of these data are lacking. Here we evaluate the effectiveness

of the first 1.5-year GEMS aerosol optical depth (AOD) data in estimating ground-level particulate matter (PM) concentrations

at an hourly scale. To do so, we employ random forest models and use GEMS AOD data and meteorological variables as5

input features to estimate PM10 and PM2.5 concentrations, respectively, in South Korea. The model-estimated PM concen-

trations are strongly correlated with ground measurements, but they exhibit negative biases, particularly during high aerosol

loading months. Our results indicate that GEMS AOD values represent underestimates compared to ground-measured AOD

values, possibly leading to negative biases in the final PM estimates. Further, we demonstrate that more training data could

significantly improve random forest model performance, thus indicating the potential of GEMS for high-resolution surface10

PM prediction when sufficient data are accumulated over the coming years. Our results will serve as a reference to aid the

evaluation of future GEMS AOD retrieval algorithm improvements and also provide initial guidance for data users.

1 Introduction

The adverse impacts of particulate matter (PM) on human health are well known. Exposure to high PM concentration can15

cause serious health risks such as cancers, respiratory and cardiovascular diseases (Chen and Hoek, 2020; Kim and Kim, 2020;

Ciabattini et al., 2021; Moreno-Ríos et al., 2022). PM can also have a harmful effect on ecosystems through deposition of PM

and its subsequent uptake by plants (Rai, 2016; Roy et al., 2024). Accordingly, in many countries, it is mandatory to control

ambient PM concentrations, and regular PM concentration measurements are key to designing appropriate policies to constrain

the presence of PM. Given this background, the number of air quality monitoring stations has been growing worldwide; how-20

ever, these ground-based measurement stations are often concentrated in city areas only and insufficiently densely distributed
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to provide spatially continuous data (Martin et al., 2019).

In contrast, satellite observational data, with its broad spatial coverage, can be potentially used to improve air quality moni-

toring (including PM) on a regional to global scale. In this context, the Geostationary Environmental Monitoring Spectrometer25

(GEMS) onboard the Geostationary Korea Multi-Purpose Satellite-2B (GEO-KOMPSAT-2B), which was launched in 2020 by

the Republic of Korea, aims for near real-time monitoring of air quality over Asia (Kim et al., 2020) where air quality is the one

of biggest environmental health risks (Hopke et al., 2008). As the first ultraviolet (UV)–visible instrument in a geosynchronous

orbit, GEMS can provide more detailed and frequent air quality data than existing low Earth orbit platforms. Since the first

release of the GEMS data, some verification of its initial air pollutant products including nitrogen dioxide or ozone has recently30

been performed (e.g. Baek et al., 2023; Kim et al., 2023; Ghahremanloo et al., 2024). However, data validation and applications

of many GEMS products are still largely lacking.

We focus on the GEMS aerosol optical depth (AOD), which measures the degree of light scattering or absorption at a given

wavelength due to the presence of aerosols in the atmospheric column (Chudnovsky et al., 2012). Satellite-derived AOD has35

been widely used to predict ground-level PM concentrations (Shin et al., 2020), as can be seen in the example of Moderate

Resolution Imaging Spectroradiometer or Geostationary Operational Environmental Satellite (Chudnovsky et al., 2012; Gupta

et al., 2006; Yang et al., 2020; Zhai et al., 2021; Hammer et al., 2023). Nonetheless, inconsistent relationships between satellite-

derived AOD and ground-level PM observations have been reported among different regions and based on data from different

satellite instruments (Yang et al., 2020). Therefore, there is an urgent need to evaluate the effectiveness of GEMS AOD data in40

estimating PM concentrations over Asia, which can in turn provide initial guidance for both data users and algorithm develop-

ers.

In this study, we use GEMS AOD data over South Korea during the first 1.5 years of observations from January 2022 through

to June 2023 (the very first data are available from November 2021). In Korea, publicly available PM measurement data (PM1045

and PM2.5), which can serve as continuous ground reference, can be obtained from nationwide air quality monitoring stations.

To convert the AOD from satellite observations into surface PM concentrations, we employ the random forest (RF), which is

a very popular machine learning method for PM estimation given its great flexibility and strong predictive performance (Shin

et al., 2020; Hu et al., 2017; Guo et al., 2021). At each station, we train an RF model using GEMS AOD data and relevant

meteorological variables as input features and predict the PM concentrations at an hourly scale using the trained models. We50

then evaluate the RF model performance and examine biases observed in the estimated PM concentrations. Consequently, our

study aims to demonstrate the usefulness of GEMS AOD in PM modelling and limitations in the current version of the data.
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2 Data and methods

The hourly PM concentration data in South Korea for the period of January 2022 to June 2023 used in this study are obtained

from the AirKorea real-time ambient air quality monitoring system (https://www.airkorea.or.kr/) operated by the Korea Envi-55

ronment Corporation. The PM concentrations are determined using a β-ray absorption method, and the measurements have

undergone quality controls to remove anomalous values before the release of the final data.

GEMS on board the GEO-COMPSAT-2B satellite has been in operation since 2020. The GEMS instrument measures the

UV-visible radiance spectrum, and its geostationary orbit allows AOD retrievals to be obtained at an hourly frequency during60

cloud-free daytime conditions (Kim et al., 2020). The GEMS aerosol products provide AOD at three wavelength channels

with a nominal spatial resolution of 3.5 km x 8 km at Seoul. Details about the GEMS aerosol retrievals can be found from

GEMS ATBD ARA (2020). We use GEMS AOD Level 2 (L2) data (at 443 nm) within a ± 15 min time window of the PM10

measurement times, extracted at the pixel nearest to the AirKorea monitoring stations (within a distance of 2.02 km on average).

65

The relationship between AOD and PM concentrations can be affected by meteorological conditions (Koelemeijer et al.,

2006; Tian and Chen, 2010; Handschuh et al., 2022). We consider boundary layer height (BLH), relative humidity (RH), air

temperature (TEMP), surface pressure (SP), and wind speed and direction (WS and WD, respectively) as input features, in

addition to AOD, to estimate the PM concentrations using RF models. BLH data from ERA5 reanalysis at a 0.25-degree reso-

lution are employed as a proxy for the vertical aerosol concentration in the lower troposphere as AOD is assumed to represent70

attenuation in the boundary layer (Gupta and Christopher, 2009b). The other variables are all obtained from ERA5-Land at

a 0.1-degree resolution. RH is computed using temperature and dew temperature (Lawrence, 2005), while wind speed and

direction are calculated using u and v wind components. Both ERA5 and ERA5-Land data are available at an hourly temporal

resolution (Hersbach et al., 2020), and we thus select the data at the closest PM ground measurement times and locations.

75

For the AOD-PM simulations, we employ an RF algorithm with 100 trees and train this algorithm using AOD and me-

teorological data as input features and ground PM measurements as the target variable, respectively. To evaluate the model

performance, we randomly split the entire data into five subgroups and use four of them (80%) as training data and the remain-

der (20%) as validation data. This process is repeated five times such that every data subset is used as validation data at least

once (i.e. five-fold cross-validation).80

2.1 Results and Discussion

Air quality, including PM concentrations, is routinely monitored in Korea via the AirKorea air quality monitoring network. Out

of more than 600 ground-based AirKorea stations, we select a total of 456 urban air quality monitoring stations to represent

human exposure to PM (Fig. 1). While the stations are distributed across the country, a large number of stations are concen-85
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trated in the densely populated Seoul Capital Area, located in the northwest of the study domain. We obtain the GEMS AOD

values that match the locations and measurements times of the ground PM data as closely as possible (see Methods), resulting

in an average of 1496 data pairs at each station. Note that GEMS provides hourly observations of AOD during the daytime,

corresponding to six to ten times per day depending on the season.

90

Figure 1a shows the average PM10 concentrations at the selected stations during the study period, calculated only when

AOD observation data are available (i.e. collocated PM and AOD data pairs). The average PM10 across the stations is 41.43

µg m−3, ranging from 25.80 to 65.10 µg m−3, which is higher than actual PM10 averages during the same period when night-

time data are also included (Fig. S1 in Supplementary). Overall, relatively high PM10 concentrations are observed in western

regions, which are related to strong inflow from the continent due to the prevailing mid-latitude westerlies in South Korea (Lee95

et al., 2019).

Next, we estimate ground-level PM10 concentrations using RF models, which are trained individually at each station using

AOD values and meteorological variables as input features (See Methods). RF can effectively handle non-linear relationships

between input features and target variables, making it a useful tool for air quality modelling applications. We also confirm100

that RF outperforms linear regression models in estimating PM10 (Fig. S2); all model performances are evaluated through the

five-fold cross validation.

Overall, the RF models demonstrate satisfactory PM10 estimation performance. The spatial distribution of PM10 concen-

trations observed in the measurements is effectively described by the model estimates (Fig. 1b), with an average estimated105

PM10 value of 41.66 µg m−3, ranging from 25.92 to 65.61 µg m−3, which closely matches the average measured value.

The Pearson’s correlation coefficients (r-value) between the measured and estimated PM10 is 0.65, on average, across all the

stations (Fig. 1c). The model performance is stable across the stations, as indicated by the correlation values between 0.59 to

0.70 (10th and 90th percentiles, respectively) at most stations. We also obtain similar PM2.5 estimation results using the RF

models (see Fig. S3).110

The entire data combined from all stations are also compared. As shown in Fig. 2a, the AOD and PM10 show a positive,

but weak correlation with an r-value of 0.25, thus indicating that the relationship between columnar AOD and ground-level

PM10 is non-trivial. Meanwhile, AOD-estimated PM10 values are in better agreement with the ground measurements (r-value

of 0.67), but exhibit significant negative biases (Fig. 2b), which will be further investigated in the following section. The RF115

models also show similar performance in the case of PM2.5 (Fig. S4).

Furthermore, we use SHapley Additive exPlanations (SHAP) to quantify the relative importance of the considered input fea-

tures on the model’s predictions. SHAP is an explainable machine learning method based on Shapley values, which measure

the marginal contribution of each predictor to the model’s output or prediction across all the possible predictor combinations120
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(Lundberg et al., 2020; Molnar, 2019). We take the mean of absolute SHAP values for each input variable across all the pre-

dictions to explain its global feature contributions (Fig. 3).

While AOD has the greatest influence on the model performance, as expected from its relatively strong correlation with

ground aerosols (Fig. 2a and Fig. S5), the temperature and boundary layer height (TEMP and BLH, respectively) appear as125

the most influential predictors among the considered meteorological variables. The TEMP and BLH show relatively strong

correlations with PM10 (Fig. S5), and their contributions to the prediction confirm the usefulness of RF models in capturing

complex, nonlinear input-output relationships. For instance, temperature can promote PM particle production by enhancing the

photochemical reactions in the atmosphere (Gupta and Christopher, 2009a). It can also act as an indicator of seasonal variations

in PM concentrations; for instance, an increase in emissions from combustion processes during the winter time can result in130

high aerosol loading, while aerosols can easily be removed by wet deposition during a rainy season in summer (Kim and Kim,

2020). Given that aerosols are primarily confined to the planetary boundary layer, BLH is a good proxy with which estimate the

height of the aerosol layer (Lee et al., 2024) and can help relate columnar satellite data to surface aerosol values (Handschuh

et al., 2022; Gupta and Christopher, 2009a).

135

We further compare the temporal evolution of hourly PM10 measurements and estimates in each month. The PM10 obser-

vations in Fig. 4a displays clear seasonal patterns, with high concentrations recorded during the winter and spring months and

low concentrations in the autumn. While PM10 values in South Korea often show strong diurnal or semidiurnal cycles (Kim

and Kim, 2020), these diurnal variations are not clearly shown in these PM10 composites from multiple stations, which con-

tain many gaps due to the missing values in the satellite data. The high concentrations during the cold season (winter to early140

spring) can be attribute to increased fossil fuel combustion for heating combined with the stagnant weather conditions during

this season (Wang et al., 2015). Particularly in March, the highest PM10 is associated with the long-range transport of Asian

dust originating in the deserts of Mongolia and China (Lee et al., 2019, 2024; Kim et al., 2017). These seasonal variations are

also well captured in the estimated PM10 concentrations (Fig. 4b), and the overall pattern is in good agreement with that of the

ground measurements. The spatial correlation between the measured and estimated PM10 concentrations (Fig. 4a and Fig. 4b,145

respectively) is 0.95. Yet, we observe substantial differences in the magnitude, as shown in Fig. 4c, with underestimation of

high values during the winter and spring and overestimation of low values in the autumn. We also observe similar contrasting

biases between the seasons, but with smaller magnitudes for the PM2.5 (Fig. S6).

The underestimation of very high values, such as those observed in March, by machine learning methods is unsurprising150

given that these rare values are not well-represented in the training data. Nonetheless, as AOD is found to be the most influential

input feature for the predictive ability of the RF models (Fig. 3), we assume that the quality of the AOD can directly affect the

models’ performance. To confirm this, we further compare the GEMS AOD data with ground-based AOD measurements from

the AErosol RObotic NETwork (AERONET) (Giles et al., 2019). We use AERONET Version 3 Level 2.0 quality-assured data

from the six sites in South Korea (see Fig. S7 for the location of the sites). Note that as we extract the closest GEMS AOD data155
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point to each AERONET site, the GEMS data used in this additional analysis are not directly comparable with those used in

the previous analysis. Nevertheless, we find that the GEMS tends to underestimate AOD, compared to the ground-based AOD

measurements (Fig. 5). A study on the early version of GEMS L2 algorithm prior to the launch of GEMS also reported high

correlation, but slight underestimation of GEMS AOD compared to AERONET (Kim et al., 2020).

160

Overall, negative biases are prevalent during the spring, particularly in March and April, while weak positive biases are

observed during the autumn and early winter (September to December). These trends are broadly consistent with the bias

patterns identified in the PM10 estimates (see Fig. 4). AOD retrievals from satellite observations can be influenced by many

factors, including surface reflectance estimation or aerosol model assumptions. For instance, neglecting the nonsphericity of

dust in the satellite algorithm usually leads to underestimation of AOD retrievals under dusty conditions (Feng et al., 2009).165

In addition, distinguishing surface reflectance and aerosol scattering or absorption effect can be challenging under low aerosol

loading conditions (Rudke et al., 2023). Other issues such as cloud contamination or heterogeneous surface conditions also can

lead to uncertainties in satellite-derived AOD (Handschuh et al., 2022). Consequently, data uncertainties in GEMS AOD likely

affect the performance of RF, given that input data quality has a significant impact on the trained machine learning model’s

predictions.170

Finally, we examine the potential of improving RF performance using larger training data. GEMS has started its data obser-

vation in early 2020 and, moreover, it has significant data gaps, for instance, in cloudy conditions. Thus, there are currently

insufficient data for a broad range of applications. The performance of machine learning is highly dependent not only on the

training data quality but also on the quantity and diversity of the data (O et al., 2020). In this context, we retrain an RF model at175

each station with a larger training data volume by utilising data from its n neighbouring stations. The model validation is per-

formed five times using a random 20% split of each station’s training data each time, per the approach used in the main analysis.

Fig. 6 demonstrates that the RF models’ performance can be improved by including more training data. Compared to the

model performance without additional training data from neighbouring stations (n = 0), the RF models with data supplement180

show higher correlation coefficients and decreased negative biases. Comparing the original model and the model constructed

with data from eight neighbouring stations, the site-averaged r-value increases from 0.7 to 0.8 and the regression slope in-

creases from 0.4 to 0.7.

3 Conclusions185

Applying satellite-derived AOD observational data to estimate ground-level PM offers an excellent opportunity for air quality

monitoring, including at ungauged sites (Hammer et al., 2023; Filonchyk et al., 2020; Wei et al., 2023). This is particularly

important for Asian regions, where a significant proportion of the population is exposed to air pollution levels exceeding WHO
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guideline values (Cohen et al., 2017). As the world’s first geostationary earth orbit environmental instrument, GEMS is ex-

pected to provide more detailed air quality information over Asia with higher spatial and temporal resolutions than existing190

low Earth orbit platforms. GEMS will also join a constellation of geostationary air quality satellites, together with TEMPO

over North America and Sentinel-4 over Europe, to collectively provide near-global coverage (Kim et al., 2020). In line with

ongoing efforts to confirm the reliability of the new satellite data products, in this study, we evaluate the effectiveness of GEMS

AOD data by modelling AOD-PM relationships at over 400 stations in South Korea using RF models.

195

While using the GEMS AOD data alone yields limited predictive performance, including meteorological variables such as

temperature and boundary layer height allows the model-estimated PM concentrations to reach strong correlations (r-values

> 0.65) with ground measurements both temporally and spatially. Nonetheless, underestimation biases in the GEMS AOD

compared to the ground-measured AOD, especially during high-PM months, could lead to negative biases in the final PM

estimation. Such data uncertainties should be carefully considered in future satellite retrieval algorithms and data applications.200

Given that only the first 1.5-year GEMS data are used in this study, we also demonstrate that larger training data volumes can

potentially improve the performance of PM estimation, implying that the availability of longer data archives in the near future

will allow estimation models to be further refined. More sophisticated machine learning algorithms or different modelling

approaches (e.g. chemical transport models) could also lead to improved PM predictions from satellite AOD, and our findings205

in this study can serve as a baseline for comparison of different methods in future studies. Moreover, after accumulating a

larger volume of GEMS data, the AOD data should be evaluated from more diverse perspectives, including diurnal variations

at a certain location or PM estimation at ungauged locations.
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Figure 1. Comparison of measured and model-estimated PM10 concentrations over South Korea. Grey area in the small map (the

leftmost panel) shows the spatial coverage of GEMS (5◦S–45◦N, 75◦E–145◦E) over Asia, including South Korea marked by a black box,

which is enlarged for detailed analyses at urban air quality monitoring stations for the period of January 2022 to June 2023. Average of (a) the

measured and (b) estimated PM10 concentrations, and (c) correlations of the measured and estimated PM10 values at each station. Note that

only the data pairs which both PM and GEMS AOD data are available are included. The inset plots in (a) and (b) show the probability density

function (PDF) of PM10. In the inset plot of (c), the box represents the interquartile range, where the vertical centre line is the median, and

the whiskers represent the 10th and 90th percentiles, with outliers shown as dots.
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Figure 2. Performance of RF models in estimating ground-level PM10 concentrations. (a) Density scatter plot between the measured

PM10 and GEMS AOD values across all stations. (b) Density scatter plot between the measured PM10 values and the PM10 values estimated

using RF models. The vertical and horizontal lines represent the corresponding median values. The thick solid line is the regression line, and

the dotted diagonal line is the one-to-one.

13

https://doi.org/10.5194/amt-2024-142
Preprint. Discussion started: 26 August 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 3. Input importance of RF models. SHAP values are computed to examine the contribution of each input feature to individual

predictions. In this box plot, the relative importance of the input variables is shown by ranking the averaged absolute SHAP values. The box

represents the interquartile range, the vertical centre line is the median, and the whiskers represent the 10th and 90th percentiles, with outliers

shown as dots.
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Figure 4. Time-month diagram of PM10 measurements and estimates. The mean hourly (a) measured and (b) estimated PM10 concen-

trations for each month averaged across all the stations. (c) represents differences between the PM10 measurements and estimates.
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Figure 5. Time-month diagram of GEMS AOD and AERONET AOD. The mean hourly (a) GEMS AOD and (b) AERONET AOD for

each month averaged across all the AERONET sites. (c) represents differences between the GEMS and AERONET AOD data. Locations of

the AERONET sites can be found in Fig. S7.

16

https://doi.org/10.5194/amt-2024-142
Preprint. Discussion started: 26 August 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 6. Potential of larger training data in improving the PM10 estimation. (a) Correlation and (b) slope of the linear regression

between the measured and estimated PM10 concentrations at each station. Data from the n closest neighbouring sites are additionally used to

train the RF models, and the model performance is then re-evaluated through the five-fold cross-validation; the model without neighbouring

sites (i.e. n = 0) is the model used in the main analysis.

17

https://doi.org/10.5194/amt-2024-142
Preprint. Discussion started: 26 August 2024
c© Author(s) 2024. CC BY 4.0 License.


