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Abstract.

In this work, we present the results of an observing system simulation experiment (OSSE) in which we investigate the

emergence of a surface reflectance-dependent bias in retrieved column-averaged dry-air mole fractions of methane (XCH4).

Our focus is on single-band type retrievals in the short-wave infrared (SWIR) at 2.3 µm. This particular bias manifests as

artificial gradients in XCH4 fields that relate to surface features on the ground and can, for example, cause erroneous estimates5

of methane source emission rates.

We find that even for near-ideal conditions (that being a perfectly calibrated instrument, perfect knowledge of meteorology

and trace gas vertical distributions, and an absence of clouds and aerosols) a surface reflectance-related bias appears in the

retrieved XCH4. While the magnitude of the bias is much lower than is observed in e.g. real data from the TROPOspheric

Monitoring Instrument (TROPOMI), the overall qualitative shape is strikingly similar. When we study a more realistic scenario10

by considering synthetic measurements that are affected by aerosols, the surface bias increases in magnitude roughly by a factor

of 10. We hold all other properties of the synthetic measurements fixed, and thus can make the following statements about these

surface biases from the 2.3 µm absorption band. First, the bias already appears in the near-perfect scenario, meaning that its

origin is likely fundamental to XCH4 retrievals from this particular absorption band, and using an optimal estimation-type

retrieval approach. Second, the magnitude of the bias increases significantly when aerosols are encountered. As aerosols give15

rise to a magnification of the bias, we have implemented a retrieval configuration in which the retrieval algorithm knows the

true aerosol abundance profiles along with their optical properties. With this configuration, the surface bias returns mostly to

the level first seen when synthetic measurements were not affected by aerosols.

The results we present in this work should be considered for new missions where XCH4 is a target quantity and the design

relies on the 2.3 µm absorption band. Since the surface bias will likely emerge, it is crucial that a validation approach is planned20
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which sufficiently samples the needed range of surface reflectance in areas of near-uniform methane concentrations in order to

capture the bias and thus correct for it.

1 Introduction

The wealth of data obtained by the TROPOspheric Monitoring Instrument (TROPOMI) very quickly revealed biases in the

retrieved trace gases that were hidden until then, since no other trace gas instrument had both spatially dense coverage and25

footprint sizes on the order of a few square kilometers. Arguably, the most striking one is a bias that strongly correlates with

surface reflectance features. Figure 1 shows one example over northeast Africa, in which the described bias is apparent; certain

scenes with lower apparent surface reflectance, are accompanied by lower values of column-averaged dry-air methane mole

fractions (XCH4). This clear imprint of surface features onto the XCH4 fields, driven here mostly by the contrast between

rocky and sandy surfaces, is unphysical but routinely dealt with through a post-retrieval bias correction procedure (Hasekamp30

et al., 2019; Lorente et al., 2021; Schneising et al., 2023).
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Figure 1. Surface reflectance bias example over northeast Africa. Shown are individual TROPOMI footprints, colored by either raw (without

bias correction) retrieved XCH4 (left) and apparent, retrieved surface albedo (right). Only scenes with albedo larger than 0.2 are shown

here. Several surface features (right) are clearly visible to have corresponding gradients in retrieved XCH4 (left). Colorbar ranges have been

adjusted to exaggerate the effect by more strongly pronouncing the image contrast in both panels. No quality filters were applied, this figure

is intended to show the raw retrieved methane column before any bias correction. This figure was produced from TROPOMI orbit 27865,

processor version 2.4.0 (Copernicus Sentinel-5P, 2021).

As part of the algorithm development efforts for the GeoCarb mission (Polonsky et al., 2014; Moore III et al., 2018; Nivi-

tanont et al., 2019; Somkuti et al., 2021; McGarragh et al., 2024), we investigated the emergence of a surface reflectance bias

through a simulation study. We aim to answer questions related to this bias, namely: (1) whether we can reproduce the bias
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seen in TROPOMI retrievals through simulation-driven retrieval experiments, (2) whether we can determine what drives the35

emergence of the bias, and, (3) if any mitigation strategy can be employed to reduce it.

The manuscript is structured in the following way. Section 2 describes the simulation set-up to produce synthetic obser-

vations. Section 3 then follows with the description of the retrieval algorithm used to derived the XCH4 from the simulated

radiances. Results are shown and discussed in Section 4, starting with retrievals from aerosol-free simulations (Section 4.1),

and then moving on to one with realistic tropospheric aerosol abundances (Section 4.2), where the surface bias is first observed40

in our study. In Section 4.3 we then augment the retrieval algorithm forward model by including the true aerosol information

and analyze its impact on the surface bias. We summarize our results in Section 5 and discuss the both relevance of our study to

the real-world biases seen in XCH4 derived from TROPOMI measurements, as well as mention topics for future investigations.

2 Simulation set-up

We use the same tested simulator framework, developed at Colorado State University (O’Brien et al., 2009; Polonsky et al.,45

2014) that has been successfully applied in other studies, such as Frankenberg et al. (2014); Eldering et al. (2019); Somkuti

et al. (2021); McGarragh et al. (2024). Details on the inner workings of this orbit simulator can be found within these mentioned

publications; we cover here only a short summary and focus on the aspects that are relevant to our study.

2.1 Sampling

Our full simulation set contains scenes derived from real OCO-2 (Crisp et al., 2004; Crisp, 2015) geo-location data within50

the period of January 2016 until March 2017. Due to the large amount of OCO-2 footprints, which is on the order of one

million per day, the geo-location data was down-selected such that only one regular measurement every 10 seconds is retained,

ignoring special measurement modes such as target mode. This corresponds to a scaling factor of 240, since OCO-2 measures

8 footprints roughly three times per second. At a global perspective, the general geographical coverage does not change with

this down-selection and remains similar to that of the OCO-2 instrument. We retain only nadir-looking (down-looking at the55

sub-satellite point) scenes and drop any sun-glint following (pointed at the specular reflection of the direct solar beam) viewing

modes. For this study, we only consider land surfaces and leave out Antarctica. The coverage of scenes is shown in Fig. 2.

As Fig. 2 illustrates, our set of scenes contains locations from all land masses with the exception of Antarctica. Since we are

sampling MODIS BRDF coefficients (Schaaf and Wang, 2015) at every individual scene location, we obtain surface properties

in the proper geographical context for each scene, as captured by the 500m-resolution MCD43A1 product.60

2.2 Clouds

We add cloud information from the International Satellite Cloud Climatology Project (ISCCP) by sampling the H-series dataset

(Young et al., 2018) at the scene locations and extract cloud flag, cloud type (liquid or ice), cloud path for optical density, and

cloud top pressure for the vertical location of the cloud layer. Our measurement simulations fully account for clouds as part

of the radiative transfer scheme. For the analysis of the post-retrieval quantities, however, we remove all scenes from the final65
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Figure 2. Spatial distribution density of the simulated scenes. Since the simulation locations are based on real OCO-2 locations, the sampling

shows the expected striping pattern generated by the orbital movement of the spacecraft. Overall coverage is mostly the same, apart from

eastern Siberia and Alaska where OCO-2 measures mostly in glint-mode, which we have excluded from our study. Note that for this and all

other global-scale maps, features smaller than 10,000 km2 in area are not drawn.

analysis that contain any ice or liquid clouds. Our reason behind this choice is that we do not want to exercise cloud flagging

algorithms for this work. We show in the following sections that tropospheric aerosols enhance the surface reflectance bias.

As such the scene sampling thus becomes representative of a mostly globally distributed set of locations, weighted by the

probability of obtaining a cloud-free measurement at those locations and times.

2.3 Aerosols70

As in Somkuti et al. (2021), we are utilizing reanalysis data (0.75◦ spatial and 3-hourly temporal resolution) from the Euro-

pean Centre for Medium-range Weather Forecast’s (ECMWF) Copernicus Atmosphere Monitoring System (CAMS) to assign

realistic aerosol abundance profiles to each scene (Bozzo et al., 2020). With the CAMS aerosol component, there are in total

11 aerosol mixtures: hydrophobic and hydrophilic organic matter, hydrophobic and hydrophilic black carbon, three sea salt

mixtures, three mineral dust mixtures, and sulphate. The sea salt and mineral dust mixtures are separated into three spherical75

radius size bins each: 0.03−0.5 µm, 0.5−5.0 µm, 5.0−20.0 µm for sea salt and 0.03−0.55 µm, 0.55−0.9 µm, 0.9−20.0 µm

for mineral dust. The sea salt, sulphate and hydrophilic organic matter mixtures are hygroscopic, meaning that the optical prop-

erties and the total aerosol particle counts for a given mass mixing ratio are dependent on the humidity. There is no humidity

dependence for the mineral dust, hydrophobic organic matter and black carbon mixtures.

The process of integrating the CAMS model aerosol data into our orbit simulator and then the radiative transfer (RT) mod-80

ule is done as follows. In a pre-processing step, a library of aerosol mixture optical properties is generated according to the

micro-physical parameters laid out in Appendix A2 of Bozzo et al. (2020). This step leverages a code for far-field scattering

calculations involving polydisperse mixtures of spherical particles based on Mishchenko et al. (2002). We calculate required
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optical properties (mass extinction coefficients, extinction cross sections, single-scatter albedo, phase function expansion coef-

ficients) for each of the 11 mixtures at two wavelengths at both ends of the considered spectral range, and, if that mixture has85

humidity-dependence, for 12 different relative humidity values.

Then, vertically resolved aerosol (dry) mass mixing ratio profiles for distinct aerosol mixtures, as provided by CAMS, are

sampled at the specific locations and times for each scene. For each vertical layer l, the extinction optical depth τa,l for an

aerosol mixture a is given by

τa,l = αa,l,ρ ·MMRa,l ·
∆pl

gl
, (1)90

where αa,l,ρ is the aerosol mass extinction coefficient for mixture a ([m2 kg−1]) at specific humidity ρ, MMRa is the mass

mixing ratio ([kg kg−1]) for mixture a, and finally ∆pl is the pressure interval ([Pa]) for the given pressure layer l and gl is the

acceleration of gravity ([m s−2]) at the center of the pressure interval. This extinction optical depth is calculated for each layer

in the model atmosphere at the wavelengths at the edges of the wavelength window. Extinction and scattering profiles for each

wavelength in between those edges are then interpolated through an Ångstrom exponent ansatz.95

The radiative transfer scheme (Heidinger et al., 2006; O’Dell et al., 2006; Natraj and Spurr, 2007; O’Dell, 2010) finally

ingests the total scene information, including the scattering properties for each mixture, to produce top-of-the-atmosphere

(TOA) radiances, which are then fed into the instrument model which then results in a synthetic measurement. We do not apply

instrument noise to the synthetic TOA radiances since we are interested in systematic errors. In the generation of the synthetic

TOA radiances, we ultimately use high-accuracy calculations corresponding to 24 streams.100

A pivotal aspect of our aerosol scheme is the complexity of the ingested aerosol information. Assuming there are contribu-

tions from all five hygroscopic (with 12 different humidity values) and all six non-hygroscopic aerosol mixtures, there is a total

of 66 different aerosol components. The geographic distribution of total-column aerosol extinction is shown in Fig. 3.

We ingest the full aerosol profiles as prescribed by CAMS, rather than representing the vertical distribution as a simpler,

parameterized shape, which is done in various retrieval algorithms (O’Dell et al., 2018; Lorente et al., 2021). Some examples105

of the vertical distribution of the aerosol mixtures is shown in Fig. 4.

The radiative transfer portion of the simulator can be run in a so-called "clear-sky" mode, in which absorption and scattering

due to clouds and aerosols is ignored, resulting in a Rayleigh-only atmosphere. While scattering due to the Rayleigh effect

could not be turned off, the very low amount of extinction due to Rayleigh scattering at 2.3 µm makes this effectively an

absorption-only set-up. This mode allows us to produce two sets synthetic top-of-the-atmosphere measurements, one in which110

clouds and aerosols are present, and one without. Every other scene quantity is treated the same.

3 Retrieval algorithm set-up

We use a single-band algorithm which has been developed for the GeoCarb mission and was demonstrated in an earlier study

(Somkuti et al., 2021). The main retrieval window stretches from 2.324 µm to 2.338 µm, which contains absorption lines from

5
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Figure 3. A map showing the geographical distribution of total-column aerosol extinction optical depth, gridded to 2◦× 2◦ grid cells.
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Figure 4. Two examples of the CAMS-derived aerosol profiles used in the generation of synthetic radiances. For this figure we aggregated all

species into their respective type and size bins, regardless of their specific value of relative humidity. The example on the left shows a scene

with low aerosol loading with contributions mostly from sulfates (SU) and hydrophilic organic matter (OM_phil). The example on the right,

however, is dominated by all three size-bins of mineral dust (DD1, DD2, DD3). Hydrophobic organic matter (OM_phob), sea salt (SS1, SS2,

SS3) and both types of black carbon (BC_phob, BC_phil) do not contribute significantly in these two examples. Note the complex shape of

the vertical distributions in the left example, which would be very difficult to capture via a parametric description.

CH4, CO and H2O. This retrieval window is similar to what Schneising et al. (2019) have used, and does not cover the entire115

available range of the spectrometer. An example is shown in Fig. 5.

The forward model of the retrieval algorithm is conceptually equal to that of the simulator. Each scene is comprised of a

layered atmosphere in which each layer is considered horizontally homogeneous in terms of their physical properties. At the

layer boundaries, we set gas mixing ratios, pressure, temperature, and specific humidity. Optical properties of gases (CH4,

6
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Figure 5. Illustrative example of the used retrieval window between 2.324 µm and 2.338 µm. The top panel shows both the synthetic TOA

spectrum ("observation") along with the fitted spectrum produced by the retrieval algorithm ("model"), and the spectral residual is shown in

the bottom panel. Both are in units of [ph s−1 m−2 sr−1 µm−1]. This particular example has a relative residual RMS of 0.03%.

CO and H2O) are calculated via pre-calculated spectroscopy tables derived from HITRAN2016 (Gordon et al., 2017) that are120

sampled accordingly in the wavelength, temperature, pressure and humidity dimensions. More details on the calculation of

those quantities can be found in e.g. Cogan et al. (2012); Wu et al. (2018); OCO-2 Science Team (2019).

In our retrieval algorithm, we can switch freely between two major modes to perform the radiative transfer calculations.

The first one employs the non-scattering Beer-Lambert-Bouguer law, in which we only account for extinction from gases and

Rayleigh scattering in an absorption-only atmosphere. The second mode invokes the XRTM radiative transfer library (Mc-125

Garragh, 2020), which itself allows us to effortlessly switch between various numerical solvers, including different multiple-

scattering ones. We use both radiative transfer modes as a means of understanding the robustness of our experiment.

Within the forward model of the retrieval algorithm, we are generally free to choose an arbitrary vertical layering scheme,

however for this exercise, we choose the same exact pressure layers (and layer boundaries) as the simulator forward model, 40

layers in total, in order to minimize the impact of simulation-retrieval mismatch. Additionally, we can ingest the same com-130

pound aerosol information as is used in the simulator forward model to obtain the same aerosol profiles and the corresponding

scattering properties.

The inverse method is based on Rodgers (2000) and is an iterative Bayesian scheme that maximizes the a posteriori proba-

bility density function. Given an iteration i, the state vector for the next iteration i + 1 is calculated as

xi+1 = xa +
(
S−1

a +KTS−1
ε K

)−1
KTS−1

ε ×
[y−F(xi) +K(xi−xa)] ,

(2)135

where xa is the a priori state vector, Sa is the associated a priori covariance matrix, Sε is the diagonal instrument noise

covariance matrix, and K is the forward model Jacobian matrix evaluated at iteration i. We mentioned earlier (Section 2) that
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the synthetic observations do not contain instrument noise, however we do use the GeoCarb noise model (Somkuti et al., 2021)

for the calculation of a realistic Sε.

Our state vector contains the following elements: two polynomial coefficients to represent the spectrally varying surface140

albedo, two polynomial coefficients to represent the assignment between spectral sample and wavelength (also referred to as

dispersion), one scale factor for each of the considered trace gas profiles of CH4, CO and, H2O, a temperature offset common

to all vertical levels, and finally one value to adjust the spectral shift of the solar spectrum only. Values for the prior state

vector xa are obtained as follows: gas scale factors are set to 1.0, instrument dispersion coefficients are taken straight from the

instrument model, the solar shift is set to 0.0 µm, and the prior (and first guess) surface albedo is estimated from the radiances145

themselves via

ρ0 =
π ·max(I)

max(L0) · cosθ0
, (3)

where I is the measured TOA radiance, L0 is the solar irradiance for the same retrieval window, and θ0 is the solar zenith

angle. The prior value for the albedo slope coefficient (ρ1) is 0.0 µm−1 for every scene. We make the choice to set the zeroth

iteration to be equal to the prior state vector (x0 = xa). As this is a so-called "scaling retrieval" in which the trace gas profiles150

are not changed within the iterative scheme, we must pick a profile shape to be scaled by the retrieval algorithm. We choose to

use the true shape as they are used in the simulation forward model.

Iterations are halted as soon as one of these three criteria are met: the number of allowed iterations is reached, the change in

reduced chi-squared statistic (modeled versus observed radiance) is smaller than 1%, the value in dσ2 is less than the number

of state vector elements, where155

dσ2 = (xi+1−xi)Ŝ−1(xi+1−xi), (4)

with Ŝ being the a posteriori covariance matrix defined as

Ŝ =
(
S−1

a +KTSεK
)−1

. (5)

4 Results and analysis

The simulation experiments and subsequent analyses are organized in the following manner. First, we present a baseline160

scenario in which aerosols were ignored during the RT simulations and the retrieval forward model. Already in this baseline

scenario we see a surface-dependent XCH4 bias appearing. This is a key finding, as it establishes the fact that an interplay

between apparent surface reflectance and retrieved XCH4 is already present in an absorption-only atmosphere as a consequence

of the retrieval forward model error. Then, we introduce aerosols into the RT simulations, and keep everything else exactly the

same, i.e. not accounting for aerosols in the retrieval. This is where we observe a strong enhancement of the surface bias.165

Finally, we add the aerosol truth to the retrieval algorithm and observe a significant mitigation of the enhanced surface bias.

For the first two scenarios we use two different RT schemes - a non-scattering one, and a single-scatter model from the

dedicated XRTM code. The non-scattering RT scheme is referred to as "non-sc" in various figures, and the single-scatter one

8

https://doi.org/10.5194/amt-2024-145
Preprint. Discussion started: 13 January 2025
c© Author(s) 2025. CC BY 4.0 License.



is labeled as "SS". In a model atmosphere without scattering, the two approaches should yield the same result. However due to

the numerical nature of RT codes, and the whole algorithm itself, small differences are to be expected and we utilize the two170

RT models as a form of validation. Ideally, we should observe biases and regional patterns thereof in the same places with both

non-scattering and single-scattering models.

The experiments are laid out in a flowchart in Fig. 6 to allow the reader quick inspection of the relationship between simulator

forward model set-up, and the corresponding retrieval algorithm set-up.

4.1 Baseline, clear-sky case175

We first analyze the retrieval results based on simulations in which scattering from aerosols and clouds was ignored. This

clear-sky case is considered the baseline scenario, labeled (CS1) and (CS2) in the flowchart shown in Fig. 6.

Here we like to remind the reader again that the forward model of the retrieval algorithm and the forward model of the sim-

ulator (which generates the synthetic measurements) are different. Since we force several aspects of the simulator and retrieval

forward models to be the same, such as vertical layering, meteorological inputs, trace gas profile shapes and spectroscopy180

tables, this constitutes a best-case scenario. However we must emphasize that while many of the key ingredients in the simu-

lator and retrieval forward models are the same, they do not produce numerically the same TOA radiances for the same set of

atmospheric and surface properties. Thus, even for a clear-sky set-up for both simulator and retrieval forward model, there are

forward model errors which cause retrieval errors.

Scenes from the clear-sky case are then run through the retrieval algorithm twice, with two different approaches for the185

radiative transfer calculations: once with the non-scattering model (non-sc), and once with the single-scattering model (SS).

While there are almost no contributions from scattering in this set of synthetic measurements (Rayleigh scattering is present,

but negligible), we chose to perform retrievals with the two mentioned RT schemes to provide robustness to the results.

For selecting the final subset of scenes to be analyzed, we apply very basic quality filtering criteria to remove retrievals that

either did not converge within the maximally allowed number of iterations Nitermax = 3, have a solar zenith angle θ0 above190

the threshold of 75◦ or have a spectral residual reduced χ2 larger than 0.1. Note that the χ2 values here are low due to the fact

that we did not add instrument noise to the synthetic measurements, however we still use χ2 as a measure of fit quality.

As for bias correction, we only remove a single offset term which is the median of the ensemble difference between retrieved

and true XCH4. This correction brings the overall bias, per design, to 0.0 ppb, such that the error maps highlight regional-scale

differences.195

The maps in Fig. 7 show the XCH4 errors for the two sets of retrievals (non-scattering, single scattering). Errors, meaning

the difference between retrieved (and bias-corrected) and the truth, were calculated using the retrieval averaging kernels for

each individual scene, as well as accounting for the prior methane profiles according to Wunch et al. (2011). Each set exhibits

a small overall offset between −6 ppb and −3 ppb, and small overall scatter ≤ 2 ppb. Errors show a geographic pattern with

error enhancements in the tropics, and we find these errors be statistically significant, but weak linear functions of surface200

reflectance and solar angles.
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Figure 6. A flowchart illustrating the retrieval experiment set-ups. We generate two sets of synthetic measurements with the simulator forward

model: one accounting for clouds and aerosols (left path) and one where clouds and aerosols are ignored (right path, clear-sky). The first two

experiments enter both Fig. 7 and Fig. 9, labeled as (CS1) and (CS2): they represent the clear-sky retrievals from clear-sky simulations using

two different RT model codes on the retrieval side. In bias plots (e.g. Fig. 9), they correspond to the blue circles. The second set of retrieval

experiments, (AER1) and (AER2), follow the left path, where clouds and aerosols were present in the simulator forward model RT, however

the retrieval RT still does not include aerosols. The results from (AER1) and (AER2) are shown in Fig. 8, Fig. 9 and Fig. 10, and they are

always shown as orange triangles in the bias plots. Finally, the retrieval experiment denoted as (AER-TR) is based on the same synthetic

measurements as (AER1) and (AER2), however the retrieval forward model now includes the true aerosol profiles, along with an appropriate

multiple-scattering RT solver. In the final bias plot, Fig. 11, these results are shown as green squares.

The spatial distribution of errors shown in Fig. 7 provide some geographical context to the biases mentioned above. We see

a contrast between areas with predominantly dark surfaces at 2.3 µm, such as the central African and South American tropical

rainforests, and regions with much higher surface reflectance, such as the deserts. Note, however, that the overall magnitude

10

https://doi.org/10.5194/amt-2024-145
Preprint. Discussion started: 13 January 2025
c© Author(s) 2025. CC BY 4.0 License.



SS, clear-sky, N = 60,700

∆ = -0.0 ppb

σ = +1.2 ppb

non-sc, clear-sky, N = 60,700

∆ = +0.0 ppb

σ = +2.0 ppb

−5 −4 −3 −2 −1 0 1 2 3 4 5
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Figure 7. Maps of mean-removed retrieval errors for the clear-sky scenario in which no aerosols nor clouds were used during the forward

radiative transfer simulations. Single-scattering radiative transfer on the left, absorption-only radiative transfer on the right - experiments

(CS1) and (CS2), respectively (Fig. 6). The strongest regional highlights are seen in tropical forests where the surface reflectance at 2.4 µm

is low. The total number of scenes for a given map is shown, since each set is quality-filtered separately, which can lead to a slightly different

number of retrievals plotted.

of these systematic errors is small. Noise driven errors for the GeoCarb instrument, for example, would be expected to be one205

order of magnitude larger.

4.2 Inclusion of aerosols in the simulations

Building on the results presented in Section 4.1, we now introduce a single change. In the forward RT simulations, which

produce the synthetic measured radiances, we switch on aerosols and clouds, however leave the retrieval set-up the same. In

the flowchart (Fig. 6), these experiments are labeled as (AER1) and (AER2). The retrieval algorithms are ignorant to the fact210

that the synthetic measurements now reflect a more realistic atmosphere in which multiple scattering via tropospheric aerosols

has taken place. To remind readers, while the full produced data set includes scenes with thick water and ice clouds, we omit

those scenes for this study.

We repeat the procedure from above and subtract the overall median error before producing the maps in Fig. 8. When

compared to Fig. 7 (note the differently scaled colorbars), we observe a much stronger contrast between central tropical Africa215

and the surrounding regions with brighter surfaces, and similarly see such a contrast between the scenes over the Tibetan

plateau and surrounding areas. More importantly, the magnitude of the bias increased by a factor of roughly 4.

The change in the retrieved XCH4 is purely driven by introducing aerosols into the forward model. We can represent this

surface reflectance bias by grouping scenes into discrete bins of retrieved (or apparent) surface albedo and then calculating,

for each scene, the ratio of true to retrieved XCH4. This is shown in Fig. 9. For darker surfaces with apparent albedo less than220

0.2, there is a clear low-bias, whereas a high-bias is observed for brighter surfaces with apparent albedo larger than 0.5. This
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SS, clouds & aerosols, N = 60,699

∆ = -0.0 ppb

σ = +3.7 ppb

non-sc, clouds & aerosols, N = 60,698

∆ = +0.0 ppb

σ = +5.1 ppb

−12 −9 −6 −3 0 3 6 9 12

∆XCH4 [ppb]

Figure 8. Error maps, similar to Fig. 7, however for model atmospheres in which aerosols and clouds are present. The regional contrasts

between densely vegetated areas with low surface reflectance (tropical rainforests) and their surrounding areas (e.g. the Sahara desert) appear

brighter in the 2.3 µm wavelength range. These are the results of expriments (AER1) and (AER2) when comparing to the flowchart in Fig. 6.
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Figure 9. Curves that show surface reflectance bias: the ratio of true and retrieved XCH4 as a function of the apparent surface albedo. For

this figure, we first assign each retrieval scene to a bin according to the retrieved surface albedo. The circles (clear-sky) and triangles (with

aerosols) then represent the median of all values within the bin, and the error bars are the robust standard deviation of the bin, calculated as

the inter-quartile range divided by 1.349. This statistic is used for all other error bars in this manuscript. Note that the clear-sky observations

(circles, left y-axis) and the ones with aerosols (triangles, right y-axis) are plotted on separate ordinates to make a qualitative comparison of

the shape easier. The scale of the bias in the "cloudy & aerosols" scenario is roughly an order of magnitude larger. Blue circles represent the

results of experiments (CS1) and (CS2), orange triangles represent the results of (AER1) and (AER2) when comparing to the flowchart in

Fig. 6.

observed bias is quantitatively comparable to that seen in TROPOMI-derived XCH4, as first introduced in Lorente et al. (2021)

and further elaborated in Lorente et al. (2023).

We make the following important observations. The surface reflectance bias already appears in clear-sky simulations and

shows the underestimation of XCH4 for dark surfaces in a very similar qualitative manner. Once the apparent surface albedo225

is larger than roughly 0.3, however, there is no significant bias seen for clear-sky scenes. The retrievals from the aerosol-laden
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Figure 10. Bias curves, similar to Fig. 9, but without clear-sky simulations. On the left, the results of experiment (AER1) aer shown, whereas

the right panel are the results of expriment (AER2). The two retrieval sets, with either the single-scattering (SS) or the non-scattering (non-sc)

RT model, are split into sub-sets of different regimes of total aerosol extinction optical depth τaer (at a reference wavelength of 755 nm).

This figure shows that the underestimation of XCH4 for dark surfaces with albedo less than 0.1 is mainly driven by scenes with larger aerosol

loadings.

scenes, however, show further dependence on the apparent surface albedo. Such a bias would imprint surface features on e.g.

desert scenes like those shown in Fig. 1.

We note that the surface reflectance bias discussed in Lorente et al. (2021, 2023) is larger in magnitude, but shows the same

general shape as our result in qualitative terms. The observed surface reflectance bias as shown in Fig. 9 is the result of a230

global aggregate. When the same figure is produced for various subsets, separately, however, we see that the strength of the

bias changes as a result of the amount of aerosols within that subset. In Fig. 10, we group the global set of scenes into two

subsets of different total aerosol extinction optical depths τaer. Through this figure, we can observe that the underestimation

of XCH4 for darker surfaces gets larger with increasing aerosol loadings. Notice the kink near albedo value of ≈ 0.4 in Fig. 9

that is seen for the simulation set that includes clouds and aerosols (orange, triangles), which is absent in any of the curves in235

Fig. 10. Since the total aerosol extinction per scene is not equally distributed amongst the bins of apparent surface reflectance,

we suspect the observed kink in the bias curve to be a result of a sampling bias which blends together the various curves of

different τaer regimes. This is investigated in Fig. 10 in which we produce bias curves for different bins of aerosol loadings.

We do not find any significant impact of the aerosol single scattering albedo on the bias, suggesting that the total aerosol

extinction is the main driver in the case of single-band retrievals of this type.240

4.3 Mitigation by accounting for true aerosol profiles in the retrieval

In Sections 4.1 and 4.2 we have observed that the surface reflectance bias is already present in clear-sky conditions, but is

strongly enhanced when aerosols are introduced in the RT simulations that produce the synthetic measurements. Consistent

with that notion is the fact the dependency of the error grows with larger aerosol abundances, as shown in Fig 10.

An obvious way to mitigate the surface reflectance bias is to inform the retrieval algorithm about the aerosol scattering profile245

that is present in the scene. We implement this straightforwardly by adding the layer-resolved aerosol extinction and scattering
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Figure 11. Surface reflectance bias similar to Fig. 9. In this figure, however, the third curve (squares, green), is derived from retrievals for

which the true aerosol profiles were ingested as part of the retrieval algorithm forward model. This is expriment (AER-TR) in the flowchart

(Fig. 6). We observe that, when comparing to the unmitigated runs (triangles, orange) of experiment (AER1) no significant bias remains.

This suggests that better constraining aerosols is key to mitigating these types of retrieval biases.

optical depths to the (forward) model used during the retrieval, appropriately adding the phase function expansion coefficients

with their correct relative weights to obtain a match of the total optical properties used by the simulator (see Sec. 2). Then, we

also switch the RT model in the retrieval algorithm to use multiple scattering via a discrete ordinate solver with 16 streams (8

per hemisphere). This is necessary since using a single-scattering RT model, while also incorporating the true aerosol profiles250

in the retrieval forward model, does not result in a mitigation of the observed bias. In the flowchart (Fig. 6), this set-up is

labeled as experiment (AER-TR).

The result is shown in Fig. 11, in which we overlay the described approach with an earlier result that used a single-scattering

RT model without any knowledge of the aerosol profiles. For nadir viewing geometry, the bias curve exhibits much smaller

dependency on the surface albedo when compared to the original approach. This result shows that the mitigation strategy is255

successful in reducing the surface bias and almost brings it to the same level as observed for the clear-sky scenario.

5 Discussion & Conclusions

In this study, we analyzed the impact of tropospheric aerosols on biases of XCH4 obtained from single-band retrievals from

the 2.3 µm absorption window. We were able to demonstrate that a weak surface-dependent bias is present already in clear-sky

conditions, however aerosols can amplify those retrieval biases, and the effect grows with aerosol abundance as shown in Fig. 9.260

The significance of our result is related to actual findings from the TROPOMI instrument, which have been discussed by

Lorente et al. (2021, 2023). Surface reflectance biases in retrieved XCH4 are a troublesome feature, since surface patterns on

the ground will manifest as gradients of total column methane which can lead to wrong estimates of e.g. emission rates or the

emergence of artificial features (Froitzheim et al., 2021; Schneising et al., 2023). In the past, studies have required an ad-hoc
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correction to remove the surface reflectance bias in the XCH4 fields (Liu et al., 2021) or remove scenes entirely which show a265

large correlation between XCH4 and surface albedo (Sadavarte et al., 2021).

While the bias that we observe in our study is qualitatively similar to that seen in Lorente et al. (2021, 2023), we want to

highlight that there are several differences in our instrument model and that of the TROPOMI instrument, as well as some

key differences in our retrieval approach. First, the spectral resolution of the TROPOMI spectrometer for the SWIR band is

≈ 0.25 nm, where as our instrument model, derived for the GeoCarb instrument, is closer to ≈ 0.12 nm. Further, we utilize a270

single-band retrieval, whereas Lorente et al. (2021, 2023) co-retrieve the oxygen A-band at 0.76 µm, which, in general, should

allow for better constraining of the retrieved aerosol abundance. Lastly, in our simulations (Section 2), we do not introduce

any instrument or calibration artefacts such as, but not limited to, remaining stray light, imperfect radiometric calibration or

imperfect knowledge of detector (non-)linearity. This, in turn, also supports the argument that the biases observed in TROPOMI

data are not caused by any instrument-related issues or calibration deficiencies, but are intrinsic to the retrieval approach from275

the 2.3 µm band.

In Section 4.3, we demonstrate the impact of perfect knowledge of the tropospheric aerosol profiles. Once the retrieval

algorithm is aided by inserting the true aerosol distributions into each scene, most of the surface reflectance bias is mitigated,

as shown in Fig. 11, where we obtain results that are similar to those for the clear-sky scenario. This result shows the importance

of better constraining the overall aerosol information for use in retrieval algorithms, as has been previously stated in different280

contexts (Bell et al., 2023; Rusli et al., 2021). Aerosol-driven biases are of such concern, that for the upcoming Copernicus

CO2M mission, developed by the European Space Agency to monitor anthropogenic carbon dioxide emissions, a dedicated

aerosol instrument will be part of the payload in order to improve the quality of the XCO2 retrievals (Sierk et al., 2021). While

our study does not allow for any conclusions to be drawn for the CO2M mission regarding possible surface biases and their

enhancement due to aerosols, the specific instrument could be investigated using our observing system simulation experiment285

set-up.

We have shown that incorporating the true aerosol information mostly removes the surface reflectance bias for nadir-viewing

observations, however implementing this approach in a real science data processing scenario might not be feasible. It needs to

be shown yet if globally covering aerosol forecasts, e.g. CAMS (Copernicus) or GEOS-5 (Molod et al., 2015), are close enough

to the truth to be treated as such in the retrieval forward model for the purpose of mitigating the discussed bias. In general,290

limitations on data processing resources might ultimately necessitate the usage of faster forward models that could introduce

biases similar as shown here. We have observed that the bias seems to be driven by the total aerosol extinction optical depths

in the scene, rather than the vertical distribution or how absorbing the aerosols are. A future study could examine whether the

a simpler aerosol profile than those shown in Fig. 4, while conserving the total aerosol extinction optical depth, would be just

as effective in mitigating the surface reflectance bias.295

Another important aspect of our study is the chosen absorption window. We investigated the 2.3 µm window as both the

TROPOMI and the GeoCarb instruments are equipped with corresponding spectrometers. However, there is no reason to

assume that the same behavior arises with retrievals from the 1.65 µm window, as featured on e.g. GOSAT (Kuze et al., 2009)
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or MethaneSAT (Chan Miller et al., 2023). In fact, Chan Miller et al. (2023) present first results from the airborne MethaneAir

instrument and do not observe any strong surface-related biases.300

In our analysis we found scenes measured in sunglint-following viewing geometry to behave distinctly different from nadir-

viewing ones. The surface bias shows a qualitatively different shape and the mitigation effort through implementing aerosol

truth information did not work as well as with nadir-viewing scenes. Efforts to understand the cause of this discrepancy

did not yield any satisfying answers. Given the small absolute magnitude of the effect, however, we hypothesize that some

inconsistency in the set-up of the retrieval RT and the simulation RT codes is the main cause.305

Finally, we want to again highlight the results of the clear-sky baseline scenario presented in Section 4.1. Even in almost

ideal circumstances where meteorology, spectroscopy and trace gas profiles are known perfectly, an optimal-estimation based

retrieval exhibits a small but significant surface-dependent XCH4 bias. We suspect that this is an inherent consequence of

the 2.3 µm band, which does not have a clear continuum portion via which surface reflectance and methane abundance can

be sufficiently disentangled. Thus, a mission designed for the remote sensing of methane from the 2.3 µm absorption band310

will likely require a surface bias correction procedure as a core part of its operations concept. As long as the surface bias is

sufficiently characterized, an appropriate correction can effectively mitigate the impact on the retrieved XCH4 field.

Code and data availability. The results of the study, i.e. the results of retrievals and the truth values, as well as a Python notebook that pro-

duces the figures used in this manuscript, can be downloaded from Zenodo at https://zenodo.org/records/13285730 (DOI:10.5281/zenodo.13285730).
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