
This manuscript proposes an approach to handle the non-Gaussian error distribution 

of reflectivity OmBs (dBZ), which adopts the idea of the symmetric error model in 

all-sky radiance data assimilation. This work demonstrates that the symmetric error 

model built by the rainrate predictor, can improve the Gaussianity of OmB 

distribution, by using six-month composite reflectivity data and simulated products. 

Moreover, the reflectivity OmBs present a more complicated error model that can be 

fitted by a three-piecewise function, compared to the satellite radiances, since the 

radar reflectivity is often discontinues. This manuscript is well structured and could 

be a valuable contribution to the radar and data assimilation communities. I have 

several comments as below. I’d like to recommend minor revision to this manuscript. 

We appreciate the constructive comments from referee #1 and reply all of them 

in the following blue words.  

 

1 This work compares two OmB data, the maximum composite and the reflectivity at 

1 km. Results show that two OmB data have similar features, such as horizontal 

distributions and PDFs. The rainrate derived from the reflectivity at 3 km is then used 

to build the symmetric error model of the maximum composite. However, the 

maximum composite and reflectivity at 1 km and 3 km, respectively, could be 

different. The correlations between the derived rainrate and the maximum composite 

(or/and the reflectivity at 1 km) are needed to clarify the potential inconsistent usages 

of data. 

Response: The maximum composites and rainrates derived from 3 km 

reflectivity are not exactly identical, but both of them are highly associated with the 

strength of convections. The large maximum composite and heavy rainrate can 

indicate a strong convective system, and vice versa. This study used derived rainrates 

to describe the heteroscedasticity of maximum composites in terms of the convective 

strength and demonstrated the symmetric error model can improve the Gaussianity of 

OmBs of the maximum composites.  

 

Figure R1. the absolute correlations between the maximum composites and two rainrate data in six 

months. The blue and red lines represent the rainrates derived from reflectivities at 3 km altitude 

and the CMPAS rainrates. The dash line shows the 95% confidence. 



The red line in Figure R1 shows that the absolute correlations between the 

derived rainrates and the maximum composites are evidently high (>0.75) in most 

precipitating cases, despite some cases present low correlations. Thus, using derived 

rainrates to describe the heteroscedasticity of the maximum composite is rationale, 

similar to the cloud liquid water or liquid water path for satellite radiances. We do not 

give the correlations between the derived rainrates and reflectivities at 1 km. Because 

the sample amount of reflectivities at 1 km is much less than other data and this study 

did not build a symmetric error model of reflectivities at 1 km.  

We also gave the absolute correlations between the CMPAS rainrates and the 

maximum composites in Figure R1. The absolute correlations of CMPAS rianrates 

decrease obviously because the independent errors, including the sampling and 

representative errors from the third-party data, increase rapidly. However, the CMPAS 

rainrates can build a similar symmetric error model to the derived rainrates and can 

further improve the Gaussianity of OmBs of the maximum composites in comparison 

with the derived rainrates. Thus, the differences between two rainrate data allow us to 

investigate how the accuracy of predictor affects the symmetric error model. 

 

2 There various types of data used in this work, especially with different horizontal 

resolutions (e.g., the 5-km CMPAS and 3-km WRF products). Thus how the 

interpolation performed to deal with the inconsistent resolutions needs clarification. It 

is possible that the interpolation increases the OmB variances. The authors emphasize 

that all data are collected in mountainous areas. Does the interpolation consider the 

effects of terrain? Moreover, how about the resolution of CVMR and CAPPI used in 

this study? 

Response: The horizontal resolutions of CVMR and CAPPI are 1 km. The 

coarsest resolution among various data is 5 km. Therefore, we used Euclidean 

distances as weights to interpolate data from fine resolutions to coarse resolution.  

 

Figure R2. the schematic plot of interpolation. 

As shown in Figure R2, the black grids represent the fine resolution data, such as 

1 km radar observations and 3 km WRF products. The 5 km resolution radar 

observations and WRF products at red grids (Vc) are weighted average of the nearest 

four black grids (Vf1, Vf2, Vf3, Vf4): 

Vc = a1Vf1 + a2Vf2 + a3Vf3 + a4Vf4 

where a1, a2, a3 and a4 are weights computed by the distances between a red grid and 



the nearest four black grids. 

As aforementioned, we do not take into account the effects of terrain in this 

interpolation. The only effect of terrain is the blockage mountainous areas in this 

study, which significantly reduces the sample amount of CAPPI at 1 km altitude. 

 

3 The reflectivity OmBs highly depend on the forward operator. More elucidations 

about the forward operator are needed, in order to clarify how the OmB is derived. 

Response: The algorithm of diagnostic reflectivity (dBZ) included in UPP 

softward package is based on rain, snow, and graupel mixing ratios was designed by 

Stoelinga (2005): 

Z = 10 log10(Zer + Zes + Zeg)             (R0) 

Following some assumptions, the reflectivity contributed by rain droplets (Zer) is 

given by: 

Zer = Γ(7)Nr0λr
−7

                      (R1) 

λr = (
πNr0ρl

ρaqra
)0.25                        (R2) 

where Nr0 is 8×106, ρl and ρa are the liquid water density and dry air density 

respectively. The qra is the rainwater mixing ratio in background. 

Assumed snow particles are spheres, the reflectivity contributed by snow is 

given by: 

Zes = αΓ(7)Ns0(
ρs

ρl
)2λs

−7                 (R3) 

λs = (
πNs0ρs

ρaqsn
)0.25                        (R4) 

where α is 0.224, Ns0 is 2×107, ρs is the density of snow 100 kg m-3. The qsn is the 

snow water mixing ratio in background. 

Similarly, the contribution of graupel particles can be obtained: 

Zeg = αΓ(7)Ns0(
ρg

ρl
)2λg

−7                 (R5) 

λg = (
πNg0ρg

ρaqgn
)0.25                        (R6) 

where α is also 0.224, Ng0 is 2×107, ρg is the density of graupel 400 kg m-3. The 

qgn is the graupel water mixing ratio in background. 

According to above formulas (R0-R6), the reflectivity predicted by model 

can be computed by the rainwater, snow water and graupel water mixing ratios. 

Although it is a single moment algorithm, it can serve as a forward operator, 

converting model variables to reflectivity. We will add a few sentences in revision 

to elucidate this algorithm.  

 

4 Figure 8, it is interesting that the logarithmic rainrates (Figure 8c) has a different 

distribution than the rainrates (Figure 8a) and CMPAS rainrates (Figure 8b), for the 

magnitudes of rainrates larger than 10 mm h-1. Why the three-piecewise fitting 

function for the logarithmic rainrates does not capture the decrease trend for those 



magnitudes larger than 10 mm h-1? 

Response: We argue that the difference between the logarithmic rainrates and 

other rainrates for the large magnitudes of predictors mainly results from the rapid 

decline of sample sizes at the tail of the logarithmic rainrates. The logarithmic 

transformation not only smooths the small rainrates (near to zero), but also smooths 

the large rainrates (near to the maximum). The head and tail of standard deviation 

distribution in Figure 8c are smoother than the others in Figure 8a and 8b and more 

samples concentrate in the middle of the logarithmic rainrates. The logarithmic 

rainrates then obtained more samples in total than the derived rainrates and CMPAS 

rainrates. The tail of the logarithmic rainrates is then closer to the upper boundary of 

reflectivity. Therefore, the numbers decline very fast at the tail of logarithmic 

rainrates, as shown by the black dash line in Figure 8c. The standard deviations of 

reflectivities become zero when reflectivities are closer to the boundary (Bishop 2016; 

Bishop 2019).  

In theory, the linear regression may be inappropriate for this symmetric 

logarithmic rainrates. This is the reason that the R2 of logarithmic rainrates is smaller 

than those of derived rainrates and CMPAS rainrates, as listed in Table 1. We still 

used the linear regression to build the symmetric error model because: 1 a straight line 

at the tail of symmetric rainrates was used to prevent an irrational fitting function; 2 

we noticed the JSD of logarithmic rainrates in Table 2 is the smallest. Thus, we keep 

using the linear regression in this manuscript. A more appropriate fitting function for 

logarithmic rainrates is an interest topic in future.  
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