
RESPONSES TO REFEREE 1: 

 

This manuscript proposes an approach to handle the non-Gaussian error distribution of 

reflectivity OmBs (dBZ), which adopts the idea of the symmetric error model in all-sky 

radiance data assimilation. This work demonstrates that the symmetric error model built 

by the rainrate predictor, can improve the Gaussianity of OmB distribution, by using 

six-month composite reflectivity data and simulated products. Moreover, the 

reflectivity OmBs present a more complicated error model that can be fitted by a three-

piecewise function, compared to the satellite radiances, since the radar reflectivity is 

often discontinues. This manuscript is well structured and could be a valuable 

contribution to the radar and data assimilation communities. I have several comments 

as below. I’d like to recommend minor revision to this manuscript. 

We appreciate the kind acknowledgement and constructive comments left by 

referee 1 and reply all comments in the following context.  

 

1 This work compares two OmB data, the maximum composite and the reflectivity at 

1 km. Results show that two OmB data have similar features, such as horizontal 

distributions and PDFs. The rainrate derived from the reflectivity at 3 km is then used 

to build the symmetric error model of the maximum composite. However, the maximum 

composite and reflectivity at 1 km and 3 km, respectively, could be different. The 

correlations between the derived rainrate and the maximum composite (or/and the 

reflectivity at 1 km) are needed to clarify the potential inconsistent usages of data. 

Response: The maximum composites and rainrates derived from 3 km reflectivity 

are not exactly identical, but both of them are highly associated with the convective 

strength. The large maximum composite and heavy rainrate can indicate a strong 

convective system, and vice versa. The convective strength can correlate the maximum 

composites and the rainrates in physics, as shown in Fig. R1. Thus, this study used 

derived rainrates to describe the heteroscedasticity of maximum composites and 

demonstrated the symmetric error model can improve the Gaussianity of OmBs of the 

maximum composites. In our revision, we illustrated the relationship between the 

convective strength and the heteroscedasticity of reflectivity OmBs in line 56-65 and 

described the reason of using rainrate as a predictor in line 75-79. 

The red line in Fig. R1 shows that the absolute correlations between the derived 

rainrates and the maximum composites are evidently high (>0.75) in most precipitating 

cases, despite some cases present low correlations. Thus, using derived rainrates to 

describe the heteroscedasticity of the maximum composite is rationale, similar to the 

cloud liquid water or liquid water path for satellite radiances. We do not give the 

correlations between the derived rainrates and reflectivities at 1 km. Because the sample 

amount of reflectivities at 1 km is much less than other data and this study did not build 

a symmetric error model of reflectivities at 1 km.  

We also gave the absolute correlations between the CMPAS rainrates and the 

maximum composites in Fig. R1. The absolute correlations of CMPAS rianrates 

decrease obviously due to the independent errors, including the sampling and 



representative errors from the third-party data. However, the CMPAS rainrates built a 

similar symmetric error model to the derived rainrates (Fig. 8) and further improved the 

Gaussianity of OmBs of the maximum composites in comparison with the derived 

rainrates (Fig. 9 and Table 2). Thus, the differences between two rainrate data allow us 

to investigate how the accuracy of predictor affects the symmetric error model. 

 

Figure R1. the absolute correlations between the maximum composites and two rainrate data in six 

months. The blue and red lines represent the rainrates derived from reflectivities at 3 km altitude 

and the CMPAS rainrates. The dash line shows the 95% confidence. 

 

2 There various types of data used in this work, especially with different horizontal 

resolutions (e.g., the 5-km CMPAS and 3-km WRF products). Thus how the 

interpolation performed to deal with the inconsistent resolutions needs clarification. It 

is possible that the interpolation increases the OmB variances. The authors emphasize 

that all data are collected in mountainous areas. Does the interpolation consider the 

effects of terrain? Moreover, how about the resolution of CVMR and CAPPI used in 

this study? 

Response: The horizontal resolutions of CVMR and CAPPI are 1 km, which is 

clarified at line 98 in our revision. The coarsest resolution among various data is 5 km. 

Therefore, we used Euclidean distances as weights to interpolate data from fine 

resolutions to coarse resolution.  

 

Figure R2. the schematic plot of interpolation. 



As shown in Figure R2, the black grids represent the fine resolution data, such as 

1 km radar observations and 3 km WRF products. The 5 km resolution radar 

observations and WRF products at red grids (Vc) are weighted average of the nearest 

four black grids (Vf1, Vf2, Vf3, Vf4): 

Vc = a1Vf1 + a2Vf2 + a3Vf3 + a4Vf4 

where a1, a2, a3 and a4 are weights computed by the distances between a red grid and 

the nearest four black grids. 

As aforementioned, we do not take into account the effects of terrain in this 

interpolation. The only effect of terrain is the blockage in mountainous areas, which 

significantly reduces the sample amount of CAPPI at 1 km altitude. We briefly 

addressed the linear interpolation at line 104 in our revision. 

 

3 The reflectivity OmBs highly depend on the forward operator. More elucidations 

about the forward operator are needed, in order to clarify how the OmB is derived. 

Response: The algorithm of diagnostic reflectivity (dBZ) included in UPP 

softward package is based on rain, snow, and graupel mixing ratios was designed by 

Stoelinga (2005): 

Z = 10 log10(Zer + Zes + Zeg)             (R0) 

Following some assumptions, the reflectivity contributed by rain droplets (Zer) is 

given by: 

Zer = Γ(7)Nr0λr
−7

                      (R1) 

λr = (
πNr0ρl

ρaqra
)0.25                        (R2) 

where Nr0 is 8×106, ρl and ρa are the liquid water density and dry air density respectively. 

The qra is the rainwater mixing ratio in background. 

Assumed snow particles are spheres, the reflectivity contributed by snow is given 

by: 

Zes = αΓ(7)Ns0(
ρs

ρl
)2λs

−7                 (R3) 

λs = (
πNs0ρs

ρaqsn
)0.25                        (R4) 

where α is 0.224, Ns0 is 2×107, ρs is the density of snow 100 kg m-3. The qsn is the snow 

water mixing ratio in background. 

Similarly, the contribution of graupel particles can be obtained: 

Zeg = αΓ(7)Ns0(
ρg

ρl
)2λg

−7                 (R5) 

λg = (
πNg0ρg

ρaqgn
)0.25                        (R6) 

where α is also 0.224, Ng0 is 4×106, ρg is the density of graupel 400 kg m-3. The qgn is 

the graupel water mixing ratio in background. 

According to above formulas (R0-R6), the reflectivity predicted by model can be 

computed by the rainwater, snow water and graupel water mixing ratios. Although it is 

a single moment algorithm, it can serve as a forward operator, converting model 



variables to reflectivity. We revised the descriptions of this diagnostic algorithm in line 

136-137 in our revision.  

 

4 Figure 8, it is interesting that the logarithmic rainrates (Figure 8c) has a different 

distribution than the rainrates (Figure 8a) and CMPAS rainrates (Figure 8b), for the 

magnitudes of rainrates larger than 10 mm h-1. Why the three-piecewise fitting function 

for the logarithmic rainrates does not capture the decrease trend for those magnitudes 

larger than 10 mm h-1? 

Response: We argue that the difference between the logarithmic rainrates and other 

rainrates for the large magnitudes of predictors mainly results from the rapid decline of 

sample sizes at the tail of the logarithmic rainrates. The logarithmic transformation not 

only smooths the small rainrates (near to zero), but also smooths the large rainrates 

(near to the maximum). The head and tail of standard deviation distribution in Figure 8c 

are smoother than the others in Figs. 8a and 8b and more samples concentrate in the 

middle of the logarithmic rainrates. The logarithmic rainrates then obtained more 

samples in total than the derived rainrates and CMPAS rainrates. The tail of the 

logarithmic rainrates is then closer to the upper boundary of reflectivity. Therefore, the 

numbers decline very fast at the tail of logarithmic rainrates, as shown by the black dash 

line in Fig. 8c. The standard deviations of reflectivities become zero when reflectivities 

are closer to the boundary (Bishop 2016; Bishop 2019). We added sentences to explain 

this phenomenon in line 285-287.  

In theory, the linear regression may be inappropriate for this symmetric 

logarithmic rainrates. This is the reason that the R2 of logarithmic rainrates is smaller 

than those of derived rainrates and CMPAS rainrates, as listed in Table 1. We still used 

the linear regression to build the symmetric error model because: 1 a straight line at the 

tail of symmetric rainrates was used to prevent an irrational fitting function; 2 we 

noticed the JSD of logarithmic rainrates in Table 2 is the smallest. Thus, we keep using 

the linear regression in this manuscript. A more appropriate fitting function for 

logarithmic rainrates is an interest topic in future.  
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RESPONSES TO REFEREE 2: 

 

General comments:  

The paper uses a symmetric rain rate to define the radar reflectivity error in the 

assimilation algorithm based on the symmetric rain rate referring to the 

symmetric error model in satellite all-sky assimilation. The paper is well-

structured but still, there are many ambiguous sentences in the paper which need 

to be rewritten/clarified.  

 

Response: we appreciate your kind acknowledgment of this study. We hopefully 

addressed the reasons behind using analyses of NCEP GFS, without reflectivity 

assimilation. We also clarified the definition of representation error. Moreover, some 

ambiguous sentences will be rewritten in our revision.  

 

major revisions: 

 

One crucial aspect absent in the paper is that the reflectivity error in a DA system 

is a representative error of this system. It is important to know that the reflectivity error 

is indicative of the system's overall accuracy. Therefore, with any change made to the 

DA system such as adjustments in the NWP model settings or modifications to the 

forward model, the reflectivity error need to be recalculated or recalibrated. However, 

in this paper, all calculations are founded on a free forecast. The equivalent reflectivity 

is derived from the 6-hour model forecast.  

 

Response: the 6-hour forecasts were not free forecasts, at least not exactly free, 

because the WRF model were initialized by the analyses. Although radar reflectivity 

was not assimilated, numerous observations, such as several satellite radiances and 

station measurements, were assimilated in order to improve the moist, wind and 

temperature. At convective scale, the environmental model variables were of more 

importance than the cloud and precipitation particles (Fabry and Sun 2010). The 

updated hydrometeors cannot survive in numerical weather model if the environmental 

model variables are unsuitable. Thus, the model results in this study can represent the 

6-hour growth of model errors in statistics.  

We can attempt to estimate the climatological representation error on basis of 6-

hour forecasts initialized by the analyses, because most current data assimilation 

method pursue the statistical optimization in climatology. We addressed this issue in 

line 129-131 in our revision. Moreover, using similar model runs, without data 

assimilation, to investigate the error structure of reflectivity has been acceptable by 

scientific community (Zeng et al., 2021).  

 

Reference: 

Fabry, F. and Sun, J.: For how long should what data be assimilated for the mesoscale 

forecasting of convection and why? Part I: on the propagation of initial condition 



errors and their implications for data assimilation. Monthly Weather Review, 138, 

242–255. https://doi.org/10.1175/2009MWR2883.1, 2010. 

Zeng, Y., Janjic, T., Feng, Y., Blahak, U., de Lozar, A., Bauernschubert, E., Stephan, 

K., and Min, J.: Interpreting estimated observation error statistics of weather radar 

measurements using the ICON-LAM-KENDA system, Atmos. Meas. Tech., 14, 5735–

5756, https://doi.org/10.5194/amt-14-5735-2021, 2021. 

 

Besides, defining a more accurate reflectivity error is expected to enhance the 

assimilation results. However, the paper did not present any plots related to the 

implementation of the newly defined reflectivity error model in a DA system and its 

comparison with the constant error (which, as stated in the paper, is deemed unsuitable 

for radar assimilation).  

 

Response: attacking the non-Gaussian error distribution of reflectivity is the main 

goal of this paper. Unveiling the non-Gaussian distribution (Figs. 3 and 4), how to build 

the symmetric error model (Figs. 7 and 8) and exhibiting the qualitative (PDF 

distributions in Fig. 9) and quantitative (JSDs in Table 2) improvements on Gaussianity 

of PDF already constituted a complete logic, which emphasizes the effects of 

symmetric error model on OmBs of reflectivity and falls better in the scope of 

Atmospheric Measurement Techniques. Especially, we concluded that the symmetric 

error model can improve the strong non-Gaussian PDF of reflectivity OmBs. Due to 

these considerations, we also changed the title of this resubmission to “Improving the 

Gaussianity of Radar Reflectivity Departures between Observations and Simulations 

by Using the Symmetric Rain Rate”.  

Recently, several studies related to the structures of observation error have been 

published, without application of error structures on data assimilation (Waller et al., 

2016; Waller et al., 2019; Zeng et al., 2021, and so on…). They demonstrate the 

importance of error statistics.  

In our own conceit, this resubmission could be a timely and useful work in error 

structures of radar reflectivity, which may encourage readers to build a more effective 

symmetric error model based on their own assimilation and prediction systems.  

We are well aware of the fact that building the symmetric error model is to improve 

the analysis in reflectivity assimilation. Based on our very preliminary results, we found 

that the symmetric error model is very sensitive to some parameters (positive impact 

obtained when the tuning parameter is 0.25 and the lower boundary is 3 dBZ in Eq. 6), 

due likely to the inconsistency between the symmetric error model and the forecast and 

assimilation systems. Considering the length and completeness of this study, we 

maintain that this resubmission focuses on the improvement on Gaussianity of radar 

reflectivity by using the symmetric error model. The numerical experiments about 

application of this symmetric error model on reflectivity assimilation could be another 

topic, which is our ongoing research.  

 

References: 

Waller JA, Simonin D, Dance SL, Nichols NK, Ballard SP.: Diagnosing observation-
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https://doi.org/10.5194/amt-14-5735-2021


error correlations for Doppler radar radial winds in the Met Office UKV model using 

observation-minus-background and observation-minus-analysis statistics. Mon. 

Weather Rev. 144: 3533–3551. https://doi.org/10.1175/MWR-D-15-0340.1, 2016. 

Waller, J. A., E. Bauernschubert, S. L. Dance, N. K. Nichols, R. Potthast, and D. 

Simonin: Observation Error Statistics for Doppler Radar Radial Wind 

Superobservations Assimilated into the DWD COSMO-KENDA System. Mon. Wea. 

Rev., 147, 3351–3364, https://doi.org/10.1175/MWR-D-19-0104.1, 2019. 

Zeng, Y., Janjic, T., Feng, Y., Blahak, U., de Lozar, A., Bauernschubert, E., Stephan, 

K., and Min, J.: Interpreting estimated observation error statistics of weather radar 

measurements using the ICON-LAM-KENDA system, Atmos. Meas. Tech., 14, 5735–

5756, https://doi.org/10.5194/amt-14-5735-2021, 2021. 

 

Line 40: "The error statistics associated with radar reflectivity, consisting of both 

the instrument error and representation error": Could you please clarify the meaning of 

"representation error" in this context? 

 

Response: for an observation network, ‘a small-scale phenomenon may be 

misrepresented as a much larger scale phenomenon. Thus, the error of 

representativeness is a measure of the error caused by the misrepresentation of all scales 

smaller than the grid spacing of numerical model’, cited from Daley (1991), which 

seems to be the original definition of representation error. Similar definition and 

classification of observation error is also used by Waller et al. (2016). The observational 

operator error was not included in representation error. This manuscript distinguished 

between the representation error and the observational operator error because we 

followed the original definition of representation error (Daley 1991).  

A recent study (Janjić et al., 2018) reported that the representation error consists 

of three components, mismatch between scales in observations and model results, errors 

of observation operator and quality control or preprocessing. Unfortunately, the 

definition and terminology of representation error are still not unified. In our revision, 

we updated the definition of representation error as reported by Janjić et al. (2018). 

 

References: 

Daley, R.: Atmospheric Aata Analysis. Cambridge University Press, 457 pp, 1991. 

Janjić, T., McLaughlin, D., Cohn, S.E. and Verlaan, M.: Conservation of mass and 

preservation of positivity with ensemble-type Kalman filter algorithms. Mon. Wea. 

Rev., 142, 755–773, https://doi.org/10.1175/MWR-D-13-00056.1, 2014. 

Waller JA, Simonin D, Dance SL, Nichols NK, Ballard SP.: Diagnosing observation-

error correlations for Doppler radar radial winds in the Met Office UKV model using 

observation-minus-background and observation-minus-analysis statistics. Mon. Wea. 

Rev. 144: 3533–3551. https://doi.org/10.1175/MWR-D-15-0340.1, 2016. 

 

Line 58: "It is clear in reflectivity assimilation, where errors including 

representation errors and operator errors increase with the precipitation amount." Firstly, 

in a scientific text, clarity is essential. It would be beneficial to provide a reference to 

https://doi.org/10.1175/MWR-D-15-0340.1
https://doi.org/10.1175/MWR-D-19-0104.1
https://doi.org/10.5194/amt-14-5735-2021
https://doi.org/10.1175/MWR-D-13-00056.1
https://doi.org/10.1175/MWR-D-15-0340.1


support this claim. Secondly, could you please clarify what is meant by "operator error"? 

Is it synonymous with forward model error, which refers to the model converting the 

NWP model output to radar reflectivity? When discussing representative error in a DA 

system, it typically encompasses NWP model error, forward model error, and other 

factors. Why is operator error excluded from the representative error of a DA system?  

 

Response: according to the latest definition of representation error, this sentence 

has been rewritten as “It is clear in reflectivity assimilation, where the representation 

error including mismatch between scales and observational operator error increases 

with the intensification of convection.” For the mismatch between scales, the heavier 

precipitation (stronger convection) usually shows lower predictability, leading to larger 

OmBs. Another evidence is that the heavy precipitation usually has lower ETS than 

little precipitation. For the observational operator of reflectivity, the cold process in 

strong convection, including ice-phased and mix-phased hydrometeors, complicates the 

projection from model variables to reflectivity. The OmBs of reflectivity in cold process 

are usually larger than those in warm process. The references associated with this claim, 

such as Sun and Zhang (2020) and Jung (2008), were already cited in this manuscript. 

We rewrote the whole paragraph about the heteroscedasticity in line 56-65 of our 

revision and illustrated the physical connection between reflectivity and rain rate in line 

75-79 of our revision.  

The operator error is synonymous with forward model error, as well as the 

observational operator error. They mean the error introduced in the transformation from 

model variable to observation variable. To avoid misunderstanding, we will change 

‘operator error’ to ‘observational operator error’ or ‘error of observation operator’ in 

our revision.  

As also seeing the above response, the original definition of representation error 

in Daley (1991) is misrepresentation between scales, which is different to the error of 

observation operator. To unify the terminology and definition, we followed the 

definition proposed by Janjić et al. (2018) which is the latest publication.  

 

References: 

Jung, Y., Xue, M., Zhang, G. F., and Straka, J. M.: Assimilation of simulated 

polarimetric radar data for a convective storm using the ensemble Kalman filter. Part 

II: Impact of polarimetric data on storm analysis. Mon. Wea. Rev., 136, 2246–2260, 

https://doi.org/10.1175/2007MWR2288.1, 2008. 

Sun, Y. Q. and Zhang, F. Q.: A New Theoretical Framework for Understanding 

Multiscale Atmospheric Predictability. Journal of the Atmospheric Sciences, 77, 

2297–2309, https://doi.org/10.1175/JAS-D-19-0271.1, 2020. 

 

 

Line 119: “The WRF model has been nested in one-way with a coarse resolution 

of 9 km and a fine resolution of 3 km”: The nested domain should be inside the parent 

domain. 

 

https://doi.org/10.1175/2007MWR2288.1
https://doi.org/10.1175/JAS-D-19-0271.1


Response: the inner domain of WRF model was inside the outer domain in this 

study. The inner domain was shown in Fig. 1. We did not show the outer domain. 

 

line 125: “The GFS analyses at 0000 UTC and 1200 UTC in the 6 months are 

used to drive the WRF model.”: what does this sentence mean? 6 months analysis? 

 

Response: it means that all analyses at 0000 UTC and 1200 UTC from April to 

September were used. There were 366 analyses from NCEP GFS in total. We rewrote 

this sentence at line 127 of our revision in order to avoid misunderstanding.  

 

Fig3: The plots 3a and 3b, as well as 3c and 3d, appear to be identical. This should 

not be the case. Please review the plots. 

 

Response: except the thousands of samples along the abscissa, Figs. 3a and 3b are 

identical. Removing the missed simulations and their corresponding observations is the 

difference between ‘any-reflectivity’ (Fig. 3a) and ‘both-reflectivity’ (Fig. 3b). Other 

samples were not changed at all. The missed simulations and their corresponding 

observations located along the abscissa in Fig. 3a, as well as Fig. 3c. Thus, the Figs. 3a 

and 3b should be identical except the thousands of samples along the abscissa in Figs. 

3a and 3c. 

 

What is the purpose of excluding the false and missed events? and defining the 

‘both-reflectivity’? Ultimately, all data points need to be accounted for in defining the 

standard deviation. 

 

Response: we illustrated what give rise to the strong non-Gaussian error 

distribution of reflectivity in comparison of ‘both-reflectivity’ and ‘any-reflectivity’ 

scenarios. The thousands of samples along the abscissa in Fig. 3a mean numerous 

missed simulations (observed, but not simulated), leading to the skewness and high 

peak of PDF in Fig. 4. This feature also relates to the “zero gradient” effect as stated in 

Introduction.  

Moreover, defining the ‘both-reflectivity’ also can explain that the radar 

reflectivity has a stronger non-Gaussian distribution than the satellite radiance in cloudy 

sky. As discussed in line 162-166 of revision, the ‘both-reflectivity’ scenario, which is 

a simplified scenario, exhibits similar distribution to the nonprecipitating cloud affected 

satellite radiance. Thus, the ‘any-reflectivity’ scenario has a stronger non-Gaussian 

feature than the satellite radiance in cloudy sky. This conclusion is supported by the 

binned standard deviations (Fig. 8), where the difference between the first two bins is 

much greater than the other bins.  

In addition, we built the symmetric error model and discussed the properties of 

predictor in ‘any-reflectivity’ scenario, as shown in Figs. 7-9. We did not investigate 

the symmetric error model in ‘both-reflectivity’ scenario.  

 

Fig 8C: The black dashed line depicts the logarithm of sample numbers that fall 



below 2 after 12.5 mm h-1, indicating that the number of samples is less than 100. If 

this is indeed the case, it implies that the number of samples in these bins is insufficient 

for calculating the standard deviation. As demonstrated, the number of samples in 

certain bins can reach up to 106, revealing a significant inconsistency in standard 

deviation definition across bins. Therefore, it is advisable to establish a sample number 

limit for standard deviation calculation. I would recommend a limit of 103 or 104 

samples. 

 

Response: we only fitted the linear regression function from 0.5 to 9 in Fig 8c, as 

well as listed in Table 1, where the sample number is larger than 103. We revised the 

caption of Fig. 8 and also illustrated the straight line used in the symmetric error model 

when the sample number is less than 103 in line 276 of our revision. The reason behind 

the decrease trend at the tail of logarithmic symmetric rain rates has been given in line 

285-287. 

 

minor correction: 

Line 34: “in an idea model” → “in an ideal model” 

 

Response: it was a typo. We corrected it in our revision. 

 

line 60: simulations, usually called Observations → simulation, defined by 

Observation 

 

Response: We corrected it in our revision. 


