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Abstract. Given that the Gaussianity of observation error distribution is the fundamental principle of some data assimilation 

and machine learning algorithms, the error structure of radar reflectivity becomes increasingly important with the development 

of high resolution forecasts and nowcasts of convective systems. This study examines the error distribution of radar reflectivity 10 

and discusses what give rise to the non-Gaussian error distribution by using 6 month observations minus backgrounds (OmBs) 

of composites of vertical maximum reflectivity (CVMRs) in mountainous and hilly areas. By following the symmetric error 

model in all-sky satellite radiance assimilation, we unveil the error structure of CVMRs as a function of symmetric rain rates, 

which is the average of observed and simulated rain rates. Unlike satellite radiance, the error structure of CVMRs shows a 

sharper slope in light precipitations than moderate precipitations. Thus, a three-piecewise fitting function is more suitable for 15 

CVMRs. The probability density functions of OmBs normalized by symmetric rain rates become more Gaussian in comparison 

with the probability density function normalized by the whole samples. Moreover, the possibility of using third-party predictor 

to construct the symmetric error model are also discussed in this study. The Gaussianity of OmBs can be further improved by 

using a more accurate precipitation observations. According to the Jensen-Shannon divergence, a more linear predictor, the 

logarithmic transformation of rain rate, can provide the most Gaussian error distribution in comparison with other predictors. 20 

1 Introduction 

The radar echo signal, called reflectivity factor (unit: mm6 m-3), is proportional to the sixth power of the hydrometeor diameter 

according to the Rayleigh scattering. Thanks to the high accuracy and spatiotemporal resolution, the reflectivity factor can 

provide quantitative precipitation estimation (QPE) over a larger area in comparison with rain gauges (Chang et al., 2021; 

Yo et al., 2021). On the other hand, the decibels, called equivalent reflectivity (unit: dBZ) which is a logarithmic transformation 25 

of reflectivity factor, have been used in either data assimilation (DA) or machine learning (ML) algorithms to improve the 

forecast and nowcast of convective systems in last ten years (Stensrud et al., 2013; Sun et al., 2014; Gustafsson et al., 2018; 

Ayzel et al., 2020; Cuomo and Chandrasekar, 2021; Baron et al., 2023). Most current DA algorithms assume the Gaussian 

error distribution of observations in order to guarantee statistically optimal estimations, meanwhile some classical ML 
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algorithms employ Gaussian distribution to solve a convex optimization problem. However, few studies have investigated 30 

whether the error distribution of radar reflectivity is Gaussian. 

To attack the non-Gaussian error distribution, some ensemble DA algorithms have been designed. For instance, the Gamma, 

Inverse-Gamma and Gaussian (GIGG) algorithm, proposed by Bishop (2016), can handle a highly skewed uncertainty 

distribution in an ideal model. The Quadratic Programming Ensemble Kalman Filter (QPEns), incorporating nonnegativity 

constraints such as mass, energy and enstrophy conservations into the classical Kalman Filter, has been recognized as another 35 

effective approach (Janjić et al., 2014; Gleiter et al., 2022). Because of the complex and expensive computation, above DA 

algorithms toward non-Gaussian distribution are hardly employed by current operational systems. To further explore potentials 

of high resolution reflectivity data in currently operational DA algorithms, the aim of this study is to improve the Gaussianity 

of reflectivity error. 

The error statistics associated with radar reflectivity, consisting of both the instrument error and representation error (Janjić et 40 

al. 2018), become increasingly important in DA. In earlier studies, defining super observation over a large area satisfied the 

assumption of uncorrelated errors (Sun and Crook, 1997; Snyder and Zhang, 2003; Tong and Xue, 2005). The error of these 

“superobbed” reflectivity data could approximate to a Gaussian distribution with a constant value. Thousands of reflectivity 

data were discarded in the thinning process. Recently, with the popularity of the Desroziers method (Desroziers et al., 2005), 

the spatial error correlations of radar reflectivity were investigated in the Met Office (Waller et al., 2017) and the Deutscher 45 

Wetterdienst (Zeng et al., 2021), but the non-Gaussian error distribution is still a challenge in radar reflectivity assimilation. 

In this study, we critically examine the non-Gaussian error structure of equivalent reflectivity and attempt to understand what 

give rise to the non-Gaussian error distribution. 

Similar to the satellite radiance in all-sky reported by Geer and Bauer (2011), we can summarize that the radar reflectivity 

error also exhibits substantial non-Gaussian behaviour because: 50 

1. Boundedness. There are two kinds of boundednesses for radar reflectivity. First, radar reflectivity itself is a bounded variable 

since the hydrometeors cannot be less than zero. The similar boundedness issue leads to the non-Gaussian error distribution in 

satellite radiance assimilation. The second boundedness indicates that the radar reflectivity could decrease fast to zero outside 

the rainy areas, because the distribution of hydrometeors is limited by geophysical boundaries, such as precipitation and non-

precipitation areas. Different to satellite radiance assimilation, the discontinuity of hydrometeors in the background prevents 55 

non-precipitation area from assimilating reflectivity. It is called the “zero gradient” effect (Bannister et al., 2020).  

2. Heteroscedasticity. The representation error of reflectivity, defined by Observations minus Backgrounds (hereafter shorted 

by OmBs), can change with the convective strength. It is clear in reflectivity assimilation, where the representation error 

including mismatch between scales and observational operator error increases with the intensification of convection.  The 

mismatch between scales becomes worse when the convection intensifies rapidly, which often exhibit low predictability (Sun 60 

and Zhang, 2020), leading to large reflectivity OmBs. Moreover, the cold microphysics in a strong convection, including ice-

phased and mix-phased hydrometeors, complicates the transformation from model variables to reflectivity (Jung et al., 2008) 

in comparison of the warm microphysics in a weak convection. Some assumptions about the shapes and sizes of ice-phased 
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hydrometeors could bring additional uncertainty in the observational operator of reflectivity. It is also leads to large OmBs in 

the melting layer or upper level of a strong convection. Thus, the heteroscedasticity of reflectivity OmBs can be described by 65 

the convective strength.   

In an idealized system, Bishop (2019) demonstrated that the state-dependent observation error variance should be anticipated 

and estimated whenever the observation is of a bounded variable, whose error variance tends to zero as the observation 

approaches the bound. Xue et al. (2007) also pointed to the importance of properly modelling reflectivity errors when the 

observation operator is nonlinear. The radar reflectivity is distinctly a bounded measurement and has complicated nonlinear 70 

observation operator. As inspired by these previous studies, the error of radar reflectivity should be a state-dependent function 

instead of a constant value. In this study, we present the first in-depth study to unveil the error structure of equivalent 

reflectivity by following the successful construction of symmetric error model in all-sky satellite radiance assimilation (Geer 

and Bauer, 2011; Migliorini and Candy, 2019; Zhu et al., 2019; Shahabadi and Buehner, 2021; Johnson et al., 2022).   

To construct symmetric error model, we need a symmetric predictor, which is the average of simulations and observations. 75 

For radar reflectivity, this predictor should be an estimation of convective strength and can be predicted by numerical weather 

model. Similar to the liquid water path derived from satellite radiance observations, the rain rate can be estimated by the radar 

reflectivity in terms of the Z-I relationship and its variations. Meanwhile, the rain rate is also indicative of the convective 

strength that correlates the reflectivity and rain rate in physics. Thus, this study uses the rain rate as the predictor of the 

symmetric error model of radar reflectivity to describe the heteroscedasticity of reflectivity OmBs.  80 

It naturally steps forward to examine the effects of some properties of rain rate on the symmetric error model of radar 

reflectivity. The accuracy of rain rates is the most uncertain property. It could vary from one data set to another. In this study, 

we first focus on the effects of observation accuracy on the symmetric error model. As reported by reflectivity and precipitation 

assimilation (Liu et al., 2020; Lopez, 2011), the logarithmic transform on hydrometeor control variables or observations can 

alleviate the nonlinear issue in reflectivity assimilation. Here the linearization, the logarithmic transform of rain rates, is the 85 

second property we attempt to investigate. 

The rest of this study is organized as follows. In section 2, observations, model equivalents and their OmBs are introduced. 

Properties of various predictors are discussed in section 3. The error structure of radar reflectivity constructed by symmetric 

rain rates is presented in section 4. This section also shows the effects of the accuracy and linearization of predictor on the 

symmetric error model of radar reflectivity. Finally, conclusions are given in section 5. 90 

2 Observations, model equivalents and their OmBs 

2.1 Composite reflectivity observations 

The weather radar network in Chongqing Municipality, denoted by red circles and dots in Fig. 1, consists of 5 radars and 

covers the center and east of the Sichuan Basin. The two black rectangles A and B limit the research areas in order to exclude 

those model results out of the radar coverage because the truth outside the radar network is unknown. While the Constant 95 
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Altitude Plan Position Indicators at 1 km altitude (hereafter shorted by 1 km CAPPIs) is more consistent with precipitation 

observations, the composites of vertical maximum reflectivity (hereafter shorted by CVMRs) can provide more samples in 

mountainous and hilly areas. Thus, the features of 1 km CAPPIs and CVMRs, from April to September in 2021, are examined 

before matching with the rain rate data. Both of 1 km CAPPIs and CVMRs have 1 km resolution. 

 100 

Figure 1: The inner domain and its topography (shaded; units: m) of WRF model. The red dots and red dash circles denote radar 

stations and the coverage of radar network respectively. The research areas are limited by the black rectangles A and B to exclude 

areas that are not covered by radar network. 

The 1 km CAPPIs and CVMRs are interpolated linearly to 5 km resolution in Fig. 2 in order to match with the resolution of 

rain rate data. The linear interpolation uses Euclidean distances as weights, without the effects of terrain or earth sphere. 105 

Figure 2a shows a southwest–northeast convective system was captured by CVMRs at 1800 UTC on August 28th. Area A 

contains more convective cells than area B. In contrast, the 1 km CAPPIs as shown in Fig. 2d miss the convective cells in area 

A owing to the terrain blockage. Although both 1 km CAPPIs and CVMRs indicate clear geophysical boundaries between 

precipitation and non-precipitation areas, the CVMRs could present better representations in mountainous areas. It is worth 

noting that the zero gradient of hydrometeors caused by geophysical boundaries could create difficulties in applications of 110 

some DA and ML algorithms. 
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Figure 2: Distributions of CVMRs (the first row, unit: dBZ) and 1 km CAPPIs (the second row, unit: dBZ) observed by radars (a 

and d), simulated by model (b and e) and their OmBs (e and f) at 1800 UTC on August 28th, 2021. The black rectangles indicate 

the research areas, same as Fig. 1. 115 

2.2 Model equivalents 

The 6 month model equivalents of 1 km CAPPIs and CVMRs are simulated by the Weather Research and Forecasting (WRF; 

Skamarock et al., 2019) model Version 4.1. The Lambert projection, whose standard latitudes are 20° N and 30° N and standard 

longitude is 106.5° E, is used. Same physics packages, including the new Kain-Fritsch scheme (Kain, 2004), the Yonsei 

University planetary scheme (YSU, Hong et al., 2006), the Thompson scheme (Thompson et al., 2008) and Unified Noah Land 120 

Surface Model (Ek et al., 2003), are employed in the 6 month simulations. The WRF model has been nested in one-way with 

a coarse resolution of 9 km and a fine resolution of 3 km. Figure 1 gives the topography in the inner domain of WRF model, 

whose central location is at (29.8° N, 106.58° E) and horizontal grids are 480×360. In the outer domain, the central location is 

at (30° N, 104.5° E) and the horizontal grids are 600×480. Both two domains have 51 vertical layers. 

The initial and lateral boundary conditions of the WRF model are 0.5°×0.5° Global Forecast System (GFS) data sets produced 125 

by the National Centers for Environmental Prediction. More information about GFS data sets is available at 

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forecast-system-gfs. The GFS analyses at 0000 

UTC and 1200 UTC from April to September are used to drive the WRF model. The model equivalents are computed using 6 

hour simulations, because a shorter simulation time causes spin-up issues and a longer simulation time brings large model 

errors. The overall growth of model errors can be described by the 6 hour integration of WRF model since various observations 130 

are assimilated by GFS. No reflectivity assimilation has been performed here since we investigate the impacts of symmetric 

error model on the climatology of representation error. The model equivalents have 12 hour time interval (i.e., 0600 UTC and 

1800 UTC) in this study.  

The diagnostic algorithm of three-dimensional reflectivity, consisting of rain drops, snow particles and graupel particles, can 

be briefly described as: 135 

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forecast-system-gfs
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Z = 10 log10(Zer + Zes + Zeg)                                                     (1) 

where Zer, Zes and Zeg are reflectivity factor for rain, snow and graupel droplets, respectively. This diagnostic algorithm 

(Stoelinga 2005) employs 8×106, 2×107 and 4×106 m-4 as intercept parameters of rain, snow and graupel droplets, respectively. 

The densities of rain, snow and graupel droplets are 1000, 100 and 400 kg m-3, respectively. The Unified Post Processor (UPP) 

package (https://dtcenter.org/community-code/unified-post-processor-upp) interpolates diagnostic reflectivities from the 140 

coordinates of WRF model to altitude levels and then generates the model equivalents of 1 km CAPPIs and CVMRs. Despite 

some empirical assumptions, this diagnostic algorithm can transform model variables, such as rain water, snow water and 

graupel water mixing ratios, to reflectivity. Liu et al. (2022) used a similar diagnostic algorithm based on double-moment 

Thompson microphysics as the forward operator in reflectivity assimilation. 

In Fig. 2b, the model equivalents of CVMRs capture the southwest–northeast rain belt with strong convective cells in area A, 145 

illustrating that WRF model is capable to simulate this convective system. The CVMRs and their model equivalents still 

presents discrepancy in the comparison of Fig. 2a and Fig. 2b. As shown in Fig. 2c, the OmBs can vary widely from place to 

place, implying that a constant standard deviation may be insufficient to describe the error structure of CVMRs. For the 1 km 

CAPPIs, the model equivalents (Fig. 2e) and their OmBs (Fig. 2f) present similar features to those of CVMRs. Thus, regardless 

of 1 km CAPPIs or CVMRs, the model equivalents are misplaced, ill-shaped, or have erroneous intensities when compared to 150 

observations point by point. Followed by Geer and Bauer (2011), we also refer all these errors to ‘mislocation’ error. The 

mislocation errors of 1 km CAPPIs and CVMRs can result in the non-Gaussian error distribution that violates the Gaussian 

assumptions underlying some DA and ML algorithms.  

2.3 Observations minus Backgrounds 

To represent the rainy echoes, the 1 km CAPPIs and CVMRs less than 5 dBZ are removed in this study. Thus, the samples in 155 

Fig. 3 do not contain false simulations (i.e., simulated, but not observed). Figure 3a shows a histogram of all CVMRs against 

their model equivalents based on 1165529 samples, including missed simulations (i.e., observed, but not simulated). The high 

numbers along the abscissa imply the large mislocation error of CVMRs resulting from considerable missed simulations. By 

comparing with the satellite radiance departures (Fig. 5 in Migliorini and Candy, 2019), these considerable missed simulations 

are associated with the worse spatial discontinuity in OmBs of CVMRs. For convenience we refer to the discontinuous scenario 160 

as ‘any-reflectivity’.  

To examine effects of the large mislocation error on the error structure of CVMRs, we removed all missed simulations and 

obtained 504123 samples (Fig. 3b). We refer to this scenario as ‘both-reflectivity’, whose histogram is similar to the 

nonprecipitating cloud affected satellite radiance observed by the AMSR-E channel 37v (Geer and Bauer, 2011). It could be 

interpreted as the comparison of Fig. 3a and Fig. 3b showing that the reflectivity in ‘any-reflectivity’ has a more complicated 165 

error structure than ‘both-reflectivity’, illustrating that non-Gaussian error distribution in radar reflectivity assimilation is likely 

to be stronger than that in satellite radiance assimilation.  

https://dtcenter.org/community-code/unified-post-processor-upp
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Figure 3: Histograms of observed (a and b) CVMRs and (c and d) 1 km CAPPIs (abscissa, unit: dBZ) against their model 

equivalents (ordinate, unit: dBZ) in ‘any-reflectivity’ (the first column) and ‘both-reflectivity’ (the second column) scenarios. 170 

The sample numbers of 1 km CAPPIs decrease to 232681 and 71516 in ‘any-reflectivity’ and ‘both-reflectivity’ respectively. 

In the comparison of Fig. 3c and Fig. 3d, the 1 km CAPPIs also contain considerable missed simulations in terms of the high 

numbers along the abscissa. The error structure of 1 km CAPPIs estimated by OmBs is similar to CVMRs. 

It is critical to understand statistical features of several OmBs by examining their probability density functions (PDFs) before 

building the symmetric error model. By comparing with the normal Gaussian distributions in Fig. 4, the PDF of CVMR OmBs 175 

(red solid line) in ‘any-reflectivity’ presents a positive skewness. Instead, the PDF in ‘both-reflectivity’ (blue solid line) is 

apparently closer to the Gaussian distribution. The comparison illustrates that the numerous missed simulations along the 

abscissa in Fig. 3 give an undesirable effect on some DA and ML algorithms. In practice, the mismatches between observations 

and simulations provide valuable information related to convective systems. The non-Gaussian distribution cannot be ignored 

in applications of radar reflectivity. 180 

Similarly, the PDF of 1 km CAPPI OmBs also approximates the Gaussian distribution after removing the missed simulations 

in Fig. 4. The means and standard deviations of 1 km CAPPI and CVMR OmBs, denoted by μ and σ in Fig. 4 respectively, are 

similar as well. According to above comparisons, it conforms that the statistical features of 1 km CAPPI and CVMR OmBs 

are comparable in this study. Thus, the CVMR data in ‘any-reflectivity’ scenario are used to match with the rain rate data in 

the following sections. 185 
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Figure 4: Probability density functions of CVMR (solid lines) and 1 km CAPPI (dash lines) OmBs in ‘any-reflectivity’ (red lines) 

and ‘both-reflectivity’ (blue lines) scenarios, normalized by the mean and standard deviation of the whole sample. The gray line 

represents the normal Gaussian distribution. The μ and σ denote the mean and standard deviation of OmBs respectively. 

3 Predictors of symmetric error model 190 

3.1 Predictor derived from reflectivity 

The predictors of previous symmetric error models in satellite radiance assimilation were derived from the satellite radiance 

observations. Similarly, the rain rate can be derived from the echo signal in terms of the Z-I relationship, which is an empirical 

formula estimating rain rate I (unit: mm h-1) from reflectivity factor Ze (unit: mm6 m-3): 

Ze = aIb                                                           (2) 195 

Here, the reflectivity factor at 3 km altitude and typical coefficients a=300 and b=1.4 are often employed. Therefore, the 

‘symmetric’ rain rate, rrsym, which is used as the symmetric predictor in this study, is the average of derived rain rate, rrobs, and 

simulated rain rate, rrmodel: 

rrsym = 0.5 × (rrobs + rrmodel)                       (3) 

In this study, the rrmodel is the average of two consecutive hourly precipitations simulated by WRF, not derived by the 200 

reflectivity simulation. 

Figure 5 shows the distributions of rain rate data derived from observations and simulated by WRF model. Despite some 

disagreements when CVMRs less than 15 dBZ in area A, the rain belt derived from reflectivity factors at 3 km altitude presents 

a similar southwest–northeast distribution to CVMRs. Moreover, the large rainy centers in Fig. 5a are associated with the 

strong convective cells in Fig. 2a. The simulated rain belt in Fig. 5b also presents similarities to the model equivalents of 205 

CVMRs in Fig. 2b. Consequently, the OmBs of rain rates in Fig. 5c agree with the OmBs of CVMRs in Fig. 2c, illustrating 

that the error structure of CVMRs can be described by the rain rates regardless of the discrepancy between CVMRs and rain 

rates.  
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Figure 5: Distributions of rain rates (unit: mm h-1) (a) derived from reflectivity factors (unit: mm6 m-3) at 3 km altitude, (b) 210 
simulated by WRF model and (c) their OmBs at 1800 UTC on August 28th, 2021. The black rectangles indicate the research areas, 

same as Fig. 1 

3.2 Predictors from third-party observations 

Derivation from reflectivity factor is not the only way to obtain the rain rate data. Other hourly precipitation observations can 

be used to produce rain rate data. Thus, it is of interest to discuss how the accuracy of rain rate affects the symmetric error 215 

model. 

In this study, the derived rain rates are replaced by the CMA Multisource Precipitation Analysis System (CMPAS) data 

produced by National Meteorological Information Center of the China Meteorological Administration (NMIC/CMA). The 

hourly CMPAS data with 0.05° resolution, merging precipitation observations from rain gauge, radar QPE and satellite QPE, 

capture a number of details of hourly precipitations and are more accurate than other single source precipitation observations 220 

(Pan et al., 2018; Li et al., 2022).  

In the comparison of Fig. 5a and Fig. 6a, the CMPAS rain rates are comparable to the derived rain rates, especially for heavy 

precipitations in area A. Because the radar observations have been used to generate the CMPAS data. The CMPAS rain rates 

present a smoother southwest–northeast rain belt and a more evident precipitation center in mountainous area. A number of 

small and moderate precipitations in area B are captured by CMPAS rain rates, leading to a wider distribution of OmBs in 225 

Fig. 6b. Thus, a more accurate precipitation data can provide more reliable samples in construction of symmetric error model.  
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Figure 6: Distributions of (a) CMPAS rain rates (unit: mm h-1) and (c) logarithmic rain rates at 1800 UTC on August 28th, 2021. 

The (b) and (d) are OmBs of CMPAS rain rates (unit: mm h-1) and logarithmic rain rates, respectively. The black rectangles 

indicate the research areas, same as Fig. 1  230 

3.3 The linearization of predictor 

The Z-I relationship exists between rain rate and reflectivity factor Ze (unit: mm6 m-3), not equivalent reflectivity Z (unit: dBZ). 

A natural step forward is imposing a logarithmic transformation on Eq. 2 in order to obtain a more linear relationship between 

equivalent reflectivity and symmetric rain rate: 

Z = 10 log10 Ze = 10 log10 𝑎 + 10𝑏 log10 𝐼                                   (4) 235 

where a and b are the coefficients of Z-I relationship. In this study, the Eq. 4 is not a formula to obtain the quantitative 

equivalent reflectivity accurately. It merely transforms the relationship between CVMRs and symmetric rain rates to a more 

linear relationship, which allows us to discuss the effects of the linearization of predictor on the symmetric error model. Thus, 

this subsection uses 10 log10(I + 1.0), hereafter shorted by the logarithmic rain rate, as a linear predictor. Adding 1.0 on rain 

rate ensures that the base of logarithm is greater than zero, same as the precipitation assimilation (Lopez, 2011). 240 

The logarithmic rain rates also present the southwest–northeast rain belt in Fig. 6c. However, the precipitation center in area 

A is smoothed out by the logarithm. The OmBs of logarithmic rain rates in Fig. 6d present similar negative and positive 

distribution in comparison with derived rain rates in Fig. 5c. It is worth noting that a number of precipitations smaller than 

0.1 mm h-1 are amplified by above logarithmic transform, resulting in more OmBs of logarithmic rain rates. The logarithmic 

rain rates allow us to obtain more small precipitation samples.  245 

In order to examine the relationship between CVMR OmBs and symmetric rain rates, it is advisable to count the numbers of 

CVMR OmBs over the discrete intervals of symmetric rain rates, chosen here to be 0.5 mm h-1. Owing to the numerous missed 

simulations in Fig. 3a, most OmBs of derived rain rates (Fig. 7a) and CMPAS rain rates (Fig. 7b) locate from -20 dBZ to 
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30 dBZ when the symmetric rain rates less than 0.5 mm h-1. As shown in Fig. 7a, the major OmBs against derived rain rates, 

chosen to be larger than 500 samples, become bimodal as the symmetric rain rates increase roughly from 0.5 to 2 mm h-1. Two 250 

peaks are at about 30 dBZ and -10 dBZ respectively.  

 

Figure 7: Histograms of CVMR OmBs (ordinate, unit: dBZ) against symmetric rain rates (abscissa, unit: mm h-1), which are (a) 

derived by reflectivity factors and (b) computed by CMPAS data, and (c) the symmetric logarithmic rain rate. 

In contrast, the major OmBs against CMPAS rain rates in Fig. 7b become a unimodal distribution peaking at about -10 dBZ. 255 

Although this unimodal distribution is not symmetric along OmB equals zero, it is closer to Gaussian distribution, confirming 

that the more accurate CMPAS data can offer superior representation. When comparing the derived rain rates (Fig. 7a) with 

the logarithmic rain rates (Fig. 7c), the major OmBs exhibit a bimodal distribution, but become very gentle along the abscissa. 

As a result, the logarithmic transformation just reduces the gradient of rain rates without altering the structure of CVMR OmBs. 

4 Errors as a function of symmetric rain rates 260 

4.1 The symmetric error model of CVMRs 

Similar to the satellite radiances, it is possible to investigate the error structure of CVMRs over the discrete rain rate bins, 

chosen to be 0.5 mm h-1 in this study. As shown in Fig. 8a, the standard deviations of CVMR OmBs could vary from about 10 

to 33 dBZ. A constant value is insufficient to describe the error structure of CVMRs. The difference between the first two bins 

is much greater than the other bins. To illustrate this, we may argue that the light precipitation is closer to the geophysical 265 

boundary than the moderate precipitation, resulting in a greater difference between the first two bins. From the second bin, the 

standard deviations of CVMR OmBs increase with symmetric derived rain rates before peaking at 8.0 mm h-1. Standard 

deviations that alternately increase and decrease after 8.0 mm h-1 could be caused by poor initial conditions of WRF model, 

small sample numbers or inaccuracy of diagnostic reflectivity.  
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 270 

Figure 8: Standard deviations of CVMR OmBs over the symmetric (a) derived rain rates, (b) CMPAS rain rates and (c) 

logarithmic rain rates. The red dash lines show the three-piecewise fitting functions (listed in Table 1). The black dash lines show 

the logarithm of sample numbers over symmetric rain rate bins. 

To simplify the complex error structure of CVMRs, a three-piecewise function (red dash line) is fitted by using linear 

regression. Because the first bin has to be isolated to pass the 95% confidence level for F-test. A straight line rather than the 275 

linear regression is used to describe the reflectivity error for large symmetric derived rain rates. This is a cautious approach to 

fit a rational linear regression based on a large sample size (black dash line), chosen to be larger than 103 samples. Table 1 lists 

key parameters of piecewise functions. 

Table 1: key parameters of three-piecewise fitting functions. 

Predictor Function Rain rate range R2 

Derived rain rates 

y=10.04 0.0<x≤0.5  

y=16.31+1.27x 0.5<x≤8.0 0.94 

y=26.47 8.0<x  

CMPAS rain rates 

y=9.78 0.0<x≤0.5  

y=15.94+0.94x 0.5<x≤9.5 0.96 

y=24.87 9.5<x  

Logarithmic rain rates 

y=7.8 0.0<x≤0.5  

y=15.43+0.80x 0.5<x≤9.0 0.83 

y=21.64 9.0<x  

 280 

As shown in Fig. 8b, similar characteristics, such as the distinct difference between the first two bins and the increase with 

symmetric derived rain rates, are captured by the symmetric CMPAS rain rates as well. The standard deviations vary from 

about 10 to 25 dBZ when the symmetric CMPAS rain rates increase from 1 to 9.5 mm h-1. The small variation of standard 

deviations after 10 mm h-1 results from the superior representation of CMPAS data. For the symmetric logarithmic rain rates 

(Fig. 8c), the standard deviations of CVMR OmBs grow gradually from roughly 14 to 21 dBZ as the symmetric logarithmic 285 

rain rates increase from 1 to 10, even if they still increase quickly from about 8 to 14 in the first two bins. The decrease trend 

at the tail of the logarithmic rain rate (lager than 9.0) results from the rapid decline of sample size. The straight line prevents 
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the three-piecewise fitting function from an irrational linear regression. According to Table 1, the logarithmic rain rates obtain 

the smallest slope of fitting function among three symmetric predictors, despite of the smallest R2. 

4.2 Improvements on Gaussianity 290 

To illustrate the potential benefits of symmetric error models to some DA and ML algorithms, the Gaussianity of PDFs are 

examined in this subsection. Although the PDF of CVMR OmBs is not Gaussian, the CVMR OmBs can be divided into a 

number of subgroups with Gaussian PDFs according to the binned standard deviations or piecewise functions from above 

subsection. Figure 9 shows the PDFs of CVMR OmBs normalized by various symmetric rain rates, with the raw and normal 

Gaussian PDFs for comparison. By comparing with the raw PDF (green line), the PDFs normalized by the binned standard 295 

deviations (red line) become more Gaussian. The three-piecewise function, simplified the error structure of CVMRs, also 

corrects the positive skewness of raw PDF. We argue that the three-piecewise function is sufficient in this study because it 

shows an identical PDF to the binned standard deviations.  

 

 300 

Figure 9: Probability density functions (PDFs) of CVMR OmBs normalized by symmetric (a) derived rain rates, (b) CMPAS rain 

rates and (c) logarithmic rain rates. The green, red, blue and gray lines represent the raw, binned, three-piecewise and normal 

Gaussian PDFs, respectively. 

To quantify the similarity between the PDFs normalized by the symmetric rain rates and normal Gaussian PDF, Table 2 lists 

the Jensen-Shannon divergence (JSD): 305 

JSD(P ∥ Q) =
1

2
∑ P(x) log(

2P(x)

P(x)+Q(x)
) +

1

2
∑ Q(x) log(

2Q(x)

P(x)+Q(x)
)                      (5) 

where P is the PDFs normalized by symmetric rain rates or raw standard deviations and Q represents the normal Gaussian 

PDF. The JSD is zero means distributions P and Q are the same. For the derived rain rates, the JSDs of PDFs normalized by 

the binned standard deviations and the three-piecewise function can decrease from 0.010 to 0.006.  

Table 2: the Jensen-Shannon divergences of probability density functions normalized by various symmetric rain rates. 310 

predictor raw three-piecewise binned 

Derived rain rates 0.010 0.006 0.006 
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CMPAS rain rates 0.010 0.005 0.005 

Logarithmic rain rates 0.008 0.004 0.004 

 

For the CMPAS rain rates in Fig. 9b, the PDFs normalized by the binned standard deviations and the three-piecewise function 

not only correct the positive skewness, but also reduce the overestimation at central area. The CMPAS rain rates also obtain 

smaller JSDs than the derived rain rates as listed in Table 2. It demonstrates that the accuracy of CMPAS rain rates can further 

improve the Gaussianity of PDFs. For the logarithmic rain rates (Fig. 9c), the PDFs normalized by the binned standard 315 

deviations and three-piecewise function also approximate to the normal Gaussian distribution by comparing with the raw PDF. 

It is worth noting that the logarithmic rain rates obtain the smallest JSDs in spite of a few fluctuations on the PDFs normalized 

by the binned standard deviations and three-piecewise function. 

5 Conclusions 

In this study, the Gaussianity of two OmB data, including the CVMRs and 1 km CAPPIs, are examined in the southwest of 320 

China. Their features, such as horizontal distributions and PDFs, are similar regardless of the different definitions between 

CVMRs and 1 km CAPPIs. Consequently, the 6 month CVMR OmBs, which exhibit superior representation to 1 km CAPPI 

OmBs in mountainous and hilly areas, are employed to discuss how to attack the non-Gaussian PDF.  

In the comparison of ‘any-reflectivity’ and ‘both-reflectivity’ scenarios, the Gaussianity of OmBs can be improved by 

removing the numerous mismatches between observations and simulations. These mismatches cannot be ignored in some DA 325 

or ML algorithms. Because they provide essential information related to convective systems. Moreover, the reflectivity OmBs 

often vary widely from place to place, demonstrating that a constant standard deviation is insufficient to describe the error 

structure of radar reflectivity in most researches and operations.  

The symmetric error model, which has been broadly used in all-sky satellite radiance assimilation (Migliorini and Candy, 2019; 

Zhu et al., 2019; Shahabadi and Buehner, 2021), is built to improve the Gaussianity of CVMR OmBs. According to the 330 

symmetric derived rain rates, the standard deviations of CVMR OmBs can vary from about 10 to 33 dBZ. Yet the instrument 

noise of radar is of order 1 dBZ. 

Similar to satellite radiance, the standard deviations of CVMR OmBs increase with the symmetric derived rain rates, 

illustrating that the largest component of the CVMR OmBs comes from the poor prediction associated with clouds and rains 

and the inaccurate diagnostic algorithm of radar reflectivity in some DA and ML applications. As the discussion in Geer and 335 

Bauer (2011), using the symmetric error model in reflectivity assimilation may also compensate for an inadequate specification 

of hydrometeors in background error, which will be investigated by DA experiments in our ongoing study. In contrast to 

satellite radiance, the symmetric error model of CVMR data shows that the difference between the first two bins is much 

greater than the other bins, illustrating that a more complex structure, the three-piecewise function, should be built at 

convective-allowing scale.   340 



15 

 

By comparing with the raw PDF, the PDFs normalized by the binned standard deviations and the three-piecewise function 

become more Gaussian by reducing the positive skewness. Because each subgroup of CVMR OmBs, separated by symmetric 

derived rain rates, approximates to Gaussian PDF in spite of the non-Gaussian PDF of the whole samples. Thus, this study 

demonstrates that the Gaussianity of CVMR OmBs can be improved by the symmetric error model based on the derived rain 

rates.  345 

Effects of a more accurate rain rate data on the symmetric error model of CVMRs are also examined in this study. Although 

the CMPAS rain rates build a similar three-piecewise function to the derived rain rates, the superior representation can further 

improve the Gaussianity of CVMR OmBs in terms of the JSDs calculated by PDFs in Table 2.  

The logarithmic rain rates give profound effects on the symmetric error model of CVMR OmBs. Not only the gradients of 

standard deviations of CVMR OmBs become gentle from the second bin, but the PDFs normalized by the binned standard 350 

deviations and the three-piecewise function also obtain the smallest JSDs by comparing with other rain rates. It is convenient 

to create configuration files for the logarithmic rain rates in the operational system. Moreover, the logarithmic transform has 

been used to assimilate precipitation observations directly in operational four-dimensional variation system at the European 

Centre for Medium-Range Weather Forecasts (Lopez, 2011). Thus, using a more linear predictor is recommended to build the 

symmetric error model of CVMRs. 355 

In theory, the symmetric error models of CVMRs built in this study are more consistent to the fundamental principle in some 

DA and ML algorithms than a constant value. However, the symmetric error model, estimated by OmB data, highly relies on 

the numerical weather model, DA or ML strategy and forward observation operator. Consequently, this study encourages 

readers to build an effective symmetric error model based on their own assimilation and prediction systems.  

Performing a number of experiments to discuss the effects of symmetric error models on some DA and ML algorithms is also 360 

encouraged. An immature usage of symmetric error model is briefed here:  

σ = {

σl                                                                             RRavg < RRavg1

σl + αβ(RRavg − RRavg1)                RRavg1 ≤ RRavg < RRavg1

σu                                                                            RRavg ≤ RRavg2

                                                       (6) 

where RRavg means the symmetric rain rate, σl and σu are the lower and upper boundaries of reflectivity error, respectively. 

The β is the slope of the three-piecewise function and α is a tuning parameter as designed by Geer and Bauer (2011). By tuning 

the parameter α, the representative error can either be assigned completely by the symmetric error model (α=1) or ignored 365 

(α=0). In future, it is of interest to add the effects of ice-phased hydrometeors on the symmetric error model of CVMRs. The 

polarized measurements and their combinations that provide additional information about hydrometeors may be the solutions. 

Code and data availability 

The observations, simulations and derived rain rates are available at https://doi.org/10.6084/m9.figshare.25093508.v1. The 

graphics were generated using NCAR Commend Language (https://www.ncl.ucar.edu/Download/). The Weather Research 370 
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