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Abstract 30 

All clouds influence the Earth's radiative budget, with their net radiative forcing being negative. 31 

However, high-level clouds warrant special attention due to their atmospheric warming effects. A 32 

comprehensive characterization of cirrus clouds requires information on their coverage, which can be 33 

obtained from various data types. . A comprehensive characterization of cirrus requires information 34 

on cloud coverage, obtainable from various data types. Active satellite sensors are presently the most 35 

accurate source for cirrus data, but their usefulness in climatological studies is limited (the narrow view 36 

and 16-day repeat cycle yield only ~20 observations per year per region, often insufficient for 37 

climatological studies). On the contrary, passive data, which has been available for the past 40 years 38 

with sufficient temporal resolution for climatological research, are less effective at detecting cirrus 39 

clouds compared to active vertical profiling sensors.were not specifically designed for cirrus detection. 40 

In this study, we assessed the utility of MODIS standard products for creating a cirrus mask by 41 

validating them against CALIOP data. Our objective was to determine if a MODIS product exists that 42 

detects cirrus with the same accuracy as CALIOP. 43 

Using CALIOP data as the reference, we evaluated six tests for cirrus detection considered in MODIS 44 

cloud masking algorithm and their combination (ALL TESTS CONSOLIDATION, ATC). Additionally we 45 

applied two ISCCP-originating tests: ISCCP3.6 and ISCCP23 tests. All tests have been applied to MODIS 46 

radiances.  47 

Study revealed that the ATC test was the most effective resulting with the overall accuracy of 72.98% 48 

during daytime and 59.50% at night (probability of detection: 80.87% and 25.46%, false alarm rate of 49 

34.86% and 6.90%, and Cohen’s kappakapppa coefficient of 0.46 and 0.19 respectively). However, its 50 

effectiveness was notably reduced during nighttime compared to daytime. We conclude that the ATC 51 

test is suitable for creating a mask of high-level clouds. 52 
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1. Introduction 66 

Clouds are indispensable to Earth's environmental systems and human life, influencing weather, 67 

climate, water distribution, ecosystems, and various human activities. All of them affect the Earth’s 68 

radiative budget, and their net radiative forcing for is negative and equal to -13 Wm−2 (Ramanathan et 69 

al., 1989). That means that clouds, in general, cools the atmosphere. Nevertheless a special attention 70 

should be paid to high-level clouds (according to WMO, high-level clouds include all types of Cirrus, 71 

Cirrocumulus, and Cirrostratus clouds. Additionally, clouds resulting from anthropogenic activities, 72 

such as aviation contrails, are classified within the high-level cloud category (WMO, 1977)) named with 73 

the customary term cirrus. Cirrus clouds have a complex role in climate regulation. The relation 74 

between cirrus particles (size, shape and albedo) and Earth’s radiation budget has been examined 75 

(Kinne and Liou, 1989; Macke et al., 1998; Mishchenko et al., 1996; Stephens et al., 1990; Zhang et al., 76 

1994, 1999), resulting in a general conclusion that cirrus play an important role and can warm the 77 

atmosphere. Cirrus typically have a base above about 8 000 metres and are composed of small particles 78 

– ice crystals. Because of cirrus specific properties (cloud height, temperature, effective particle size, 79 

surface thermal contrast, ice water path and cloud optical depth; Ackerman et al., 1988; Stephens et 80 

al., 1990; Stephens & Webster, 1981)), in contrast to low- and mid-level clouds, they heat the Earth 81 

(they allows shortwave radiation to reach Earth’s surface and reduces outgoing longwave radiation). 82 

Recent research shows that cirrus radiative forcing varies from about 0.05 Wm−2 for contrails, to 35.5 83 

Wm−2 for cirrus in general (Bock and Burkhardt, 2016; Campbell et al., 2016; Kärcher, 2018; Lolli et al., 84 

2017; Oreopoulos et al., 2017). Additionally, their presence change the radiative forcing of other clouds 85 

for positive as well. For instance, when medium and low clouds co-occur, their radiative effect equals 86 

-18.8 Wm−2. Additional presence of cirrus raises the radiative effect to 50,8 Wm−2 (Oreopoulos et al., 87 

2017). 88 

Cirrus properties description is incomplete without the information about cloud coverage. Most of the 89 

studies, have considered just a total cloud cover, but some of them also study high-level cloudiness. 90 

The global frequency of cirrus occurrence is between 28 and 42% . Research conducted using high 91 

resolution satellite data has shown that global cloud coverage is estimated at about 66% to 74% and 92 

40% of all clouds are high-level clouds (Stubenrauch et al., 2010). According to Sassen et al. (2008) 93 

cirrus cover almost 17% of Earth’s surface. The study of high-level cloud coverage and its trends has 94 

long intrigued scientists. In 1994, Wylie et al. presented global statistics on cirrus clouds over a four-95 

year period, revealing an average cirrus coverage of 42% based on HIRS data. More recently, Li and 96 
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Groß (2022) analyzed a decade of CALIPSO lidar measurements, finding that cirrus clouds over Europe 97 

occur most frequently between 9 to 11 km altitude, with occurrence rates varying seasonally from 98 

about 5% in summer to 12% in winter. Another significant study used 16 years of ISCCP data to identify 99 

trends in cirrus clouds across Europe, noting an increase of 1-2% per decade in regions with high 100 

aircraft traffic, contrasting with a general decline elsewhere (Stordal et al., 2005). A 16-year ground-101 

based lidar study in Gadanki, India, observed peak cirrus occurrence at 14.5 km with a 25% frequency 102 

(Pandit et al., 2015). The most extended study, spanning 20 years (1983-2004) with ISCCP data, 103 

documented high cirrus concentrations in regions such as the South Pacific Convergence Zone, the 104 

Amazon, and central Africa, while noting a global decrease in cirrus clouds except in the southern mid-105 

latitudes, where no significant trend was observed (Eleftheratos et al., 2007). Numerous studies have 106 

explored changes in high-level cloud coverage. However, those relying on satellite data often lack a 107 

focus on cirrus clouds over sufficiently long periods—at least 30 years, as recommended by the WMO. 108 

Conducting such studies and identifying suitable data sources pose significant challenges.  109 

Given the critical role of cloud cover, especially cirrus clouds, in atmospheric studies, the observation 110 

of clouds is considerably significant. Historically first method is visual observation from ground-based 111 

meteorological stations, which is simple and provides long time series data. However, this method has 112 

limitations, including difficulty in detecting high-level clouds due to cloud overlap at multiple altitudes, 113 

perspective issues near the horizon, and the optical thinness of cirrus clouds. Studies have shown that 114 

under optimal conditions, the probability of detecting cirrus clouds visually ranges from 44% to 83% 115 

during the day and 24% to 42% at night. With clouds at all levels, detection probabilities drop to 47%–116 

71% during the day and 28%–43% at night (Kotarba & Nguyen Huu, 2022).  117 

Present cloud climatologies benefit from satellite remote sensing. Initially, this information was 118 

obtained from various imagers, sounders, and radiometers, which utilize passive cloud detection 119 

methods (involving detecting natural radiation emitted or reflected by objects, such as clouds, without 120 

actively sending out signals). Researchers such as Ackerman et al. (2008); Amato et al. (2008); Chen et 121 

al. (2002); Frey et al. (2008, 2020); Gu et al. (2011); Kotarba (2016); Y. Liu et al. (2004); Minnis et al. 122 

(2008); Murino et al. (2014); Musial et al. (2014); Tang et al. (2013) have contributed to these studies. 123 

An example of passive utensil can be MODIS (Moderate Resolution Imaging Spectroradiometer), which 124 

is a key instrument aboard the Terra and Aqua satellites. 125 

Active remote sensing technology relies on its own signal, directing it at an object and analyzing the 126 

response. This allows active sensors, in example CALIPSO’s (Cloud-Aerosol Lidar and Infrared 127 

Pathfinder Satellite Observations) lidar, CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization), to 128 

operate day and night with similar efficiency. Active profiling instruments like CALIOP, which provide 129 

high-resolution vertical profiles of aerosols and clouds, have limitations such as a narrow field of view. 130 
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This narrow view, combined with a long 16-day repeat cycle, results in only about 20 observations per 131 

year of the same region, which is challenging and sometimes insufficient for climatological studies.  132 

Although active sensors, like CALIOP, are currently the best source of cirrus data (Heidinger and 133 

Pavolonis 2009), their potential for construing long-term climatologies is very limited. On the contrary, 134 

passive data are available for last more than 40 years with good enough for climatological research 135 

time resolution (i.e. for MODIS we have access to over 20 years of data), although they were not 136 

designed for cirrus detection. In this paper, we examined utility of MODIS products to create a cirrus 137 

mask by validating them with CALIOP data. Our objective is to determine whether any existing 138 

operational MODIS product detect cirrus clouds as accurately as the CALIPSO does. Specifically, we aim 139 

to assess whether MODIS Cloud Mask, when examining its individual tests could be easily adapted into 140 

an algorithm for masking cirrus clouds. We also seek to identify the conditions under which this 141 

approach would be effective and when it might not be suitable. 142 

Clouds are indispensable to Earth's environmental systems and human life, influencing weather, 143 

climate, water distribution, ecosystems, and various human activities. They affect the Earth’s radiation 144 

budget, with a net radiative forcing of approximately -20 Wm−2 (Boucher et al., 2013), which results in 145 

an overall cooling effect on the planet. Nevertheless, special attention should be paid to high-level 146 

clouds - according to the WMO, high-level clouds include Cirrus, Cirrocumulus, and Cirrostratus (WMO, 147 

1977)(WMO, 1977) - commonly referred to as cirrus. Those clouds play a complex role in climate 148 

regulation. The relation between cirrus particles (size, shape and albedo) and Earth’s radiation budget 149 

has been examined (Kinne and Liou, 1989; Macke et al., 1998; Mishchenko et al., 1996; Stephens et 150 

al., 1990; Zhang et al., 1994, 1999), resulting in a general conclusion that cirrus play an important role 151 

and can warm the atmosphere. They typically have a base above about 8,000 m and consist of small 152 

ice crystals.Those clouds play a complex role in climate regulation. The relation between cirrus 153 

particles (size, shape and albedo) and Earth’s radiation budget has been examined (Kinne and Liou, 154 

1989; Macke et al., 1998; Mishchenko et al., 1996; Stephens et al., 1990; Zhang et al., 1999, 1994), 155 

resulting in a general conclusion that cirrus play an important role and can warm the atmosphere. They 156 

typically have a base above about 8,000 meters and consist of small ice crystals. Due to their unique 157 

properties - such as altitude, temperature, effective particle size, surface thermal contrast, ice water 158 

path, and optical depth (Ackerman et al., 1988; Stephens et al., 1990; Stephens & Webster, 1981), they 159 

differ from low- and mid-level clouds in their effect on the Earth’s radiation budget. Specifically, cirrus 160 

clouds allow shortwave radiation to reach the surface while reducing outgoing longwave radiation, 161 

thereby contributing to warming. Recent research estimates that cirrus radiative forcing of cirrus 162 

globally to approach 35.5 Wm−2  for cirrus globally (Campbell et al., 2016; Kärcher, 2018; Lolli et al., 163 

2017; Oreopoulos et al., 2017). Furthermore, cirrus clouds can alter the radiative forcing of other cloud 164 
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types. For example, when medium and low clouds co-occur, their combined radiative effect is -18.8 165 

Wm−2, but the additional presence of cirrus raises this effect to  50.8 Wm−2 (Oreopoulos et al., 2017). 166 

A description of cirrus cloud properties is incomplete without information about their coverage. Most 167 

studies have focused on total cloud cover, but some have also examined high-level cloudiness. The 168 

global frequency of cirrus occurrence is estimated to range between 17% and 42%. Research 169 

conducted using high-resolution satellite data indicates that global cloud coverage is approximately 170 

66% to 74%, with 40% of all clouds classified as high-level clouds (Sassen et al., 2008; Stubenrauch et 171 

al., 2010). Numerous studies have explored changes in high-level cloud coverage. However, those 172 

relying on satellite data often do not address cirrus clouds over sufficiently long periods—at least 30 173 

years, as recommended by the WMO. Conducting such long-term studies and identifying suitable data 174 

sources remain significant challenges. 175 

Given the critical role of cloud cover, especially cirrus, observing clouds, in atmospheric studies, 176 

observing clouds is of considerable importance. Historically first method is visual observation from 177 

ground-based meteorological stations, which is simple and provides long time series data. However, 178 

this method has limitations, including difficulty in detecting high-level clouds due overlapping clouds 179 

at multiple altitudes, perspective distortions near the horizon, and the optical thinness of cirrus clouds. 180 

Studies have shown that under optimal conditions, the probability of visually detecting cirrus clouds 181 

ranges from 44% to 83% during the day and from 24% to 42% at night. When clouds at all levels are 182 

present, detection probabilities drop to 47%–71% during the day and 28%–43% at night (Kotarba & 183 

Nguyen Huu, 2022).  184 

Modern cloud climatologies benefit from satellite remote sensing. Initially, this information was 185 

obtained from various imagers, sounders, and radiometers, which utilize passive cloud detection 186 

methods (involving detecting natural radiation emitted or reflected by objects, such as clouds, without 187 

actively sending out signals). Researchers such as Ackerman et al. (2008); Amato et al. (2008); Chen et 188 

al. (2002); Frey et al. (2008, 2020); Gu et al. (2011); Kotarba (2016); Y. Liu et al. (2004); Minnis et al. 189 

(2008); Murino et al. (2014); Musial et al. (2014); Tang et al. (2013) have contributed to these studies. 190 

An example of passive sensor can be MODIS (Moderate Resolution Imaging Spectroradiometer), which 191 

is a key instrument aboard the Terra and Aqua satellites.Modern cloud climatologies benefit from 192 

satellite remote sensing. Initially, this information was obtained from various imagers, sounders, and 193 

radiometers, which utilize passive cloud detection methods (involving detecting natural radiation 194 

emitted or reflected by objects, such as clouds, without actively sending out signals). Researchers such 195 

as Ackerman et al. (2008); Amato et al. (2008); Chen et al. (2002); Frey et al. (2008, 2020); Gu et al. 196 

(2011); Kotarba (2016); Y. Liu et al. (2004); Minnis et al. (2008); Murino et al. (2014); Musial et al. 197 

(2014); Tang et al. (2013) have contributed to these studies. An example of passive utensil can be 198 
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MODIS (Moderate Resolution Imaging Spectroradiometer), which is a key instrument aboard the Terra 199 

and Aqua satellites. 200 

Active remote sensing technology, in contrast, relies on its own signal, directing it at an object and 201 

analysing the response. This allows active sensors, for instancein example CALIPSO’s (Cloud-Aerosol 202 

Lidar and Infrared Pathfinder Satellite Observations) lidar, CALIOP (Cloud-Aerosol Lidar with 203 

Orthogonal Polarization), to operate day and night with similar efficiency in cloud detection.. Active 204 

profiling instruments like CALIOP, which provide high-resolution vertical profiles of aerosols and 205 

clouds, have limitations, including a narrow field of view. This narrow view, combined with a long 16-206 

day repeat cycle, results in only about 20 observations per year of the same region, which is challenging 207 

and sometimes insufficient for climatological studies (Kotarba, 2022)..  208 

To standardize cloud classification and ensure consistency, the International Satellite Cloud 209 

Climatology Project (ISCCP) developed a system based on cloud height and optical thickness, providing 210 

a systematic framework for studying cloud types and their variability across regions and over time. This 211 

classification is crucial for advancing climate modelling, weather forecasting, and research on cloud-212 

climate interactions. The ISCCP classification was applied to MODIS data, and its effectiveness in 213 

detecting cirrus clouds was also evaluated. 214 

While active sensors like CALIOP remain the most reliable source of cirrus data (Heidinger and 215 

Pavolonis, 2009),(Heidinger and Pavolonis 2009), , their potential for building long-term climatologies 216 

is limited. In contrast, passive data have been available for over 40 years, offering temporal coverage 217 

suitable for climatological research. OneFor example of such sensors, MODIS has provided more than 218 

20 years of data, although collecting data for over 20 years rather than 40, is MODIS, whoseits 219 

capabilities for detecting cirrus clouds are limited compared to those of active vertical profiling 220 

sensors.  221 

In this paper, we use cirrus characterizations from CALIOP data to exploreevaluate the potential for 222 

creating a cirrus mask from theusing operational MODIS cloud data products.  Our objective is to 223 

determine how well the MODIS products can be used to identify cirrus clouds compared to CALIPSO. 224 

Specifically, we aim to assess whether MODIS cloud detectionCloud Mask, by analysing its individual 225 

tests used to generate MYD35 operational data can, could be re-used for a time-adapted into an 226 

algorithm for cirrus masking. We also seek to identify the conditions under which this approach would 227 

be effective masking of cirrusand when it might not be suitable. 228 

 229 

2. Data and methods 230 

In this study, we use active sensor data for validating passive-based information for determining the 231 

presence of cirrus (for the sake of clarity, throughout this manuscript, all high-level clouds will be called 232 

as cirrus). The active dataset sensor data was collected by the CALIOP lidar aboard the CALIPSO 233 
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satellite, while the passive data was obtained from the MODIS spectroradiometer multi-band 234 

radiometer on the Aqua satellite. The concept behind achieving the research objective was based on 235 

collocation of those two datasets in time and space. In both instances, cirrus clouds are the same 236 

physical phenomenon; however, the distinction arises from the varying sensitivities of the detection 237 

instruments employed, with optical thickness serving as a crucial parameter. CALIPSO is capable of 238 

identifying cirrus clouds with an optical thickness as low as approximately 0.01, while MODIS generally 239 

detects them when the optical thickness is in the range of 0.4 to 0.5 (Menzel et al., 2015). Data for the 240 

year 2015 were analyzed on a global scale, comprising 136,272,209 combined observations from the 241 

aforementioned satellites. The primary requirement was to obtain a sufficiently large sample of 242 

CALIPSO-MODIS match-ups across different seasons and geographic regions, which necessitated one 243 

complete year of global observations. Therefore, 2015 was chosen arbitrarily.were analyzed for the 244 

whole globe. These include 136,272,209 combined observations from the aforementioned satellites. 245 

2.1. MODIS data  246 

MODIS, an advanced instrument aboard NASA's Terra and Aqua satellites, acquires data across 36 247 

spectral bands, spanning wavelengths from visible to thermal infrared (0.4 to 14.4 μm). Its passive 248 

sensors rely primarily on naturally available energy: solar energy reflected from objects or absorbed 249 

and re-emitted The MODIS, an advanced instrument aboard NASA's Terra and Aqua satellites, acquires 250 

data across 36 spectral bands, encompassing wavelengths from visible to thermal infrared (0.4 to 14.4 251 

μm). Its passive sensors relies mostly on naturally available energy: Sun’s energy reflected from the 252 

object or absorbed and reemitted (Ackerman et al., 1998). MODIS provides data at various spatial 253 

resolutions - —250 mmeters, 500 mmeters, and 1 km - kilometer—with a swath width of 2,330 254 

kmkilometers, enabling it to observe the entire Earth twice daily, every one observation during the day 255 

andto two days. It provides data at various spatial resolutions—250 meters, 500 meters, and 1 256 

kilometer with swath width of 2,330 kilometers which observes the entire Earth every one at night. to 257 

two days. Cloud detection results are stored in the 48-bit “Cloud Mask” product, known as MYD35 for 258 

Aqua, while corresponding cloud properties can be found in MYD06 dataset. As an imager, MODIS 259 

provides column-integrated radiances, what which limits its ability to retrieve cirrus-specific 260 

information. the possibilities for cirrus retrieval. 261 

For this research, we used Collection 061 data, which is available in 5-minute granules at a spatial 262 

resolution of 1 km per pixel (at nadir). For this research, we assessed the version of Collection 061 data, 263 

which is available in 5-minute granules at a spatial resolution of 1 km per pixel (at nadir). Each MYD35 264 

and MYD06 file is paired with a MYD03 “Geolocation file” product that contains longitude and latitude 265 

information for each individual cloud mask IFOV (instantaneous fieldInstantaneous Field of view;View, 266 

Guenther et al., 2002). 267 
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 268 

2.1.1. The MODIS Cloud Mask product  269 

The MODIS Cloud Mask product is a Level 2 dataset produced at spatial resolutions of 1 km and 250 m 270 

(at nadir). The cloud masking procedure was described in details by Ackerman et al. (1998), Frey et al. 271 

(2008), and Baum et al. (2012). The algorithm utilizes a sequence of visible and infrared threshold and 272 

consistency tests to determine the confidence level that an unobstructed view of the Earth's surface 273 

is achieved. The MODIS Cloud Mask product is a Level 2 dataset produced at spatial resolutions of 1 -274 

km and 250 -m (at nadir). The cloud masking procedure is detailed in the works of Ackerman et al. 275 

(1998), Frey et al. (2008), and Baum et al. (2012). The algorithm utilizes a sequence of visible and 276 

infrared threshold and consistency tests to determine the confidence level that an unobstructed view 277 

of the Earth's surface is achieved. The MYD35 dataset includes data from the Aqua satellite.  278 

In this research, we considered analyzed 6 ready-to-use  MODIS tests. Individual tests were described 279 

by Ackerman et al. (1998): 280 

− Thin Cirrus test (SOLAR) – the solar channels in MODIS cover a range of wavelengths primarily 281 

in the visible and near-infrared spectrum (0.4 to 2.5 µm). This test uses the solar range to set 282 

the confident clear and middle thresholds to define the range of expected reflectances from 283 

thin cirrus. It indicates that a thin cirrus cloud is likely to be present. Test is only useful during 284 

daytime. 285 

− Thin Cirrus test (IR) – the purpose of this test is detecting thin cirrus clouds. Channels used for 286 

this test are 11 μm an 12 μm (infrared (IR) range), incorporated to the split window technique. 287 

− High Cloud Test (BT13.9) – applying CO2 absorption channels (around 14 μm) is a simple 288 

technique got from the CO2 slicing method (suitable for determining middle and upper 289 

troposphere ice clouds heights and effective amounts). This test is useful for high-level cloud 290 

detection, while it can reveal clouds above 500 hPa. 291 

− High Cloud Test (BT6.7) – test designed for detecting thick high clouds. Starting from the 292 

ground level, the 6.7 μm radiation emitted by the surface or low clouds is absorbed in the 293 

atmosphere, therefore the signal is not received by an instrument. Water vapor in the 294 

atmospheric layer between 200 hPa and 500 hPa The  water vapor in layer in the atmosphere 295 

between 200 hPa and 500 hPa is the only source of the 6.7 μm radiation in clear-sky 296 

observation. Thick clouds placed above or near the 200 hPa level can be distinguish from clear 297 

sky or lower clouds. 298 
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− High Cloud Test (BT1.38) – the 1.38 μm channel lies in the strong water vapor absorption 299 

region. That results in obscuration of the most of Earth’s surfaces, as well as attenuation of 300 

reflectance from low- and mid-level clouds. Pixels subjected to this test reveal high-level thin 301 

clouds as brighter.Pixels with this test applied, reveals high-level thin clouds as brighter. 302 

Unfortunately, the test has certain limitations, including its applicability to nighttime 303 

conditions, polar regions, midlatitude winters, and high elevations.. 304 

− High Cloud Test (BT3.9-12.0) – the 3.9-12.0 μm BTD (Brightness Temperatures Difference) test 305 

is specifically designed for nighttime observations over land and polar snow/ice surfaces. It 306 

effectively distinguishes thin cirrus clouds from cloud-free conditions It is effective in 307 

distinguishing between thin cirrus clouds and cloud-free conditions and exhibits relative 308 

insensitivity to the atmospheric water vapor content (Hutchinson and Hardy, 309 

1995)(Hutchinson and Hardy, 1995). 310 

Additionally, we independently developed a unified approach to combine all tests, which we 311 

termed All Tests Consolidation (ATC). If any)unification of all tests, which we called All Tests 312 

Consolidation (ATC). If any one (∃ - there is at least one) of the nine tests (t) detected cirrus clouds, 313 

the output flag (OF) was set to indicate the presence of cirrus.we set the output flag (OF) to 314 

indicate cirrus. 315 

If ∃ i∈{1,2,…,9} (ti=1), then ATCOF=1 316 

Conversely, if no cirrus clouds were detected by all any of the tests (∀ - for every), provided they 317 

were all conducted, no cirrus flag was set.  318 

If ∀ i∈{1,2,…,9} (ti=0), then ATCOF=0 319 

ATC is essentially an adaptation of the MYD35MOD35 approach, but it is limited to tests that 320 

specifically provide insights specifically about cirrus clouds. 321 

2.1.2. The MODIS Cloud Product  322 

As described by Menzel et al. (2015) the MODIS Cloud Product uses a combination of infrared and 323 

visible techniques to determine cloud physical and radiative properties. It derives cloud-particle phase, 324 

effective particle radius, and optical thickness from visible and near-infrared radiances, and indicates 325 

cloud shadows. Infrared methods provide cloud-top temperature, height, effective emissivity, phase, 326 

and cloud fraction, both day and night, at 1-km-pixel resolution. Additionally, the product includes 327 
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cirrus reflectance at 1-km resolution, used to correct for cirrus scattering in land-surface reflectance. 328 

to correct for cirrus scattering in land-surface reflectance. For Aqua satellite, dataset is called MYD06. 329 

In addition to the ready-to-use MODIS tests (Section 2.2.1), other criteria can be applied using data 330 

available from MODIS and CALIOP. For instance, the ISCCP’s definition of cloud types. By examining 331 

visible and infrared radiances from geostationary and polar-orbiting meteorological satellites and 332 

making assumptions about cloud layering, thermodynamic phases, and properties, ISCCP characterizes 333 

a cloudy satellite pixel using the column visible optical depth (COT) and the cloud-top pressure (CTP) 334 

of the highest cloud layer. This information is used to classify  different cloud types as shown in the 335 

figure 1 (Rossow and Schiffer, 1999). In addition to the ready-to-use MODIS tests (Section 2.2.1), other 336 

criteria can be applied using data available from MODIS and CALIOP. For instance, the ISCCP’s Beside 337 

ready-to-use MODIS tests (Section 2.2.1), other criteria may be applied using available for MODIS and 338 

CALIOP data, e.g. the ISCCP’s (The International Satellite Cloud Climatology Project; 339 

https://isccp.giss.nasa.gov), which was established in 1982 as part of the World Climate Research 340 

Programme (WCRP; https://www.wcrp-climate.org/) to gather the global distribution of clouds, their 341 

properties, and their diurnal, seasonal, and interannual variations) definition of cloud types. The 342 

developers of ISCCP deserve significant recognition for their foresight, as more than fourty years later, 343 

ISCCP remains a leading referencecontinues to be a leading reference for describing the cloudy 344 

atmosphere. By examining visible and infrared radiances from geostationary and polar-orbiting 345 

meteorological satellites and making assumptions about cloud layering, thermodynamic phases, and 346 

properties, ISCCP characterizes a cloudy satellite pixel using the column visible optical depth (COT) and 347 

the cloud-top pressure (CTP) of the highest cloud layer. This information is used to classify can be used 348 

to classify different cloud types as shown in the figure 1 (Rossow and Schiffer, 1999).  349 

COT and CTP areareis also available for MODIS, within MYD06 standard product, and we used it them 350 

to generate cirrus masks basedaccording tobased on the ISCCP definition. We considered two variants 351 

of the mask, defining cirrus as: 352 

- a cloud with an optical thickness less than 3.6 and a top pressure below 440 hPa (hereinafter ISCCP3.6 353 

test), 354 

- a cloud with an optical thickness less than 23 and a top pressure below 440 hPa (hereinafter ISCCP23 355 

test). 356 
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 357 

Fig. 1. Cloud-type definitions used in the ISCCP D-series  358 

 359 

2.2.  CALIOP data 360 

CALIOP provides atmospheric profiles with vertical resolutions ranging from 30 m below 8.2 km to 180 361 

m above 20.1 km, and 60 m between these altitudes (Winker et al., 2006). This capability allows for 362 

clear distinction between cirrus and lower cloud layers, making CALIOP excellent for cirrus detection. 363 

Furthermore, lidar can detect cirrus clouds with an optical depth as low as 0.01 (Vaughan et al., 2009), 364 

a capability beyond the reach of other imagers (Ackerman et al., 2008). Being an active sensor, lidar 365 

offers similar effectiveness in cloud detection both daytime and nighttime, or even higher during night, 366 

when backscattered light does not interfere with diffused solar radiation (McGill et al., 2007).Active 367 

sensors, forin example CALIOP, operate both day and night. Unlike passive methods, CALIOP’s cloud 368 

detection accuracy is even higher at night than during the day (McGill et al., 2007). CALIOP provides 369 

high-resolution atmospheric profiles, with vertical resolutions ranging from 30 m below 8.2 km to 180 370 

m above 20.1 km, and 60 m between these altitudes (M. Winker et al., 2006). This capability allows for 371 

clear distinction between cirrus and lower cloud layers, making CALIOP excellent for cirrus detection. 372 

Furthermore, lidar can detect cirrus clouds with an optical depth as low as 0.01 Additionally, lidar can 373 

detect cirrus clouds with an optical depth of 0.01 or less (Vaughan et al. 2009), a capability beyond the 374 

reach of other imagers (Ackerman et al. 2008; Hutchison et al. 2014).  375 

In this research, the lidar level-2 cloud layer at 5-km horizontal resolution, version 4.20 376 

(CAL_LID_L2_05kmCLay-Standard-V4–20) product was used.  As described by Liu et al. (2009)(2009) 377 

and Vaughan et al. (2009) this product reports cloud layers and cloud type information, with cirrus as 378 
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a separate class (. There are seven primary categories, including clouds and aerosols, and within the 379 

cloud category, eight subtypes are defined (e.g., cirrus is categorized as type 6). There are seven 380 

categories including clouds and aerosols. Inside the cloud class, 8 subtypes can be found (i.e. 381 

cirrus).The detection of cirrus clouds is based on the analysis of the backscatter coefficient and the 382 

lidar signal’s depolarization ratio, which differentiates ice particles, characteristic of cirrus clouds, from 383 

water droplets. The depolarization ratios for Cirrus clouds are higher than those for water-based 384 

clouds, enabling their identification. Additionally, CALIOP provides anprecise information about the 385 

cloud base and top altitudes, allowing for accurate determination of their position in the atmosphere.  386 

The quality of CALIOP’s detection is reflected in described by the CAD (cloud-aerosol discrimination 387 

(CAD) score, which ranges from -100 to 100. Quality of CALIOP’s detection is described by CAD (cloud-388 

aerosol discrimination) score, which ranges from -100 to 100. Value -100 indicates high confidence of 389 

aerosol detection, while a value of 100 indicates high confidence in cloud detection. A medium value 390 

(0) signifies equal probability that the feature is a cloud or aerosol ; value 100 shows that cloud was 391 

detected with high confidence; medium value (0) means that there is the same probability that the 392 

feature is cloud or aerosol (Liu et al., 2009; Vaughan et al., 2009)(Liu et al., 2009; Vaughan et al., 2009). 393 

In this study, we usedonly useused only observations with a CAD score higher than 80. The optical 394 

depth is also provided in this (CAL_LID_L2_05kmCLay-Standard-V4–20) CALIOP product. 395 

For the purpose of this research, we regard consider CALIPSO as the reference for cirrus clouds 396 

detection. This choice is based on the lidar's high sensitivity to optically thin clouds and its reliable 397 

performance in both daytime and nighttime conditions.This choice is driven by the lidar’s high 398 

sensitivity to optically thin clouds and its reliable performance in both daytime and nighttime 399 

conditions. 400 

 401 

2.3. Matching datasets 402 

In order to achieve the goal of this study, MODISNASA and CALIOP data were collocatedits partners 403 

operate a group of Earth-observing satellites in space and time. It was possible because Aqua and 404 

CALIPSO operated for 12 years (2006-2018) as a part of satellite constellation commonlysun-405 

synchronous polar orbits, known as the Afternoon Constellation. MembersThis constellation has 406 

changed over time as satellites have moved out of the constellation used sun-synchronous polar orbits 407 

of 16-day revisit cycle, and with equatorial crossing time at 13or have deorbited, but Aqua remained a 408 

key member while CALIPSO began to move out of it in 2018. Afternoon Constellation crosses the 409 

equator in a northbound direction around 1:30 PM local solar time (ascending node). CALIPSO followed 410 

Aqua spacecraft, providing near-simultaneous observations from multiple instruments. Aqua and 411 

CALIPSO, with nearly identical orbital configurations, operated in close proximity from 2006 to 2018, 412 

trailing by approximately one minute (Stephens et al., 2018), enabling quasi-simultaneous 413 
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synchronized observation of the same part of the atmosphere, as 1 kmtimes and a shared 16-day 414 

revisit cycle despite slightly differing ground track of CALIOP always overlapped with 2330 km wide 415 

imagery of MODIStracks. 416 

Collocating MODIS with CALIOP has been frequently used to validate reliability of MODIS datasets, or 417 

to developed a new, joint imager-lidar atmospheric products (e.g. Baum et al., 2012; Holz et al., 2009; 418 

Kotarba, 2020; Sun-Mack et al., 2014; Wang et al., 2016; Xie et al., 2010). Either 333 m, 1 km, or 5 km 419 

lidar data may be considered, however only 1 km and 5 km products offers cloud type classification. 420 

Additionally, only 5 km product informs about cloud optical thickness per cloud layer, and provides 421 

superior cirrus detection due to higher sensitivity (noise level decreases as more profiles is integrated 422 

into retrieval).  423 

From the geometry point of view, a 5 km profile is an aggregation of five consecutive 1 km profiles, 424 

and the geo-coordinates of the central one are saved as representative for 5 km profile. It possess a 425 

challenge when MODIS andUsing CALIOP data for the calibration and validation of atmospheric 426 

products from various space missions is a well-established practice. This method has been extensively 427 

applied to Aqua MODIS (Baum et al., 2012; Holz et al., 2009; Kotarba, 2020; Sun-Mack et al., 2014; 428 

Wang et al., 2016; Xie et al., 2010). 429 

For this study, Aqua MODIS data and corresponding CALIOP are to be matched: one 5 km profile of 430 

CALIOP only can be accurately matched to one 1 km MODIS pixel, while 5 km data actually covers five 431 

MODIS pixels. To overcome this problem we matched CALIOP with MODIS using non-aggregated, 1 km 432 

data, and only then assigned 5 km data to already collocated MODIS-CALIOP pairs. As a result, one 5 433 

km profile of CALIOP was used to characterize five MODIS pixels.  434 

Aqua and CALIPSO ground tracks are offset by 100-120 km at the equator (decreasing towards the 435 

poles). It means, that they observe the atmosphere from slightly different angles, causing a parallax 436 

shift. We did not correct the data for parallax, as its impact only would be observed close to the edges 437 

of clouds, which are small fraction of all observations, or for investigating dynamically-changing cloud 438 

top properties (Wang et al., 2011) which was not the case of our investigation. 439 

This study relied on MODIS-CALIOP observations for 2015, and the year was were matched. The 440 

matching process involved selecting a MODIS IFOV and comparing it with the corresponding CALIOP 441 

profile, ensuring the geometric center fell within the selected arbitrary, as the only requirements was 442 

to consider a relatively large (year-long) MODIS IFOV. Due to the orbital configuration of the two 443 

missions, CALIOP could only sample of global observations of clouds.  Eventually, our database 444 

consisted of MODIS IFOVs near the MODIS nadir because of nadir-pointing instrument, preventing 445 

matching observations across the entire MODIS swath. Despite the length of the period (1 year), the 446 
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procedure resulted in a sufficient number of observations (136,272,209 paired MODIS-CALIOP 447 

observations; the average spatial distance between geometrical centers of matched MODIS pixel and 448 

CALIOP profile was 444 m (std. dev. = 231 m), while the average temporal separation reached 84 449 

seconds (std. dev. = 12 seconds).   450 

The final,) as each MODIS granule contains approximately 2,030 IFOVs, and a full day of Aqua 451 

observations produces 288 granules. The aggregated MODIS–CALIOP statistics were compiled into 452 

global maps, each with a spatial resolution of 5° in both longitude and latitude. 453 

2.4. Evaluation of MODIS data 454 

The comparison was conducted at the pixel level, using a confusion matrix as the basis for calculations. 455 

ThisIt givesThis approach provides a detailed comparison of the model's predictions against the actual 456 

results.  For clarity, Table 1 provides an explanation of abbreviations related to statistical measures.  457 

Table 1. Abbreviations 458 

Abbreviation Definition 

TP True Positives 

FP False Positives 

TN True Negatives 

FN False Negatives 

ROP Rate of Observations Performed 

POD Probability of Detection 

FAR False Alarm Rate 

OA Overall Accuracy 

Kappakappa Cohen’s kappa k coefficient 

PE Expected agreement 

n Number of elements in the set 

 459 

The structuresStructure of confusion matrix is presented in Table 2. 21. and includes the following 460 

elements: 461 

− True Positives (TP): The count number of cases where MODIS accurately identified the 462 

existing (according to CALIOP) cirrus. 463 

− False Positives (FP): The number count of cases where MODIS incorrectly identified the 464 

high-level cloud, meaning it detected cirrus presence when it was actually absent. 465 

− True Negatives (TN): The number count of cases where MODIS correctly did not detect 466 

the presence of the cloud. 467 
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− False Negatives (FN): The number count of cases where MODIS overlooked the cirrus 468 

occurrence. 469 

 470 

 471 

Table . 12. Confusion matrix 472 

  CALIPSO 

(REFERENCE DATA) 

  Cirrus No Cirrus 

MODIS Cirrus True positive (TP)  False positive (FP) 

 No Cirrus False negative (FN) True negative (TN) 

 473 

Every result undergoes a thorough validation through different parameterparameters estimation using 474 

feature-based statistics (Stanski et al., 1989). To describe the data accuracy, the probability of 475 

detection (POD) characteristics [1] and false alarm rate (FAR) statistic [2] metrics were calculated: 476 

Probability of detection (POD) – is a metric used to assess the effectiveness of a detection system. In 477 

the context of cloud detection, POD indicates how well the detection algorithm correctly identifies the 478 

presence of clouds when they are actually present. A higher POD value signifies better performance of 479 

the detection system. 480 

POD = TP/(TP+FN) [1] 481 

False alarm rate (FAR) – is a metric that measures the frequency of incorrect positive detections by a 482 

system. In the context of cloud detection, a lower FAR indicates a more accurate system, with fewer 483 

instances of falsely identifying clouds when they are not present. 484 

FAR = FP/(FP+TN) [2] 485 

 486 

 487 

 488 

 489 

The incident frequencies within the matrix enabled the identification of two more diagnostic 490 

measures: 491 

Overall accuracy (OA) – is a metric that measures the proportion of correct predictions made by a 492 

detection system out of all predictions. In cloud detection, higher overall accuracy indicates that the 493 

system effectively identifies both the presence and absence of clouds correctly. 494 

OA  = (TP+TN)/n [3] 495 
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Cohen’s kappa k – Cohen's kappa is a statistical metric used to assess the degree of agreement between 496 

two raters or classification methods. Its scale ranges from -1 to 1, where a value of 1 represents perfect 497 

agreement, 0 indicates agreement no better than chance, and negative values indicate agreement 498 

worse than chance. In cloud detection, a higher kappa value indicates stronger agreement between 499 

the detected presence of clouds and their actual presence, while considering the possibility of random 500 

agreement. 501 

k = (OA - PE )/(1-PE ) [4] 502 

where 503 

 PE – expected agreement 504 

PE  = [(TP +FP)(TP+FN) + (TN+FP)(TN+FN)]/n2 [5] 505 

n = TP + FP + FN + TN [6] 506 

 507 

The accuracy of high-level cloud detection was evaluated using the aforementioned metrics, 508 

differentiated by day and night, latitude, cloud optical depth, the number of detected cloud layers, and 509 

land classification. This assessment was conducted for the entire year 2015, as well as specifically for 510 

January and July (those two months are presented to exemplify the characteristics of two distinct 511 

seasons). 512 

 513 

2.5. Bootstrap sampling 514 

Due to the nature of cirrus cloud occurrences (18.7% in 2015, see Section 3), we can assume that the 515 

data sample will be imbalanced and one class (without cirrus) significantly outnumbers the other. 516 

Therefore, for such data, the appropriate statistical method to apply is bootstrap sampling (Efron, 517 

1980). 518 

The balancing the sample stems from the issue of class imbalance, potentially skewing the statistical 519 

analysis and leading to biased results. To mitigate this, the bootstrap method is employed to artificially 520 

balance the dataset. This involves resampling the data with replacement, to ensure that each class has 521 

a comparable number of instances. By doing so, the analysis can yield more reliable, rather than being 522 

dominated by the majority class. When a sample is drawn from a population, the statistical measures 523 

derived from that exhibit sampling variability. The fundamental concept of bootstrap revolves around 524 

resampling the original dataset with replacement to generate multiple bootstrap samples. In our study, 525 

for 1000 iterations, we selected a sample with replacement that included all observations indicating 526 

the presence of cirrus clouds (according to CALIPSO), as well as an equal number randomly drawn from 527 

the remaining observations. Each time, the previously described measures were calculated. After 528 

performing these calculations 1000 times, the average of these measures was computed. 529 
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To demonstrate the concept of bootstrap sampling, we conducted a simple experiment using a dataset 530 

consisting of 100 observations. Of these, 15 correspond to cirrus clouds (positive class), and 85 531 

correspond to non-cirrus clouds (negative class). Given the significant class imbalance, many models 532 

tend to favor the majority class, leading to overly optimistic accuracy metrics. For example, a naive 533 

model that predicts "non-cirrus" for all observations achieves an overall accuracy (OA) of 85%, 534 

correctly classifying all negative instances while entirely disregarding the minority class: 535 

OA  = (TP+TN)/n =(0+85)/100=0.85  (85%) 536 

To mitigate this imbalance, we applied bootstrap sampling to generate a balanced dataset through 537 

resampling with replacement, ensuring an equal number of positive and negative instances (e.g., 15 538 

cirrus and 15 non-cirrus cases). When the same naive model was applied to the balanced dataset, the 539 

overall accuracy dropped to 50%, highlighting the model's inability to correctly classify the minority 540 

class:  541 

OA  = (TP+TN)/n =(0+15)/30=0.50  (50%) 542 

This experiment illustrates how bootstrap sampling can reveal the shortcomings of models trained on 543 

imbalanced datasets, offering a more accurate and realistic assessment of model performance. 544 

The bootstrap has been already widely used among climatological studies. It has been employed to, 545 

among others, estimate confidence interval (Jolliffe, 2007), forecast storm track (Wilks et al., 2009), 546 

project future climate (Orlowsky et al., 2010), verify potential predictability of seasonal mean 547 

temperature and precipitation (Feng et al., 2011), study seasonal prediction of drought (Behrangi et 548 

al., 2015), inspect macrophysical properties of tropical cirrus clouds (Thorsen et al., 2013), evaluate 549 

sampling error in TRMM/PR rainfall products (Iida et al., 2010). 550 

3. Cirrus clouds in 2015 551 

Before conducting an analysis to assess the agreement in high-level cloud detection between CALIOP 552 

and MODIS data, we examined the cirrus coverage in 2015 according to reference data (CALIOP). The 553 

Cirrus cloud mask (Ci) was generated by applying a condition that classified each 54-degree pixel based 554 

on the proportion of observations identified as Cirrus. Specifically, the number of Cirrus observations 555 

(nCi) and non-Cirrus observations (nNONCi) within each pixel were counted. The percentage of Cirrus 556 

observations (CiCoverage) for a given pixel was a fraction of observations with cirrus detected to all 557 

observations.calculated using the formula: 558 

𝐶𝑖𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
nCi

nCi + nNONCi
∗ 100 559 
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This approach ensures that the mask reflects the relative frequency of Cirrus clouds within each 54-560 

degree pixel, providing a spatially resolved representation of their distribution.  561 

The distribution of cirrus clouds (Fig. 2.) varies globally and is affected by factors such as latitude and 562 

atmospheric dynamics. According to (Sassen et al. (2008),., 2008), the total frequency of cirrus clouds 563 

from 15 June 2006 to 15 June 2007 was reported as 16.7%, compared to 18.7% observed in our study 564 

for 2015. However, according to the research by Kotarba (2022), annual mean values of cloud amount, 565 

derived from CALIPSO, can vary significantly (over 10 p.p.) between years due to sampling frequency.  566 

Cirrus clouds are more frequently observed at night, particularly in tropical and mid-latitude regions, 567 

with their occurrence peaking around midnight and reducing during the day also according to Noel et 568 

al. (2018). Moreover, frequencies of stratospheric cirrus clouds measured by CALIPSO from 2006 to 569 

2012 are 2-3 times higher are detected at night time rather than at daytime (Zou et al., 2020). 570 

Nevertheless, the day-night difference observed in Sassens’s (2008)their study was smaller than in 571 

ours, with values of 15.2% during the day and 18.3% at night, compared to 13.2% (Fig. 2a.) and 23.3% 572 

(Fig. 2b.), respectively, in our analysis. These differences may stem from the use of different versions 573 

of source datasets or the application of varying data quality filtering criteria. The higher detectability 574 

of nighttime cirrus clouds may also be attributed to reduced noise in lidar signals under nighttime 575 

conditions. Additionally, the differences might also reflect more intense convective activity and 576 

increased formation of cirrus clouds during the night. 577 

In our study, nearBased on the CALIOP dataset, cirrus cloud coverage reached 18.7% in 2015, daytime 578 

coverage of high-level clouds in 2015 was recorded at 13.2% (Fig. 2a.), whereas nighttime coverage 579 

was higher, measured at 23.3% (Fig. 2b.). Near the equator, especially within the tropical belt, cirrus 580 

cloud cover exhibits peak values throughout the year, reaching approximately 35% during nighttime 581 

and 20% during daytime. In certain locations, particularly during nighttime, the high-level cloudiness 582 

has been observed to exceed 50%. In the mid-latitudes of both hemispheres, the distribution of clouds 583 

varies with the seasons, generally showing lower coverage compared to low latitudes, with 584 

approximately 10% during daytime and 20% at night. In polar regions, particularly above approximately 585 

60° latitude, cirrus cloud cover tends to be higher than in mid-latitudes, with nighttime coverage 586 

generally higher than daytime (Fig. 3.). 587 

nighttime coverage generally higher than daytime (Fig.  588 
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3.). 589 

Fig. 3. Cirrus coverage as a function of latitude  
           (CALOP data) 

Fig. 2. CALIOP-based cirrus cloud coverage in 2015- daytime (a) and nighttime (b) 

Fig. 4. Cumulative ratio of cirrus clouds with respect to COT  
            (CALIOP data) 
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 590 

 591 

Additionally, CALIOP, measures the cloud optical thickness (COT) for individual layers as well as for the 592 

entire atmospheric column (Fig. 4.). When CALIOP detects multiple cirrus cloud layers, the COT values 593 

for all layers flagged as Cirrus are summed. The mean COT for cirrus COTclouds was observed to be 594 

0.72 during daytime and 0.84 at nighttime, indicating a notable increase. For the entire column (all 595 

cloud layers in optical thicknesscolumn), the average COT measured by CALIOP was 4.26 during the 596 

day and 4.20 at night. This can raise important question about the underlying cause of this difference. 597 

One possible explanation is that the increased nighttime COT enhances the likelihood of cirrus cloud 598 

detection, as lidar systems like CALIPSO have greater sensitivity to optically thicker clouds. 599 

Consequently, this could lead to a higher observed cloud cover at night simply due to improved 600 

Fig. 3. Cirrus coverage as a function of latitude  
           (CALOP data) 

Fig. 4. Cumulative ratio of cirrus clouds with respect to COT  
           (CALIOP data) 

Fig. 2. CALIOP-based cirrus cloud coverage in 2015- daytime (a) and nighttime (b) 



 

22 

 

detectability rather than actual physical differences in cloud properties. Alternatively, data filtering 601 

processes might contribute to the observed disparity. 602 

4. Evaluation of MODIS data 603 

Using CALIPSO data as the reference, nine methods for detecting cirrus clouds with MODIS data were 604 

evaluated. All tests were applicable during daytime, whereas only five could be utilized at nighttime 605 

due to the requirement of solar illumination.  606 

The measures describedDdescribed in section 2 measures are presented in tab.Table 323. The 607 

parameters that, in our opinion, precluded the use of the test arehave beenare highlighted in bold. 608 

Additionally, they are preceded with by the rate of observations performed (ROP) parameter, which is 609 

the fraction of total observations for which the specific test could be conducted. 610 

During daytime, the first four methods (SOLAR, IR, BT13.9, BT6.7) exhibited notably low detection 611 

effectiveness (with POD ranging between 0.33 and 15.79%), as well as low kappa coefficients (0.01-612 

0.48). Although the test was performed on a relatively high proportion of observations (78.37% - 613 

97.59%), with a low number of false alarms (FAR between 1.23% and 13.16%) and good overall 614 

accuracy (OA ranging between 48.61% and 53.80%), the poor detection capabilities (indicated by POD) 615 

rendered these data inadequate as reliable sources of information on the occurrence of Ci clouds. The 616 

differing parameters excluded tests BT3.9-12.0 and those with ISCCP criteria from consideration. The 617 

limited number of observations with available results from these tests rendered them impractical for 618 

use.  619 

The two tests most effective globally were BT1.38 and ATC. With very similar parameters (POD, FAR, 620 

OA and kappaKappa) the ATC test demonstrated superiority due to a significantly higher number of 621 

available observations (78.37% vs 98.67%, respectively). 622 

Among the night tests, IR, BT13.9, and BT6B6.7 exhibited low detection capabilities (POD 0.60% - 623 

10.59%), whereas the BT3.9-12.0 test was performed only on 38.09%  of the observations. As with the 624 

daytime tests, the ATC test proved to be the most suitable for detection. 625 

Considering that global statistics for January and July were not markedly different from the yearly 626 

averages (Table 3. 23.), subsequent analyses were conducted using data from the entire year.  627 

Table 3.. 23. Goodness-of-fit  of cloud detection between MODIS and CALIOP. Bold - parameters that precluded the use of 628 

the test 629 

 Daytime Nighttime 

 Accuracy measures 
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 ROP [%] POD FAR OA k ROP [%] POD FAR OA k 

 2015 

SOLAR 78.37 15.79 13.16 51.66 0.03 0.00 NA NA NA NA 

IR 83.32 12.56 4.37 53.80 0.48 73.98 10.59 3.27 54.94 0.52 

BT13.9 65.52 1.35 3.59 48.61 -0.02 71.02 2.13 3.42 50.67 -0.01 

BT6.7 97.59 0.33 1.23 49.92 -0.01 91.44 0.60 1.58 50.23 -0.01 

BT1.38 78.37 77.76 28.28 74.71 0.49 0.00 NA NA NA NA 

BT3.9-12.0 7.39 64.48 15.36 72.41 0.46 38.09 39.09 5.46 65.26 0.33 

ATC 98.67 80.87 34.86 72.98 0.46 94.84 25.46 6.90 59.50 0.19 

ISCCP23 37.97 84.16 72.00 61.26 0.13 0.00 NA NA NA NA 

ISCCP3.6 37.97 33.30 16.54 58.96 0.17 0.00 NA NA NA NA 

 January 2015 

SOLAR 74.84 15.08 13.50 49.28 0.02 0.00 NA NA NA NA 

IR 78.95 12.47 4.54 51.81 0.46 72.30 10.53 3.46 54.07 0.51 

BT13.9 67.59 1.66 3.66 46.28 -0.02 72.26 2.36 3.32 49.65 -0.01 

BT6.7 97.95 0.23 1.09 49.68 -0.01 99.97 0.59 1.43 49.59 -0.01 

BT1.38 74.84 79.65 31.69 74.22 0.48 0.00 NA NA NA NA 

BT3.9-12.0 7.02 56.89 13.50 69.48 0.41 41.19 35.00 3.80 64.37 0.30 

ATC 98.98 80.23 34.17 73.03 0.46 99.98 23.38 6.12 58.63 99.98 

ISCCP23 38.55 84.27 68.88 64.10 0.17 0.00 NA NA NA NA 

ISCCP3.6 38.55 33.38 14.58 59.27 0.19 0.00 NA NA NA NA 

 July 2015 

SOLAR 84.32 16.57 11.58 53.99 0.05 0.00 NA NA NA NA 

IR 92.26 11.99 3.76 54.17 0.49 68.77 10.02 2.61 57.81 0.56 

BT13.9 65.65 1.89 3.72 49.61 -0.02 67.48 2.62 3.93 53.88 -0.01 

BT6.7 99.69 0.15 1.06 49.63 -0.01 81.30 0.84 1.96 52.06 -0.01 

BT1.38 84.32 74.97 22.06 76.52 0.53 0.00 NA NA NA NA 

BT3.9-12.0 7.67 72.20 21.54 74.30 0.47 37.58 47.02 7.95 67.82 0.38 

ATC 99.96 83.14 31.76 75.69 0.51 88.61 30.47 7.99 62.05 0.23 

ISCCP23 36.57 85.54 74.77 61.16 0.12 0.00 NA NA NA NA 

ISCCP3.6 36.57 32.84 16.26 58.67 0.17 0.00 NA NA NA NA 

As previously mentioned, all statistical measures were also calculated for different latitudes (Fig. 5.). 630 

The observed latitudinal variability can be attributed to the physical properties of the different 631 

radiation wavelengths used by each channel, as well as their specific functions. Additionally, this 632 

variability is influenced by factors such as the spatial distribution of Cirrus clouds and the varying 633 

illumination conditions across latitudes. The observed latitudinal variability can be attributed to the 634 
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physical properties of the respective radiation range and the intended function of the specific channel, 635 

as well as to the spatial distribution of cirrus clouds occurrence. For almost all of the tests we observe 636 

the ROP (Fig. 5a. & Fig. 5b.) decrease with the latitude increase. This is related to presence of solar 637 

illumination. The exception is ROP according to BT3.9-12.0 (which increase from 0% in tropics to almost 638 

30% in polar region) which and was specifically designed for nighttime observations over land and 639 

polar snow/ice surfaces. ROP for both tests using ISCCP criteria is equal.  640 

The latitudinal distribution of POD during the day (Fig. 5c.) showsshowsn that ISCCP criteria the most 641 

accurately detected cirrus clouds in the tropical regions (up to 75% for ISCCP23 and almost 100% for 642 

ISCCP3.6), with POD reduction with latitude decrease (to about 10% and 40% respectively). A 643 

similarsSimilar pattern was observed i.e. for BT13.9 method, but with cirrus detection capabilities 644 

about 3 times inferior. Depending on the test, latitudinal variability of POD could be also higher for 645 

mid-latitudes (ATC), low latitudes (test utilizing the solar radiation range), or remained relatively 646 

unchanged. There is no clear trend of increasing/decreasing POD with latitude during the night (Fig. 647 

5d.; slightly more cirrus correctly detected for polar regions by IR, BT13.9 and BT3.9-12.0 tests). The 648 

mid-latitudes exhibit POD drop for BT6.7 test, and consequently ATC test. 649 

Figure 5 (Fig. 5e. & Fig. 5f.) shows also the latitudinal variability of FAR. In the tropical regions most of 650 

the tests show peak of falsely reported cirrus clouds during daytime in equatorial region (with 651 

maximum exceeding 90% for ISCCP23 and 50% for ISCCP3.6). Additionally, BT1.38 test falsely detects 652 

cirrus more often with increasing latitude, which increase, whichat results with in ‘bimodal’ FAR 653 

distribution with peaks in tropics (about 35%) and midlatitudes (75% for northern hemisphere and 30% 654 

for southern). A distribution resembling BT1.38 exhibited test ATC, but with an upward shift of about 655 

10 percentage points. Relatively few falsely observed cloud cases, with similar to the daytime 656 

distribution, were detected at night. 657 

No significant differences were found between the equatorial and polar regions for all the tests for OA. 658 

For the daytime the latitudinal variation was more readily observable and varied (Fig. 5g. & 5i. vs Fig. 659 

5h. & 5j.). 660 
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 661 

Fig. 5. Cirrus detection accuracy with respect to the latitude (letters (a, …, j) used to facilitate reference in the text) 662 
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Considering the very high proportion of correctly detected cirrus clouds, the high overall accuracy and 663 

kappa coefficient (degree of agreement between two classification methods), ATC test showed the 664 

highest agreement with CALIOP data. Additionally, it covers nearly all observations in the test (96.7%) 665 

and shows relatively low variability of statistical measures across different latitudes. Therefore, it can 666 

be used as a basis for studiesstudiesy evaluating cirrus cloud coverage in long term perspective. 667 

To ensure the ATC test performs optimally under various conditions and to provide a comprehensive 668 

analysis, fit measures were additionally evaluated for “number of layers found” (NLF, Fig. 6.) and IGBP 669 

(The International Geosphere–Biosphere Programme, tab.Table 4).  670 

Since CALIOP data products allowis a lidar providing high-resolution atmospheric profiles, with vertical 671 

resolutions ranging from 30 m to report up to 180 m, it’s output could be divided into maximum 10 672 

cloud layers within a profile.. When multiple cloud layers overlap, the lidar signal may be attenuated, 673 

potentially leading to underestimation of cloud detection. Our research evaluated the collocation of 674 

MODIS data to the reference CALIOP data, segmented by the number of detected cloud layers 675 

excluding cirrus clouds. A zero indicated that no other cloud layers were detected besides possible 676 

cirrus in a given profile. Both day and night observations revealed a maximum of four additional  cloud 677 

layers. Based on the test conducted, ROP either decreased (i.e. BT13.9 70% to 30% at daytime or BT3.9-678 

12.0 at nighttime), increased (7% to 25% at daytime for BT3.9-12.0), or remained stable with an 679 

increasing number of cloud layers (Fig. 6a. & Fig. 6b.). For ATC test, no discernible trend was identified. 680 

No clear trend could be observed for POD, both day and night (Fig. 6c. & Fig. 6d.). However, the 681 

distribution of the FAR parameter exhibited a different pattern. In several tests, particularly the ATC 682 

test, the FAR value (Fig. 6e & Fig. 6f) significantly increased with the number of detected cloud layers 683 

(from 9% to 78% during the day and from 1% to 15% at night for the ATC test). This pattern suggests 684 

that for clouds with significant vertical development (i.e., those containing multiple layers), MODIS 685 

tended to identify only the uppermost layer, mistakenly classifying it as the entire cloud profile. As a 686 

result, the increasing number of falsely detected cirrus clouds, particularly in cases of non-cirrus layers 687 

(NLF), is reflected in the distributions of OA and kappaKappa. Specifically, as the number of non-cirrus 688 

layers increases, both OA and kappaKappa values decrease, for both day and night observations 689 

However, the distribution of FAR parameter exhibited a different pattern. In multiple tests, notably 690 

ATC test, the value of FAR (Fig. 6e. & Fig. 6f.) significantly elevated with an increasing number of cloud 691 

layers (9% to 78% during day and 1% to 15% at night for ATC). Presumably, for clouds with significant 692 

vertical development (with more detected layers), MODIS identified only the uppermost layer, 693 

incorrectly categorizing it as the complete cloud profile. Increasing number of falsely reported cirrus 694 

with NLF manifests itself in OA and Kappa distribution. With the increase in non-cirrus layers found, 695 

there is a corresponding decrease in OA and Kappa, both for day and night (Fig. 6g., Fig. 6h., Fig. 6i. & 696 

Fig. 6j.). 697 
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The International Geosphere–Biosphere Programme (IGBP) defines ecosystemecosystems surface 698 

classifications. For purpose of this study, 17 IGBP groups was were aggregated to 3 classes: water, land 699 

and snow (goodness-of-fit with respect to land classification is presented in tab.Table 4.). Bright 700 

surfaces like snow, ice deserts, or complex terrain with varying surface types can make it challenging 701 

to distinguish clouds from the ground. The first noticeable aspect is the significantly lower ROP for 702 

snow compared to other classes. Generally, the fit measures are similar to those in previous analyses. 703 

During the day, ATC test performs better over water, whereas SOLAR test performs better over land. 704 

On the contrary, during nighttime, BT3.9-12.0 test performs better over water, whereas ATC test 705 

performs better over land. 706 
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 707 

Fig. 6. Cirrus detection accuracy with respect to the NLF (letters (a, …, j) used to facilitate reference in the text) 708 
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Table 4.. 34. Goodness-of-fit of cloud detection between MODIS and CALIOP with respect to land classification 709 

 Daytime Nighttime 

 Accuracy measures 

 ROP [%] POD FAR OA k ROP [%] POD FAR OA k 

 WATER 

SOLAR 88.95 11.40 13.05 49.55 -0.02 0.00 NA NA NA NA 

IR 92.44 12.93 4.24 54.23 0.48 85.56 11.10 3.36 54.35 0.51 

BT13.9 74.18 1.32 3.66 48.21 -0.02 79.41 1.98 3.37 49.90 -0.01 

BT6.7 99.99 0.20 1.25 49.48 -0.01 99.98 0.52 1.57 49.48 -0.01 

BT1.38 88.95 84.91 30.78 76.99 0.54 0.00 NA NA NA NA 

BT3.9-12.0 5.45 67.67 16.17 74.23 0.49 14.64 51.57 8.69 70.13 0.42 

ATC 100.00 90.10 40.63 74.73 0.49 99.99 18.94 6.62 56.16 0.12 

ISCCP23 29.32 86.27 73.48 62.45 0.14 0.00 NA NA NA NA 

ISCCP3.6 29.32 34.69 16.22 59.89 0.19 0.00 NA NA NA NA 

 LAND 

SOLAR 84.11 27.39 12.70 57.53 0.15 0.00 NA NA NA NA 

IR 93.02 11.42 4.47 52.87 0.48 80.87 9.16 2.92 53.14 0.51 

BT13.9 77.48 1.41 3.40 49.65 -0.02 86.30 2.49 3.58 49.46 -0.01 

BT6.7 100.00 0.22 1.32 49.45 -0.01 100.00 0.49 1.64 49.42 -0.01 

BT1.38 88.95 84.91 30.78 76.99 0.54 0.00 NA NA NA NA 

BT3.9-12.0 8.09 62.80 14.99 71.91 0.45 97.78 33.85 3.61 65.15 0.30 

ATC 100.00 79.62 29.87 74.88 0.50 100.00 39.34 7.80 65.77 0.32 

ISCCP23 45.98 83.88 76.09 58.95 0.08 0.00 NA NA NA NA 

ISCCP3.6 45.98 35.73 22.99 55.46 0.12 0.00 NA NA NA NA 

 SNOW 

SOLAR 10.35 6.01 20.12 41.56 -0.14 0.00 NA NA NA NA 

IR 13.98 15.12 7.27 50.73 0.43 1.12 13.76 5.52 56.13 0.52 

BT13.9 0.16 0.72 5.12 47.19 -0.04 0.16 2.59 5.06 49.70 -0.03 

BT6.7 78.83 1.70 1.04 54.07 0.01 27.05 2.48 1.86 49.83 0.01 

BT1.38 10.35 90.90 53.45 69.55 0.38 0.00 NA NA NA NA 

BT3.9-12.0 13.95 61.99 15.30 69.73 0.41 47.02 39.67 7.85 65.31 0.31 

ATC 88.29 27.48 10.83 59.27 0.17 55.73 33.67 7.17 62.25 0.26 

ISCCP23 11.34 46.54 31.07 57.85 0.16 0.00 NA NA NA NA 

ISCCP3.6 11.34 8.00 3.64 59.62 0.05 0.00 NA NA NA NA 

 710 
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 711 

The analysis with respect to NLF and land cover types confirmed that ATC test is bestthe most 712 

suitablebest suited for achieving the objective of this study. Therefore, the spatial distribution of the 713 

individual fit measures for this test was examined (Fig. 7). 714 

The spatialsSpatial distribution indicates reveals a very high level of ROP for both: daytime (Fig. 7a.) 715 

and nighttime (Fig. 7b.) for the entire Earth. The southernmost regions of the Southern Hemisphere 716 

are an exception, exhibiting lower values. 717 

Spatial variations observed in correctly detected cirrus highlight differences between daytime and 718 

nighttime POD distribution (Fig. 7c. & Fig. 7d.). During the daytime, high values are observed over 719 

nearly the entire Earth's surface, with exceptions in the regions of Antarctica, Greenland and the 720 

Himalayas (≥ 80% vs ≤ 20% respectively), which are regions covered with by snow and ice. However, 721 

at night, the highest difference is between land and water (≥ 50% vs c.a.approximately 20%). Similar 722 

patterns to the POD distribution for day and night can be observed inwhen considering OAin the OA 723 

results (Fig. 7g. - Fig. 7h.). On both sides of the equator, FAR reaches the lowest values, being slightly 724 

higher during the day than at night (aroundaboutround 20% and ≤ 5%) and increasing with latitude. 725 

However., Hhowever, there is a reduction decrease in FAR observed in regions covered by snow and 726 

ice (Fig. 7e. & Fig. 7f.). In regions with the highest rate of correctly detected and the lowest raterateio 727 

of falsely reported cirrus, the general accuracy of classification (OA) exceeded 80% duringatduring 728 

daytime and an 50% at night. SimilarAs well asSimilar to OA, kappaKappa was higher during the day. 729 

During the day, kappaKappa values ranged from 0.5 to 1.0 for in regions at low latitudes. In contrast, 730 

at mid and high latitudes, kappaKappa values were between 0.0 and 0.5, remaining positive (Fig. 7i.). 731 

At night (Fig. 7j.), nearly the entire Earth's surface exhibited kappaKappa values between 0.0 and 0.5, 732 

with a negative kappaKappa values observed in the vicinity of near Micronesia. 733 

 734 

 735 

 736 

 737 

 738 
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 740 

Fig. 7. Spatial distribution of the accuracy detection of cirrus using ATC test (letters (a, …, j) used to facilitate reference in the 741 

text) 742 

5. Discussion and summary 743 

This study proved thataims to address the research gap by evaluating whether MODIS ready-to-use 744 

cloud mask product can be used for producing a reliable cirrus mask. We suggested the best also seek 745 

to identify the conditions under which this approach to achieve such a goal, and reported related 746 

would be effective and when it might not be suitable. The study found that it was possible however, 747 

certain limitations, specifically for particularly those related to nighttime conditions, must be 748 

consistently considered. 749 

During daytime, the two most effective tests were BT1.38 and ATC. With very similar parameters (POD, 750 

FAR, OA and kappaKappa) the ATC test demonstrated superiority due to a significantly higher number 751 

of available observations. Among the nighttime tests the ATC test proved to be the most suitable for 752 

cirrus detection. 753 

Additionally, the ATC test covers nearly all observations in the test (96.7%) and shows relatively low 754 

variability of statistical measures across different latitudes. Spatial analysis indicates very high level of 755 

ROP for both: day and night for the entire Earth. Spatial variations observed in correctly detected cirrus 756 

highlight differences between daytime and nighttime POD distribution. During the daytime, high 757 

values are observed over nearly the entire Earth's surface, with exceptions in the polar regions and 758 

Himalayas. However, at night, land regions display higher POD values compared to the surrounding 759 

areas.  760 

The International Satellite Cloud Climatology Project (ISCCP) has long provided a framework for cloud 761 

classification and detection, offering standardized methods to analyse cloud properties on a global 762 

scale. Within this framework, the ISCCP3.6 and ISCCP23 tests were applied in this study to evaluate 763 

their performance in detecting cirrus clouds using MODIS data.  764 

The results of the ISCCP3.6 and ISCCP23 tests highlight their respective strengths and limitations. The 765 

ISCCP3.6 test defines cirrus clouds as having an optical thickness below 3.6 and cloud-top pressure 766 

below 440 hPa. It demonstrated moderate detection performance during daytime. However, its use is 767 

limited to daytime observations, and it achieves a relatively low Rate of Observations Performed (ROP) 768 

at 37.97%. Conversely, the ISCCP23 test, which broadens the definition of cirrus to include clouds with 769 

optical thicknesses below 23, achieved a significantly higher POD of 84.16% but at the expense of a 770 

much higher FAR of 72.00%, resulting in a slightly better OA of 61.26%. Like ISCCP3.6, the ISCCP23 test 771 

was also restricted to daytime observations and exhibited the same ROP of 37.97%. When compared 772 

to the ATC test, both ISCCP-based tests exhibit notable limitations. Moreover, the ISCCP statistics 773 
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presented in this study do not reflect the characteristics of the early years of the ISCCP climatology, 774 

which primarily utilized data from satellites equipped with AVHRR sensors, rather than the more recent 775 

observations from MODIS. 776 

Considering all mentioned above, the ATC test is proved to be the best among the available methods 777 

for detecting high-level clouds. However, it is evident that its utility during nighttime is limited 778 

compared to daytime. A notable factor contributing to this is the sensitivity of CALIOP. Lidar is known 779 

to have significantly greater sensitivity at night, which explains its ability to detect nearly twice as many 780 

cirrus clouds globally at night compared to daytime. This diurnal pattern in CALIOP data, while 781 

highlighting the sensor's advantages in nighttime detection, should not be misinterpreted as a 782 

definitive indicator of diurnal differences in cirrus cloud occurrence. Instead, it reflects the increased 783 

detection capabilities of CALIOP at night.  784 

Additionally, MODIS faces further limitations at night due to the unavailability of the 1.38 µm band, 785 

which is highly effective for detecting cirrus clouds during the day. As shown in the statistical analysis, 786 

alternative tests exhibit significantly lower performance compared to the 1.38 µm band, emphasizing 787 

its critical role in daytime cirrus cloud detection. This limitation further impacts the effectiveness of 788 

MODIS-based cirrus detection during nighttime observations. 789 

Consequently, we have determined that the ATC test may be suitable for creating a high-level 790 

cloud mask and conducting a long-term climatological analysis of cirrus cloud coverage. This 791 

approach simultaneously allows us to address the second research gap mentioned in this 792 

paragraph, which concerns our lack of knowledge regarding the long-term variability of high-793 

level cloud coverage. Considering all mentioned above ATC test is proved to be the best among the 794 

available methods for detecting high-level clouds. However, it is evident that its utility during nighttime 795 

is significantly limited compared to daytime. Consequently, we have determined that it may be suitable 796 

for creating a high-level clouds mask and conducting a long-term climatological analysis of cirrus cloud 797 

coverage. This approach simultaneously allows us to address the second research gap mentioned in 798 

this paragraph, which concerns our lack of knowledge regarding the long-term variability of high-level 799 

cloud coverage. 800 

Obtained from the CALIOP data, the cirrus mask mentioned in Section 3 allows us to investigate the 801 

distribution of cirrus clouds (Fig. 2.) in 2015. Based on the CALIOP dataset, cirrus cloud coverage 802 

reached 18.7% in 2015, daytime coverage of high-level clouds in 2015 was recorded at 13.2%, whereas 803 

nighttime coverage was higher, measured at 23.3%. TheThis day-night differences result from 804 

CALIOP'sdifference can be attributed to the higher nighttime sensitivity, reduced lidar signal noise, and 805 

increased nocturnal convective activity leading to more of CALIOP at night, which enhances its ability 806 

to detect optically thin cirrus formation. Additionally, annual variations in cloud amount (over 10 807 
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percentage points) may occur due to CALIPSO's sampling frequency, as noted by Kotarba (2022).clouds 808 

during nighttime observations. 809 

Similarly, a cirrus mask was generated based on the MODIS data using the ATC test. Derived from this 810 

data, cirrus cloud coverage (Fig. 8a.) showed daytime coverage of high-level clouds at 41.0%, while 811 

nighttime coverage was lower, measured at 10.9% (Fig. 8b.).  812 

We also compared cirrus cloud coverage in 2015 obtained from CALIOP and MODIS data (Fig. 9.). The 813 

meanIn a similar mannerSimilarly, a cirrus mask was generated based on the MODIS data using the 814 

ATC test. Derived from this data, cirrus cloud coverage (Fig. 8a.) showed daytime coverage of high-815 

level clouds was recorded at 41.0%, whereas while nighttime coverage was lower, measured at 10.9% 816 

(Fig. 8b.). Regrettably, this indicates that although achieving comparable outcomes as reported in 817 

existing literature (Sassen et al., 2008), the data concerning the diurnal pattern of cloud coverage is 818 

entirely lost.  819 

We also compared cirrus cloud coverage in 2015 obtained from CALIOP and MODIS data (Fig. 9.). The 820 

mMean difference between cirruscCirrus coverage derived from CALIOP and MODIS was -27.71 p.p. 821 

for the daytime observations (Fig. 9a.), with MODIS generally indicated higher cloud cover compared 822 

to CALIOP. On the contrary, the mean difference between cirruscCirrus coverage derived from CALIOP 823 

and MODIS was -12.31 p.p. for the nighttime observations (Fig. 9b.). While the relationship between 824 

MODIS and CALIOP is statistically significant (p < 0.001), the R² value of 0.165 indicates that MODIS 825 

captures only 16.5% of the variability. In the nighttime dataset, the R² improves to 0.422, meaning 826 

MODIS cloud coverage aligns better with CALIOP at night. Although the majority of fit metrics show 827 

improved performance during the day, the high number of false alarms ultimately results in the 828 

nighttime fit being more accurate when cirrus coverage is examined in the subsequent analysis. 829 

In conclusion, our study has shown that ATC test, developed based on MODIS Cloud Product data, 830 

demonstrated the highest agreement with reference data, achieving (the  an overall accuracy of 831 

72.98% during daytime and 59.50% at night, a probability of detection: 80.87% and 25.46%, a false 832 

alarm rate of 34.86% and 6.90%, and a Cohen’s kappa coefficient of 0.46 and 0.19, respectively). 833 

Although the study had certain limitations, such as nighttime cirrus detections, its results may have 834 

important implications for understanding the nature of high-level cloudiness. Future research should 835 

focus on investigating long-term trends in cirrus cloudiness, which may help refine our understanding 836 

of their variability and improve detection methodologies. . Future research may focus on long-term 837 

trends in cirrus cloudiness. These conclusions represent an important step toward a better 838 

understanding of the impact of clouds on the climate. 839 

 840 
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 841 

Fig. 8. MODIS-based cirrus cloud coverage in 2015- daytime (a) and nighttime (b) 842 

 843 

 844 

Fig. 9. CALIOP-MODIS cirrus cloud coverage comparison in 2015- daytime (a) and nighttime (b) 845 

Our goal was to assess the extent to which MODIS detects cirrus clouds in comparison to CALIPSO, 846 

while acknowledging that MODIS will inevitably miss a significant portion of cirrus clouds due to its 847 

lower sensitivity. This comparison offers valuable insights into the practical efficiency of the MODIS 848 

instrument. We accepted MODIS data as it is; however, we examined the fit measures as a function of 849 

COT (Fig. 10.), as this primarily explains the differences between MODIS and CALIOP measurements. 850 
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 851 

Figure 10. Cirrus detection accuracy with respect to the COT (0-25) (letters (a, …, j) used to facilitate reference in the text) 852 
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 853 

As observed in the graph (Fig. 10.), there are no significant changes within the range of 0.1 to 1.0, and 854 

even up to 10.0. The most noticeable changes occur at COT values close to 10, though these may be 855 

influenced by the sample size, as the occurrence of cirrus clouds with a COT near 10 is limited or may 856 

represent a misclassification by CALIOP. Notably, differences in parameter values are apparent 857 

between a COT of 0 (indicating no cirrus according to CALIOP, at the start of the graph) and 0.1. Upon 858 

examining the ATC test results, FAR increases from approximately 30 to 60 during the day, with a 859 

similar rise observed at night. The reduced sensitivity of MODIS is reflected in a small but observable 860 

increase in POD values as COT increases. Additionally, as thin cirrus clouds become more prevalent, 861 

both OA and kappa values decrease. 862 

As mentioned earlier, CALIPSO can detect cirrus clouds with an optical thickness as low as 0.01, 863 

whereas MODIS typically detects them when COT ranges between 0.4 and 0.5. Therefore, we analysed 864 

the changes in fit measure as a function of COT within the range of 0 to 1, using a finer step size of 0.01 865 

instead of 0.1 as in previous analyses (Fig. 11.). 866 

During the daytime, most methods show a steady increase in POD as COT rises, while at night, POD 867 

also improves significantly with increasing COT, with ATC outperforming other tests. When solar 868 

radiation is present, FAR increases with higher COT for most methods, indicating more false positives 869 

as clouds become optically thicker. At night, FAR remains relatively low but shows a slight upward 870 

trend with increasing COT. OA remains stable during both day and night. Kappa improves at night for 871 

all methods as COT increases but remains lower than daytime values. For daytime, Kappa is highest for 872 

ATC and gradually decreases as COT rises. 873 

Given that MODIS inevitably misses a significant portion of cirrus clouds due to its lower sensitivity, we 874 

conducted a detailed analysis for COT values between 0 and 10 and between 0 and 1 with a finer step. 875 

The results reveal that fit measures change noticeably with increasing COT for small COT values (<1), a 876 

trend that stabilizes for higher COT values. Although it is certain that the issue of thin cirrus clouds 877 

generally lowers the fit measures of MODIS to CALIOP, it cannot be said that this is the sole reason for 878 

the imperfect fit, as at higher COT values (>1) it also deviates from the full fit. Despite MODIS's limited 879 

ability to detect thin cirrus clouds, we do not dismiss its utility. Notably, the ATC method consistently 880 

outperforms other approaches across all evaluated metrics, making it a reliable choice for cirrus 881 

detection. 882 
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 883 

Figure 11. Cirrus detection accuracy with respect to the COT (0-1) (letters (a, …, j) used to facilitate reference in the text) 884 
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 885 

 886 

6. Summary 887 

This study evaluates the utility of MODIS data (Aqua satellite) for detecting cirrus clouds by comparing 888 

it to CALIOP, a lidar instrument (CALIPSO satellite). Cirrus clouds, located above 6,000-8,000 meters 889 

and composed of ice crystals, play a significant role in Earth's radiative budget due to their warming 890 

effects. In both sensor’s data, cirrus clouds are the same physical phenomenon; however, the 891 

distinction arises from the varying sensitivities of the detection instruments employed, with optical 892 

thickness serving as a crucial parameter. The research aims to determine how well the MODIS products 893 

can be used to identify cirrus clouds compared to CALIPSO. 894 

The study assessed six MODIS tests, the ATC test and two methods originating from ISCCP,  using 136 895 

million observations from 2015. 896 

Key findings reveal that the ATC test was the most effective for detecting cirrus clouds: 897 

• During daytime, it achieved an overall accuracy of 72.98%, with a probability of detection 898 

(POD) of 80.87%, a false alarm rate (FAR) of 34.86%, and a Cohen’s kappa coefficient of 0.46. 899 

• At nighttime, its overall accuracy dropped to 59.50%, with a POD of 25.46%, FAR of 6.90%, and 900 

kappa coefficient of 0.19. 901 

The CALIOP-based cirrus mask revealed a global cirrus cloud coverage of 18.7% in 2015, with higher 902 

nighttime coverage (23.3%) compared to daytime (13.2%) due to CALIOP's enhanced nighttime 903 

sensitivity. In contrast, the MODIS-based ATC test estimated daytime cirrus coverage at 41.0%, but 904 

significantly lower nighttime coverage at 10.9%. Equatorial regions exhibited the highest cirrus 905 

frequencies, particularly at night.  906 

Despite its limitations, the ATC test shows promise for creating a high-level cloud mask and conducting 907 

long-term climatological studies.  908 

This study represents a critical step toward leveraging MODIS data for understanding high-level cloud 909 

coverage and its climatic impacts. 910 
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