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Abstract. All clouds influence the Earth’s radiative budget, with their net radiative forcing being negative. However, high-level

clouds warrant special attention due to their atmospheric warming effects. A comprehensive characterization of cirrus requires

information on cloud coverage, obtainable from various data types. Active satellite sensors are presently the most accurate

source for cirrus data, but their usefulness in climatological studies is limited. On the contrary, passive data, available for the

past 40 years with sufficient temporal resolution for climatological research, were not specifically designed for cirrus detection.5

In this study, we assessed the utility of MODIS standard products for creating a cirrus mask by validating them against CALIOP

data. Our objective was to determine if a MODIS product exists that detects cirrus with the same accuracy as CALIOP.

Using CALIOP data as the reference, we evaluated six tests for cirrus detection considered in MODIS cloud masking algo-

rithm and their combination (ALL TESTS CONSOLIDATION, ATC). Additionally we applied two ISCCP-originating tests:

ISCCP3.6 and ISCCP23 tests. All tests have been applied to MODIS radiances.10

Study revealed that ATC test was the most effective resulting with the overall accuracy of 72.98% during daytime and 59.50%

at night (probability of detection: 80.87% and 25.46%, false alarm rate of 34.86% and 6.90%, and Cohen’s kapppa coefficient

of 0.46 and 0.19 respectively). However, its effectiveness was notably reduced during nighttime compared to daytime. We

conclude that the test is suitable for creating a mask of high-level clouds.
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1 Introduction15

Clouds are indispensable to Earth’s environmental systems and human life, influencing weather, climate, water distribution,

ecosystems, and various human activities. All of them affect the Earth’s radiative budget, and their net radiative forcing for

is negative and equal to -13 Wm-2 (Ramanathan et al., 1989). That means that clouds, in general, cools the atmosphere.

Nevertheless a special attention should be paid to high-level clouds (according to WMO, high-level clouds include all types

of Cirrus, Cirrocumulus, and Cirrostratus clouds. Additionally, clouds resulting from anthropogenic activities, such as aviation20

contrails, are classified within the high-level cloud category (WMO, 1977)) named with the customary term cirrus. Cirrus

clouds have a complex role in climate regulation. The relation between cirrus particles (size, shape and albedo) and Earth’s

radiation budget has been examined (Kinne and Liou, 1989; Macke et al., 1998; Mishchenko et al., 1996; Stephens et al., 1990;

Zhang et al., 1994, 1999), resulting in a general conclusion that cirrus play an important role and can warm the atmosphere.

Cirrus typically have a base above about 8 000 metres and are composed of small particles – ice crystals. Because of cirrus25

specific properties (cloud height, temperature, effective particle size, surface thermal contrast, ice water path and cloud optical

depth; Ackerman et al. (1988); Stephens et al. (1990); Stephens and Webster (1981)), in contrast to low- and mid-level clouds,

they heat the Earth (they allows shortwave radiation to reach Earth’s surface and reduces outgoing longwave radiation). Recent

research shows that cirrus radiative forcing varies from about 0.05 Wm-2 for contrails, to 35.5 Wm-2 for cirrus in general

(Bock and Burkhardt, 2016; Campbell et al., 2016; Kärcher, 2018; Lolli et al., 2017; Oreopoulos et al., 2017). Additionally,30

their presence change the radiative forcing of other clouds for positive as well. For instance, when medium and low clouds

co-occur, their radiative effect equals -18.8 Wm-2. Additional presence of cirrus raises the radiative effect to 50,8 Wm-2

(Oreopoulos et al., 2017).

Cirrus properties description is incomplete without the information about cloud coverage. Most of the studies, have considered

just a total cloud cover, but some of them also study high-level cloudiness. The global frequency of cirrus occurrence is between35

28% and 42% . Research conducted using high resolution satellite data has shown that global cloud coverage is estimated at

about 66% to 74% and 40% of all clouds are high-level clouds (Stubenrauch et al., 2010). According to Sassen et al. (2008)

cirrus cover almost 17% of Earth’s surface. The study of high-level cloud coverage and its trends has long intrigued scientists.

In 1994, Wylie et al. presented global statistics on cirrus clouds over a four-year period, revealing an average cirrus coverage

of 42% based on HIRS data. More recently, Li and Groß (2022) analyzed a decade of CALIPSO lidar measurements, finding40

that cirrus clouds over Europe occur most frequently between 9 to 11 km altitude, with occurrence rates varying seasonally

from about 5% in summer to 12% in winter. Another significant study used 16 years of ISCCP data to identify trends in cirrus

clouds across Europe, noting an increase of 1-2% per decade in regions with high aircraft traffic, contrasting with a general

decline elsewhere (Stordal et al., 2005). A 16-year ground-based lidar study in Gadanki, India, observed peak cirrus occurrence

at 14.5 km with a 25% frequency (Pandit et al., 2015). The most extended study, spanning 20 years (1983-2004) with ISCCP45

data, documented high cirrus concentrations in regions such as the South Pacific Convergence Zone, the Amazon, and central

Africa, while noting a global decrease in cirrus clouds except in the southern mid-latitudes, where no significant trend was

observed (Eleftheratos et al., 2007). Numerous studies have explored changes in high-level cloud coverage. However, those
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relying on satellite data often lack a focus on cirrus clouds over sufficiently long periods—at least 30 years, as recommended

by the WMO. Conducting such studies and identifying suitable data sources pose significant challenges.50

Given the critical role of cloud cover, especially cirrus clouds, in atmospheric studies, the observation of clouds is considerably

significant. Historically first method is visual observation from ground-based meteorological stations, which is simple and

provides long time series data. However, this method has limitations, including difficulty in detecting high-level clouds due to

cloud overlap at multiple altitudes, perspective issues near the horizon, and the optical thinness of cirrus clouds. Studies have

shown that under optimal conditions, the probability of detecting cirrus clouds visually ranges from 44% to 83% during the55

day and 24% to 42% at night. With clouds at all levels, detection probabilities drop to 47%–71% during the day and 28%–43%

at night (Kotarba and Nguyen Huu, 2022).

Present cloud climatologies benefit from satellite remote sensing. Initially, this information was obtained from various imagers,

sounders, and radiometers, which utilize passive cloud detection methods (involving detecting natural radiation emitted or

reflected by objects, such as clouds, without actively sending out signals). Researchers such as Ackerman et al. (2008); Amato60

et al. (2008); Chen et al. (2002); Frey et al. (2008, 2020); Gu et al. (2011); Kotarba (2016); Liu et al. (2004); Minnis et al.

(2008); Murino et al. (2014); Musial et al. (2014); Tang et al. (2013) have contributed to these studies. An example of passive

utensil can be MODIS (Moderate Resolution Imaging Spectroradiometer), which is a key instrument aboard the Terra and

Aqua satellites.

Active remote sensing technology relies on its own signal, directing it at an object and analyzing the response. This allows active65

sensors, in example CALIPSO’s (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) lidar, CALIOP (Cloud-

Aerosol Lidar with Orthogonal Polarization), to operate day and night with similar efficiency. Active profiling instruments like

CALIOP, which provide high-resolution vertical profiles of aerosols and clouds, have limitations such as a narrow field of view.

This narrow view, combined with a long 16-day repeat cycle, results in only about 20 observations per year of the same region,

which is challenging and sometimes insufficient for climatological studies.70

Although active sensors, like CALIOP, are currently the best source of cirrus data (Heidinger and Pavolonis, 2009), their

potential for construing long-term climatologies is very limited. On the contrary, passive data are available for last more than

40 years with good enough for climatological research time resolution (i.e. for MODIS we have access to over 20 years of data),

although they were not designed for cirrus detection. In this paper, we examined utility of MODIS products to create a cirrus

mask by validating them with CALIOP data. Our objective is to determine whether any existing operational MODIS product75

detect cirrus clouds as accurately as the CALIPSO does. Specifically, we aim to assess whether MODIS Cloud Mask, when

examining its individual tests could be easily adapted into an algorithm for masking cirrus clouds. We also seek to identify the

conditions under which this approach would be effective and when it might not be suitable.

2 Data and methods

In this study, we use active data for validating passive-based information for determining the presence of cirrus. The active80

dataset was collected by the CALIOP lidar aboard the CALIPSO satellite, while the passive data was obtained from the MODIS
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spectroradiometer on the Aqua satellite. The concept behind achieving the research objective was based on collocation those

two datasets in time and space. Data for the year 2015 were analyzed for the whole globe. These include 136,272,209 combined

observations from the aforementioned satellites.

2.1 MODIS data85

The MODIS, an advanced instrument aboard NASA’s Terra and Aqua satellites, acquires data across 36 spectral bands, encom-

passing wavelengths from visible to thermal infrared (0.4 to 14.4 µm). Its passive sensors relies mostly on naturally available

energy: Sun’s energy reflected from the object or absorbed and reemitted (Ackerman et al., 1998). It provides data at various

spatial resolutions—250 meters, 500 meters, and 1 kilometer with swath width of 2,330 kilometers which observes the entire

Earth every one to two days. Cloud detection results are stored in the 48-bit “Cloud Mask” product, known as MYD35 for90

Aqua, while cloud properties can be found in MYD06 dataset. As an imager, MODIS provides column-integrated radiances,

what limits the possibilities for cirrus retrieval.

For this research, we assessed the version of Collection 061 data, which is available in 5-minute granules at a spatial resolution

of 1 km per pixel (at nadir). Each MYD35 and MYD06 file is paired with a MYD03 “Geolocation file” product that contains

longitude and latitude information for each individual cloud mask IFOV (Instantaneous Field of View, Guenther et al. (2002).95

2.1.1 The MODIS Cloud Mask product

The MODIS Cloud Mask product is a Level 2 dataset produced at spatial resolutions of 1-km and 250-m (at nadir). The cloud

masking procedure is detailed in the works of Ackerman et al. (1998); Frey et al. (2008); Baum et al. (2012). The algorithm

utilizes a sequence of visible and infrared threshold and consistency tests to determine the confidence level that an unobstructed

view of the Earth’s surface is achieved. The MYD35 dataset includes data from the Aqua satellite.100

In this research, we considered 6 ready-to-use MODIS tests. Individual tests were described by Ackerman et al. (1998):

– Thin Cirrus test (SOLAR) – the solar channels in MODIS cover a range of wavelengths primarily in the visible and

near-infrared spectrum (0.4 to 2.5 µm). This test uses the solar range to set the confident clear and middle thresholds to

define the range of expected reflectances from thin cirrus. It indicates that a thin cirrus cloud is likely to be present. Test

is only useful during daytime.105

– Thin Cirrus test (IR) – the purpose of this test is detecting thin cirrus clouds. Channels used for this test are 11 µm an 12

µm (infrared (IR) range), incorporated to the split window technique.

– High Cloud Test (BT13.9) – applying CO2 absorption channels (around 14 µm) is a simple technique got from the CO2

slicing method (suitable for determining middle and upper troposphere ice clouds heights and effective amounts). This

test is useful for high-level cloud detection, while it can reveal clouds above 500 hPa.110

– High Cloud Test (BT6.7) – test designed for detecting thick high clouds. Starting from the ground level, the 6.7 µm

radiation emitted by the surface or low clouds is absorbed in the atmosphere, therefore the signal is not received by an
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instrument. The water vapor in layer in the atmosphere between 200 hPa and 500 hPa is the only source of the 6.7 µm

radiation in clear-sky observation. Thick clouds placed above or near the 200 hPa level can be distinguish from clear sky

or lower clouds.115

– High Cloud Test (BT1.38) – the 1.38 µm channel lies in the strong water vapor absorption region. That results in

obscuration of the most of Earth’s surfaces, as well as attenuation of reflectance from low- and mid-level clouds. Pixels

with this test applied, reveals high-level thin clouds as brighter. Unfortunately, the test has certain limitations, including

its applicability to nighttime conditions, polar regions, midlatitude winters, and high elevations..

– High Cloud Test (BT3.9-12.0) – the 3.9-12.0 µm BTD (Brightness Temperatures Difference) test is specifically designed120

for nighttime observations over land and polar snow/ice surfaces. It is effective in distinguishing between thin cirrus

clouds and cloud-free conditions and exhibits relative insensitivity to the atmospheric water vapor content (Hutchinson

and Hardy, 1995).

Additionally, we independently developed unification of all tests, which we called All Tests Consolidation (ATC). If any one

of the nine tests (t) detected cirrus clouds, we set the output flag (OF) to indicate cirrus.125

If ∃i ∈ {1,2, ...,9} (ti = 1) then ATCOF = 1.

Conversely, if no cirrus clouds were detected by all of the tests, provided they were all conducted, no cirrus flag was set.

130

If ∀i ∈ {1,2, ...,9} (ti = 0) then ATCOF = 0.

ATC is essentially an adaptation of the MOD35 approach, but it is limited to tests that provide insights specifically about

cirrus clouds.

2.1.2 The MODIS Cloud Product135

As described by Menzel et al. (2015) the MODIS Cloud Product uses a combination of infrared and visible techniques to de-

termine cloud physical and radiative properties. It derives cloud-particle phase, effective particle radius, and optical thickness

from visible and near-infrared radiances, and indicates cloud shadows. Infrared methods provide cloud-top temperature, height,

effective emissivity, phase, and cloud fraction, both day and night, at 1-km-pixel resolution. Additionally, the product includes

cirrus reflectance at 1-km resolution to correct for cirrus scattering in land-surface reflectance. For Aqua satellite, dataset is140

called MYD06.

Beside ready-to-use MODIS tests (Section 2.2.1), other criteria may be applied using available for MODIS and CALIOP

data, e.g. the ISCCP’s (The International Satellite Cloud Climatology Project; https://isccp.giss.nasa.gov), which was estab-

lished in 1982 as part of the World Climate Research Programme (WCRP; https://www.wcrp-climate.org/) to gather the global

distribution of clouds, their properties, and their diurnal, seasonal, and interannual variations) definition of cloud types. The145
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Figure 1. The distribution of cirrus clouds according to the evaluation.

developers of ISCCP deserve significant recognition for their foresight, as more than fourty years later, ISCCP continues to be

a leading reference for describing the cloudy atmosphere. By examining visible and infrared radiances from geostationary and

polar-orbiting meteorological satellites and making assumptions about cloud layering, thermodynamic phases, and properties,

ISCCP characterizes a cloudy satellite pixel using the column visible optical depth (COT) and the cloud-top pressure (CTP)

of the highest cloud layer. This information can be used to classify different cloud types as shown in the figure 1 (Rossow and150

Schiffer, 1991).

COT and CTP is also available for MODIS, within MYD06 standard product, and we used it to generate cirrus masks according

to ISCCP definition. We considered two variants of the mask, defining cirrus as:

– a cloud with an optical thickness less than 3.6 and a top pressure below 440 hPa (hereinafter ISCCP3.6 test),155

– a cloud with an optical thickness less than 23 and a top pressure below 440 hPa (hereinafter ISCCP23 test).
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2.2 CALIOP data

Active sensors, in example CALIOP, operate day and night. Unlike passive methods, CALIOP’s cloud detection accuracy is

even higher at night than during the day (McGill et al., 2007). CALIOP provides high-resolution atmospheric profiles, with

vertical resolutions ranging from 30 m below 8.2 km to 180 m above 20.1 km, and 60 m between these altitudes (M.Winker160

et al., 2006). This capability allows for clear distinction between cirrus and lower cloud layers, making CALIOP excellent

for cirrus detection. Additionally, lidar can detect cirrus clouds with an optical depth of 0.01 or less (Vaughan et al., 2009), a

capability beyond the reach of other imagers (Ackerman et al., 2008).

In this research, the lidar level-2 cloud layer at 5-km horizontal resolution, version 4.20 (CAL_LID_L2_05kmCLay-Standard-

V4–20) product was used. As described by Liu et al. (2009) and Vaughan et al. (2009) this product reports cloud layers165

and cloud type information, with cirrus as a separate class. There are seven categories including clouds and aerosols. Inside

the cloud class, 8 subtypes can be found (i.e. cirrus). Quality of CALIOP’s detection is described by CAD (cloud-aerosol

discrimination) score, which ranges from -100 to 100. Value -100 indicates high confidence of aerosol detection; value 100

shows that cloud was detected with high confidence; medium value (0) means that there is the same probability that the feature

is cloud or aerosol (Liu et al., 2009; Vaughan et al., 2009). In this study, we only use observations with a CAD score higher170

than 80. The optical depth is also provided in this (CAL_LID_L2_05kmCLay-Standard-V4–20) CALIOP product.

For the purpose of this research, we regard CALIPSO as the reference for cirrus clouds detection. This choice is driven by the

lidar’s high sensitivity to optically thin clouds and its reliable performance in both daytime and nighttime conditions.

2.3 Matching datasets

NASA and its partners operate a group of Earth-observing satellites in sun-synchronous polar orbits, known as the Afternoon175

Constellation. This constellation has changed over time as satellites have moved out of the constellation or have deorbited, but

Aqua remained a key member while CALIPSO began to move out of it in 2018. Afternoon Constellation crosses the equator in

a northbound direction around 1:30 PM local solar time, providing near-simultaneous observations from multiple instruments.

Aqua and CALIPSO, with nearly identical orbital configurations, operated in close proximity from 2006 to 2018, trailing by

approximately one minute (Stephens et al., 2018), enabling synchronized observation times and a shared 16-day revisit cycle180

despite slightly differing ground tracks.

Using CALIOP data for the calibration and validation of atmospheric products from various space missions is a well-established

practice. This method has been extensively applied to Aqua MODIS (Baum et al., 2012; Holz et al., 2009; Kotarba, 2020; Sun-

Mack et al., 2014; Wang et al., 2016; Xie et al., 2010).

For this study, Aqua MODIS data and corresponding CALIOP observations for 2015 were matched. The matching process185

involved selecting a MODIS IFOV and comparing it with the corresponding CALIOP profile, ensuring the geometric center

fell within the selected MODIS IFOV. Due to the orbital configuration of the two missions, CALIOP could only sample MODIS

IFOVs near the MODIS nadir because of nadir-pointing instrument, preventing matching observations across the entire MODIS

swath. Despite the length of the period (1 year), the procedure resulted in a sufficient number of observations (136,272,209
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paired MODIS-CALIOP observations) as each MODIS granule contains approximately 2,030 IFOVs, and a full day of Aqua190

observations produces 288 granules. The aggregated MODIS–CALIOP statistics were compiled into global maps, each with a

spatial resolution of 5° in both longitude and latitude.

2.4 Evaluation of MODIS data

The comparison was conducted at the pixel level, using a confusion matrix as the basis for calculations. It gives a detailed

comparison of the model’s predictions against the actual results. Structure of confusion matrix is presented in Tab. 1. and195

includes the following elements:

– True Positives (TP): The count of cases where MODIS accurately identified the existing (according to CALIOP) cirrus.

– False Positives (FP): The count of cases where MODIS incorrectly identified the high-level cloud, meaning it detected

cirrus presence when it was actually absent.

– True Negatives (TN): The count of cases where MODIS correctly did not detect the presence of the cloud.200

– False Negatives (FN): The count of cases where MODIS overlooked the cirrus occurrence.

Table 1. Confusion matrix

CALIPSO (reference data) Cirrus No Cirrus

MODIS Cirrus True positive (TP) False positive (FP)

MODIS No Cirrus False negative (FN) True negative (TN)

Every result undergoes a thorough validation through different parameters estimation using feature-based statistics (Stanski

et al., 1989). To describe the data accuracy, probability of detection (POD) characteristics [1] and false alarm rate (FAR)

statistic [2] were calculated: Probability of detection (POD) – is a metric used to assess the effectiveness of a detection system.

In the context of cloud detection, POD indicates how well the detection algorithm correctly identifies the presence of clouds205

when they are actually present. A higher POD value signifies better performance of the detection system.

POD = TP/(TP + FN) (1)

False alarm rate (FAR) – is a metric that measures the frequency of incorrect positive detections by a system. In the context of

cloud detection, a lower FAR indicates a more accurate system, with fewer instances of falsely identifying clouds when they210

are not present.

FAR = FP/(FP + TN) (2)

8

https://doi.org/10.5194/amt-2024-163
Preprint. Discussion started: 1 October 2024
c© Author(s) 2024. CC BY 4.0 License.



The incident frequencies within the matrix enabled the identification of two more diagnostic measures: Overall accuracy (OA)

– is a metric that measures the proportion of correct predictions made by a detection system out of all predictions. In cloud215

detection, higher overall accuracy indicates that the system effectively identifies both the presence and absence of clouds

correctly.

OA = (TP + TN)/n (3)

Cohen’s kappa k – Cohen’s kappa is a statistical metric used to assess the degree of agreement between two raters or classifi-220

cation methods. Its scale ranges from -1 to 1, where a value of 1 represents perfect agreement, 0 indicates agreement no better

than chance, and negative values indicate agreement worse than chance. In cloud detection, a higher kappa value indicates

stronger agreement between the detected presence of clouds and their actual presence, while considering the possibility of

random agreement.

225

k = (OA−PE)/(1−PE) (4)

where

PE = [(TP + FP )(TP + FN) + (TN + FP )(TN + FN)]/n2 (5)

230

n = TP + FP + FN + TN (6)

The accuracy of high-level cloud detection was evaluated using the aforementioned metrics, differentiated by day and night,

latitude, cloud optical depth, the number of detected cloud layers, and land classification. This assessment was conducted for

the entire year 2015, as well as specifically for January and July (those two months are presented to exemplify the characteristics

of two distinct seasons).235

2.5 Bootstrap sampling

Due to the nature of cirrus cloud occurrences (18.7% in 2015, see Section 3), we can assume that the data sample will be

imbalanced and one class (without cirrus) significantly outnumbers the other. Therefore, for such data, the appropriate statistical

method to apply is bootstrap sampling (Efron, 1980). The balancing the sample stems from the issue of class imbalance,

potentially skewing the statistical analysis and leading to biased results. To mitigate this, the bootstrap method is employed to240

artificially balance the dataset. This involves resampling the data with replacement, to ensure that each class has a comparable

number of instances. By doing so, the analysis can yield more reliable, rather than being dominated by the majority class. When

a sample is drawn from a population, the statistical measures derived from that exhibit sampling variability. The fundamental
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concept of bootstrap revolves around resampling the original dataset with replacement to generate multiple bootstrap samples.

In our study, for 1000 iterations, we selected a sample with replacement that included all observations indicating the presence245

of cirrus clouds (according to CALIPSO), as well as an equal number randomly drawn from the remaining observations. Each

time, the previously described measures were calculated. After performing these calculations 1000 times, the average of these

measures was computed.

The bootstrap has been already widely used among climatological studies. It has been employed to, among others, estimate

confidence interval (Jolliffe, 2007), forecast storm track (Wilks et al., 2009), project future climate (Orlowsky et al., 2010),250

verify potential predictability of seasonal mean temperature and precipitation (Feng et al., 2011), study seasonal prediction

of drought (Behrangi et al., 2015), inspect macrophysical properties of tropical cirrus clouds (Thorsen et al., 2013), evaluate

sampling error in TRMM/PR rainfall products (Iida et al., 2010).

3 Cirrus clouds in 2015

Before conducting an analysis to assess the agreement in high-level cloud detection between CALIOP and MODIS data, we255

examined the cirrus coverage in 2015 according to reference data (CALIOP). The distribution of cirrus clouds (Fig. 2.) varies

globally and is affected by factors such as latitude and atmospheric dynamics. Based on the CALIOP dataset, cirrus cloud

coverage reached 18.7% in 2015, daytime coverage of high-level clouds in 2015 was recorded at 13.2% (Fig. 2a.), whereas

nighttime coverage was higher, measured at 23.3% (Fig. 2b.). Near the equator, especially within the tropical belt, cirrus

cloud cover exhibits peak values throughout the year, reaching approximately 35% during nighttime and 20% during daytime.260

In certain locations, particularly during nighttime, the high-level cloudiness has been observed to exceed 50%. In the mid-

latitudes of both hemispheres, the distribution of clouds varies with the seasons, generally showing lower coverage compared

to low latitudes, approximately 10% during daytime and 20% at night. In polar regions, particularly above approximately 60°

latitude, cirrus cloud cover tends to be higher than in mid-latitudes, with nighttime coverage generally higher than daytime

(Fig. 3.).265

Additionally, CALIOP, measures the cloud optical thickness (COT) for individual layers as well as for the entire atmospheric

column (Fig. 4.). When CALIOP detects multiple cirrus cloud layers, the COT values for all layers flagged as Cirrus are

summed. The mean COT for cirrus clouds was 0.72 during daytime and 0.84 at nighttime. For the entire column (all cloud

layers in column), the average COT measured by CALIOP was 4.26 during the day and 4.20 at night.

4 Evaluation of MODIS data270

Using CALIPSO data as the reference, nine methods for detecting cirrus clouds with MODIS data were evaluated. All tests

were applicable during daytime, whereas only five could be utilized at nighttime due to the requirement of solar illumination.

Described in section 2 measures are presented in tab. 2. The parameters that, in our opinion, precluded the use of the test have

been highlighted in bold. Additionally, they are preceded with the rate of observations performed (ROP) parameter, which is
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Figure 2. The distribution of cirrus clouds according to the evaluation.

C
ir
ru

s 
cl

o
u
d
in

e
ss

[%
]

0 30-30 60-60 90-90

Latitude

C
u
m

u
la

ti
ve

P
e
rc

e
n
ta

g
e

[%
]

Cloud Optical Thickness

1.0 10.00.10.010.001

2
0

2
5

1
5

3
0

1
0

5
0

7
5

2
5

1
0
0

0

DAY NIGHT
Cirrus - DAY Cirrus - NIGHT

Clouds - DAY Clouds - NIGHT
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the fraction of total observations for which the specific test could be conducted.275

During daytime, the first four methods (SOLAR, IR, BT13.9, BT6.7) exhibited notably low detection effectiveness (with

POD ranging between 0.33 and 15.79%), as well as low kappa coefficients (0.01-0.48). Although the test was performed on

a relatively high proportion of observations (78.37% - 97.59%), with a low number of false alarms (FAR between 1.23%

and 13.16%) and good overall accuracy (OA ranging between 48.61% and 53.80%), the poor detection capabilities (indicated

by POD) rendered these data inadequate as reliable sources of information on the occurrence of Ci clouds. The differing280

parameters excluded tests BT3.9-12.0 and those with ISCCP criteria from consideration. The limited number of observations

with available results from these tests rendered them impractical for use.

The two tests most effective globally were BT1.38 and ATC. With very similar parameters (POD, FAR, OA and Kappa)

Table 2. Goodness-of-fit of cloud detection between MODIS and CALIOP. Bold - parameters that precluded the use of the test

Daytime Nighttime

Test ROP [%] POD FAR OA k ROP [%] POD FAR OA k

SOLAR 78.37 15.79 13.16 51.66 0.03 0.00 NA NA NA NA

IR 83.32 12.56 4.37 53.80 0.48 73.98 10.59 3.27 54.94 0.52

BT13.9 65.52 1.35 3.59 48.61 -0.02 71.02 2.13 3.42 50.67 -0.01
BT6.7 97.59 0.33 1.23 49.92 -0.01 91.44 0.60 1.58 50.23 -0.01
BT1.38 78.37 77.76 28.28 74.71 0.49 0.00 NA NA NA NA

BT3.9-12.0 7.39 64.48 15.36 72.41 0.46 38.09 39.09 5.46 65.26 0.33

ATC 98.67 80.87 34.86 72.98 0.46 94.84 25.46 6.90 59.50 0.19

ISCCP23 37.97 84.16 72.00 61.26 0.13 0.00 NA NA NA NA

ISCCP3.6 37.97 33.30 16.54 58.96 0.17 0.00 NA NA NA NA

January

Daytime Nighttime

Test ROP [%] POD FAR OA k ROP [%] POD FAR OA k

SOLAR 74.84 15.08 13.50 49.28 0.02 0.00 NA NA NA NA

IR 78.95 12.47 4.54 51.81 0.46 72.30 10.53 3.46 54.07 0.51

BT13.9 67.59 1.66 3.66 46.28 -0.02 72.26 2.36 3.32 49.65 -0.01
BT6.7 97.95 0.23 1.09 49.68 -0.01 99.97 0.59 1.43 49.59 -0.01
BT1.38 74.84 79.65 31.69 74.22 0.48 0.00 NA NA NA NA

BT3.9-12.0 7.02 56.89 13.50 69.48 0.41 41.19 35.00 3.80 64.37 0.30

ATC 98.98 80.23 34.17 73.03 0.46 99.98 23.38 6.12 58.63 99.98

ISCCP23 38.55 84.27 68.88 64.10 0.17 0.00 NA NA NA NA

ISCCP3.6 38.55 33.38 14.58 59.27 0.19 0.00 NA NA NA NA

June

Daytime Nighttime

Test ROP [%] POD FAR OA k ROP [%] POD FAR OA k

SOLAR 84.32 16.57 11.58 53.99 0.05 0.00 NA NA NA NA

IR 92.26 11.99 3.76 54.17 0.49 68.77 10.02 2.61 57.81 0.56

BT13.9 65.65 1.89 3.72 49.61 -0.02 67.48 2.62 3.93 53.88 -0.01
BT6.7 99.69 0.15 1.06 49.63 -0.01 81.30 0.84 1.96 52.06 -0.01
BT1.38 84.32 74.97 22.06 76.52 0.53 0.00 NA NA NA NA

BT3.9-12.0 7.67 72.20 21.54 74.30 0.47 37.58 47.02 7.95 67.82 0.38

ATC 99.96 83.14 31.76 75.69 0.51 88.61 30.47 7.99 62.05 0.23

ISCCP23 36.57 85.54 74.77 61.16 0.12 0.00 NA NA NA NA

ISCCP3.6 36.57 32.84 16.26 58.67 0.17 0.00 NA NA NA NA
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the ATC test demonstrated superiority due to a significantly higher number of available observations (78.37% vs 98.67%,

respectively).

Among the night tests, IR, BT13.9, and B6.7 exhibited low detection capabilities (POD 0.60% - 10.59%), whereas the BT3.9-285

12.0 test was performed only on 38.09% of observations. As with the daytime tests, the ATC test proved to be the most suitable

for detection. Considering that global statistics for January and July were not markedly different from the yearly averages (Tab.

2.), subsequent analyses were conducted using data from the entire year.

As previously mentioned, all statistical measures were also calculated for different latitudes (Fig. 4.). The observed latitudinal

variability can be attributed to the physical properties of the respective radiation range and the intended function of the specific290

channel, as well as to the spatial distribution of cirrus clouds occurrence. For almost all of tests we observe the ROP (Fig. 4a. &

Fig. 4b.) decrease with the latitude increase. This is related to presence of solar illumination. The exception is ROP according

to BT3.9-12.0 (increase from 0% in tropics to almost 30% in polar region) which was specifically designed for nighttime

observations over land and polar snow/ice surfaces. ROP for both tests using ISCCP criteria is equal.

The latitudinal distribution of POD during the day (Fig. 4c.) shown that ISCCP criteria the most accurately detected cirrus295

clouds in the tropical regions (up to 75% for ISCCP23 and almost 100% for ISCCP3.6), with POD reduction with latitude

decrease (to about 10% and 40% respectively). Similar pattern was observed i.e. for BT13.9 method, but with cirrus detection

capabilities about 3 times inferior. Depending on the test, latitudinal variability of POD could be also higher for mid-latitudes

(ATC), low latitudes (test utilizing the solar radiation range), or remained relatively unchanged. There is no clear trend of

increasing/decreasing POD with latitude during the night (Fig. 4d.; slightly more cirrus correctly detected for polar regions by300

IR, BT13.9 and BT3.9-12.0 tests). The mid-latitudes exhibit POD drop for BT6.7 test, and consequently ATC test.

Figure 5 (Fig. 4e. & Fig. 4f.) shows also the latitudinal variability of FAR. In the tropical regions most of the tests show peak

of falsely reported cirrus clouds during daytime in equatorial region (with maximum exceeding 90% for ISCCP23 and 50%

for ISCCP3.6). Additionally, BT1.38 test falsely detects cirrus more often with latitude increase, what results with ‘bimodal’

FAR distribution with peaks in tropics (about 35%) and midlatitudes (75% for northern hemisphere and 30% for southern).305

A distribution resembling BT1.38 exhibited test ATC, but with an upward shift of about 10 percentage points. Relatively few

falsely observed cloud cases, with similar to the daytime distribution, were detected at night. No significant differences were

found between the equatorial and polar regions for all the tests for OA. For the daytime the latitudinal variation was more

readily observable and varied (Fig. 4g. & 4i. vs Fig. 4h. & 4j.).

Considering the very high proportion of correctly detected cirrus clouds, the high overall accuracy and kappa coefficient310

(degree of agreement between two classification methods), ATC test showed the highest agreement with CALIOP data. Addi-

tionally, it covers nearly all observations in the test (96.7%) and shows relatively low variability of statistical measures across

different latitudes. Therefore can be used as a basis for study evaluating cirrus cloud coverage in long term perspective.

To ensure ATC test performs optimally under various conditions and to provide a comprehensive analysis, fit measures were

additionally evaluated for “number of layers found” (NLF, Fig. 5.) and IGBP (The International Geosphere–Biosphere Pro-315

gramme, tab. 4).

Since CALIOP is a lidar providing high-resolution atmospheric profiles, with vertical resolutions ranging from 30 m to 180
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Figure 4. Cirrus detection accuracy with respect to the latitude (letters (a, . . . , j) used to facilitate reference in the text)
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m, it’s output could be divided into maximum 10 cloud layers. When multiple cloud layers overlap, the lidar signal may be

attenuated, potentially leading to underestimation of cloud detection. Our research evaluated the collocation of MODIS data

to the reference CALIOP data, segmented by the number of detected cloud layers excluding cirrus clouds. A zero indicated320

that no other cloud layers were detected besides possible cirrus in a given profile. Both day and night observations revealed

a maximum of four additional cloud layers. Based on the test conducted, ROP either decreased (i.e. BT13.9 70% to 30% at

daytime or BT3.9-12.0 at nighttime), increased (7% to 25% at daytime for BT3.9-12.0), or remained stable with an increasing

number of cloud layers (Fig. 5a. & Fig. 5b.). For ATC test, no discernible trend was identified. No clear trend could be observed

for POD, both day and night (Fig. 5c. & Fig. 5d.). However, the distribution of FAR parameter exhibited a different pattern.325

In multiple tests, notably ATC test, the value of FAR (Fig. 5e. & Fig. 5f.) significantly elevated with an increasing number of

cloud layers (9% to 78% during day and 1% to 15% at night for ATC). Presumably, for clouds with significant vertical devel-

opment (with more detected layers), MODIS identified only the uppermost layer, incorrectly categorizing it as the complete

cloud profile. Increasing number of falsely reported cirrus with NLF manifests itself in OA and Kappa distribution. With the

increase in non-cirrus layers found, there is a corresponding decrease in OA and Kappa, both for day and night (Fig. 5g., Fig.330

5h., Fig. 5i. & Fig. 5j.).

The International Geosphere–Biosphere Programme (IGBP) defines ecosystems surface classifications. For purpose of this

study, 17 IGBP groups was aggregated to 3 classes: water, land and snow (goodness-of-fit with respect to land classification

is presented in tab. 4.). Bright surfaces like snow, ice deserts, or complex terrain with varying surface types can make it335

challenging to distinguish clouds from the ground. The first noticeable aspect is the significantly lower ROP for snow compared

to other classes. Generally, the fit measures are similar to those in previous analyses. During the day, ATC test performs better

over water, whereas SOLAR test performs better over land. On the contrary, during nighttime, BT3.9-12.0 test performs better

over water, whereas ATC test performs better over land.

The analysis with respect to NLF and land cover types confirmed that ATC test is the most suitable for achieving the objective340

of this study. Therefore, the spatial distribution of the individual fit measures for this test was examined (Fig. 6).

Spatial distribution indicates very high level of ROP for both: day (Fig. 6a.) and night (Fig. 6b.) for the entire Earth. The

southernmost regions of the Southern Hemisphere are an exception, exhibiting lower values. Spatial variations observed in

correctly detected cirrus highlight differences between daytime and nighttime POD distribution (Fig. 6c. & Fig. 6d.). During

the daytime, high values are observed over nearly the entire Earth’s surface, with exceptions in the regions of Antarctica,345

Greenland and the Himalayas (≥ 80% vs ≤ 20% respectively), which are regions covered with snow and ice. However, at

night, the highest difference is between land and water (≥ 50% vs c.a. 20%). Similar patterns to the POD distribution for day

and night can be observed when considering OA (Fig. 6g. - Fig. 6h.). On both sides of the equator, FAR reaches the lowest

values, being slightly higher during the day than at night (about 20% and ≤ 5%) and increasing with latitude, however, there

is a reduction observed in regions covered by snow and ice (Fig. 6e. & Fig. 6f.). In regions with the highest rate of correctly350

detected and the lowest ratio of falsely reported cirrus general accuracy of classification (OA) exceeded 80% at daytime and

an 50% at night. As well as OA, Kappa was higher during the day. During the day, Kappa values ranged from 0.5 to 1.0 for
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Figure 5. Cirrus detection accuracy with respect to the NLF (letters (a, . . . , j) used to facilitate reference in the text)
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Table 3. Goodness-of-fit of cloud detection between MODIS and CALIOP with respect to land classification

WATER
Daytime Nighttime

Test ROP [%] POD FAR OA k ROP [%] POD FAR OA k

SOLAR 88.95 11.40 13.05 49.55 -0.02 0.00 NA NA NA NA

IR 92.44 12.93 4.24 54.23 0.48 85.56 11.10 3.36 54.35 0.51

BT13.9 74.18 1.32 3.66 48.21 -0.02 79.41 1.98 3.37 49.90 -0.01

BT6.7 99.99 0.20 1.25 49.48 -0.01 99.98 0.52 1.57 49.48 -0.01

BT1.38 88.95 84.91 30.78 76.99 0.54 0.00 NA NA NA NA

BT3.9-12.0 5.45 67.67 16.17 74.23 0.49 14.64 51.57 8.69 70.13 0.42

ATC 100.00 90.10 40.63 74.73 0.49 99.99 18.94 6.62 56.16 0.12

ISCCP23 29.32 86.27 73.48 62.45 0.14 0.00 NA NA NA NA

ISCCP3.6 29.32 34.69 16.22 59.89 0.19 0.00 NA NA NA NA

LAND

Daytime Nighttime

Test ROP [%] POD FAR OA k ROP [%] POD FAR OA k

SOLAR 84.11 27.39 12.70 57.53 0.15 0.00 NA NA NA NA

IR 93.02 11.42 4.47 52.87 0.48 80.87 9.16 2.92 53.14 0.51

BT13.9 77.48 1.41 3.40 49.65 -0.02 86.30 2.49 3.58 49.46 -0.01

BT6.7 100.00 0.22 1.32 49.45 -0.01 100.00 0.49 1.64 49.42 -0.01

BT1.38 88.95 84.91 30.78 76.99 0.54 0.00 NA NA NA NA

BT3.9-12.0 8.09 62.80 14.99 71.91 0.45 97.78 33.85 3.61 65.15 0.30

ATC 100.00 79.62 29.87 74.88 0.50 100.00 39.34 7.80 65.77 0.32

ISCCP23 45.98 83.88 76.09 58.95 0.08 0.00 NA NA NA NA

ISCCP3.6 45.98 35.73 22.99 55.46 0.12 0.00 NA NA NA NA

SNOW

Daytime Nighttime

Test ROP [%] POD FAR OA k ROP [%] POD FAR OA k

SOLAR 10.35 6.01 20.12 41.56 -0.14 0.00 NA NA NA NA

IR 13.98 15.12 7.27 50.73 0.43 1.12 13.76 5.52 56.13 0.52

BT13.9 0.16 0.72 5.12 47.19 -0.04 0.16 2.59 5.06 49.70 -0.03

BT6.7 78.83 1.70 1.04 54.07 0.01 27.05 2.48 1.86 49.83 0.01

BT1.38 10.35 90.90 53.45 69.55 0.38 0.00 NA NA NA NA

BT3.9-12.0 13.95 61.99 15.30 69.73 0.41 47.02 39.67 7.85 65.31 0.31

ATC 88.29 27.48 10.83 59.27 0.17 55.73 33.67 7.17 62.25 0.26

ISCCP23 11.34 46.54 31.07 57.85 0.16 0.00 NA NA NA NA

ISCCP3.6 11.34 8.00 3.64 59.62 0.05 0.00 NA NA NA NA

regions at low latitudes. In mid and high latitudes, Kappa values were between 0.0 and 0.5, remaining positive (Fig. 6i.). At

night (Fig. 6j.), nearly the entire Earth’s surface exhibited Kappa values between 0.0 and 0.5, with a negative Kappa observed

in the vicinity of Micronesia.355

5 Discussion and summary

This study aims to address the research gap by evaluating whether MODIS ready-to-use cloud mask product can be used for

producing a cirrus mask. We also seek to identify the conditions under which this approach would be effective and when it
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Figure 6. Spatial distribution of the accuracy detection of cirrus using ATC test (letters (a, . . . , j) used to facilitate reference in the text)

might not be suitable. The study found that it was possible however, certain limitations, particularly those related to nighttime,

must be consistently considered.360
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During daytime, the two most effective tests were BT1.38 and ATC. With very similar parameters (POD, FAR, OA and Kappa)

the ATC test demonstrated superiority due to a significantly higher number of available observations. Among the nighttime

tests the ATC test proved to be the most suitable for detection. Additionally, ATC test covers nearly all observations in the test

(96.7%) and shows relatively low variability of statistical measures across different latitudes. Spatial analysis indicates very

high level of ROP for both: day and night for the entire Earth. Spatial variations observed in correctly detected cirrus highlight365

differences between daytime and nighttime POD distribution. During the daytime, high values are observed over nearly the

entire Earth’s surface, with exceptions in the polar regions and Himalayas. However, at night, land regions display higher

POD values compared to the surrounding areas. Considering all mentioned above ATC test is proved to be the best among the

available methods for detecting high-level clouds. However, it is evident that its utility during nighttime is significantly limited

compared to daytime. Consequently, we have determined that it may be suitable for creating a high-level clouds mask and370

conducting a long-term climatological analysis of cirrus cloud coverage. This approach simultaneously allows us to address

the second research gap mentioned in this paragraph, which concerns our lack of knowledge regarding the long-term variability

of high-level cloud coverage.

Obtained from CALIOP data cirrus mask mentioned in Section 3 allow us to investigate the distribution of cirrus clouds (Fig.

2.) in 2015. Based on the CALIOP dataset, cirrus cloud coverage reached 18.7% in 2015, daytime coverage of high-level375

clouds in 2015 was recorded at 13.2%, whereas nighttime coverage was higher, measured at 23.3%.

In a similar manner, a cirrus mask was generated based on the MODIS data using ATC test. Derived from this data cirrus

coverage (Fig. 7a.) daytime coverage of high-level clouds was recorded at 41.0%, whereas nighttime coverage was lower,

measured at 10.9% (Fig. 7b.). Regrettably, this indicates that although achieving comparable outcomes as reported in existing

literature (Sassen et al., 2008), the data concerning the diurnal pattern of cloud coverage is entirely lost.380

We also compared cirrus cloud coverage in 2015 obtained from CALIOP and MODIS data (Fig. 8.). Mean difference between

Cirrus coverage derived from CALIOP and MODIS was -27.71 p.p. for the daytime observations (Fig. 8a.), MODIS generally

indicated higher cloud cover compared to CALIOP. On the contrary, mean difference between Cirrus coverage derived from

CALIOP and MODIS was -12.31 p.p. for the nighttime observations (Fig. 8b.). While the relationship between MODIS and

CALIOP is statistically significant (p < 0.001), the R2 value of 0.165 indicates that MODIS captures only 16.5% of the385

variability. In the nighttime dataset, the R2 improves to 0.422, meaning MODIS cloud coverage aligns better with CALIOP

at night. Although the majority of fit metrics show improved performance during the day, the high number of false alarms

ultimately results in the nighttime fit being more accurate when cirrus coverage is examined in the subsequent analysis.

In conclusion, our study has shown that ATC test, developed based on MODIS Cloud Product data, demonstrated the highest

agreement with reference data (the overall accuracy of 72.98% during daytime and 59.50% at night, probability of detection:390

80.87% and 25.46%, false alarm rate of 34.86% and 6.90%, and Cohen’s kappa coefficient of 0.46 and 0.19 respectively).

Although the study had certain limitations, such as nighttime cirrus detections, its results may have important implications for

understanding the nature of high-level cloudiness. Future research may focus on long-term trends in cirrus cloudiness. These

conclusions represent an important step toward a better understanding of the impact of clouds on the climate.
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