Preprints
https://doi.org/10.5194/amt-2024-168
https://doi.org/10.5194/amt-2024-168
16 Oct 2024
 | 16 Oct 2024
Status: this preprint is currently under review for the journal AMT.

The ATMONSYS water vapor DIAL: Advanced measurements of short-term variability in the planetary boundary layer

Johannes Speidel, Hannes Vogelmann, Andreas Behrendt, Diego Lange, Matthias Mauder, Jens Reichardt, and Kevin Wolz

Abstract. High-resolution measurements of water vapor concentrations and their transport throughout the turbulent planetary boundary layer (PBL) and beyond are key for an enhanced understanding of atmospheric processes. Therefore, data from the mobile atmospheric monitoring system (ATMONSYS) differential absorption lidar (DIAL) is presented for the first time. The ATMONSYS DIAL has been developed with the goal of resolving turbulence throughout the PBL at a sampling frequency of 10 s and vertical resolutions of less than 200 m. General measuring capabilities during high-noon, clear-sky, summer conditions with a maximum vertical measurement range of >3 km and statistical uncertainties of <5 % are demonstrated. The analysis of turbulence spectra shows an overall good agreement with Kolmogorov's law, demonstrating its general capability of resolving turbulence, although deviations to the Kolmogorov behaviour can be observed at certain frequency ranges. By the combination of the ATMONSYS DIAL with an adjacent high-quality Doppler wind lidar, some of those deviations are evaded in the co-spectra due to independent noise of both instruments. However, the intermediate deviations from the expected Kolmogorov behavior in the co-spectra persist. Under consideration of the surrounding landscape, an impact of present surface heterogeneities on those intermediate frequency deviations seems plausible. Agreement of the co-spectra with Kolmogorov's law at the highest frequencies reveals that the ATMONSYS DIAL is capable to resolve turbulent latent energy fluxes down to the measurement's Nyquist frequency of 5 · 10-2 Hz. A system cross-intercomparison of the ATMONSYS DIAL with two adjacent water vapor Raman lidars and radiosondes shows good agreement between all sensors, despite minor DIAL deficiencies under certain conditions with shreded clouds surpassing the lidar. Observed profile-to-profile DIAL fluctuations and sensor-to-sensor deviations, in combination with low statistical uncertainty, show the advantage of humidity lidars, such as the ATMONSYS DIAL, to capture both short-term and small-scale dynamics of the lowermost atmosphere.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Johannes Speidel, Hannes Vogelmann, Andreas Behrendt, Diego Lange, Matthias Mauder, Jens Reichardt, and Kevin Wolz

Status: open (until 06 Dec 2024)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on amt-2024-168', Anonymous Referee #1, 25 Oct 2024 reply
Johannes Speidel, Hannes Vogelmann, Andreas Behrendt, Diego Lange, Matthias Mauder, Jens Reichardt, and Kevin Wolz
Johannes Speidel, Hannes Vogelmann, Andreas Behrendt, Diego Lange, Matthias Mauder, Jens Reichardt, and Kevin Wolz

Viewed

Total article views: 157 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
120 33 4 157 3 2
  • HTML: 120
  • PDF: 33
  • XML: 4
  • Total: 157
  • BibTeX: 3
  • EndNote: 2
Views and downloads (calculated since 16 Oct 2024)
Cumulative views and downloads (calculated since 16 Oct 2024)

Viewed (geographical distribution)

Total article views: 150 (including HTML, PDF, and XML) Thereof 150 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 07 Nov 2024
Download
Short summary
Humidity transport from the Earth's surface into the atmosphere is relevant for many processes. However, knowledge on the actual distribution of humidity concentrations is sparse – mainly due to technological limitations. With the herein presented lidar, it is possible to measure humidity concentrations and their vertical fluxes up to altitudes of >3 km with high spatio-temporal resolution, opening new possibilities for detailed process understanding and, ultimately, better model representation.