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Abstract  12 

In the atmosphere, aerosols can originate from numerous sources, leading to the mixing of different 13 

particle types. This paper introduces an approach to the partitioning of aerosol mixtures in terms 14 

of backscattering coefficients. The method utilizes data collected from the Mie-Raman-15 

fluorescence lidar, with the primary input information being the aerosol backscattering coefficient 16 

(β), particle depolarization ratio (δ), and fluorescence capacity (GF). The fluorescence capacity is 17 

defined as the ratio of the fluorescence backscattering coefficient to the particle backscattering 18 

coefficient at the laser wavelength. By solving a system of equations that model these three 19 

properties (β, δ and GF), it is possible to characterize a three-component aerosol mixture. 20 

Specifically, the paper assesses the contributions of smoke, urban, and dust aerosols to the overall 21 

backscattering coefficient at 532 nm. It is important to note that aerosol properties (δ and GF) may 22 

exhibit variations even within a specified aerosol type. To estimate the associated uncertainty, we 23 

employ the Monte Carlo technique, which assumes that GF and δ are random values uniformly 24 

distributed within predefined intervals. In each Monte Carlo run, a solution is obtained. Rather 25 

than relying on a singular solution, an average is computed across the whole set of solutions, and 26 

their dispersion serves as a metric for method uncertainty. This methodology was tested using 27 

observations conducted at the ATOLL observatory, Laboratoire d'Optique Atmosphérique, 28 

University of Lille, France. 29 

 30 

1. Introduction 31 



2 
 

Studying the physicochemical properties of atmospheric aerosols is crucial for 32 

understanding their impact on Earth's radiation balance and climate. To simplify the complexity 33 

of aerosol composition, it is essential to classify aerosol types. Categorization of aerosols into 34 

several basic types, e.g. urban, dust, marine, biomass burning (Dubovik et al., 2002), allows to 35 

cover the range of variability of observed aerosol parameters and facilitates the analysis and 36 

interpretation of aerosol data. The multiwavelength Mie-Raman and HSRL (High Spectral 37 

Resolution Lidar) lidar systems provide an unique opportunity to derive height-resolved particle 38 

intensive properties, such as Angstrom exponents, lidar ratios, and depolarization ratios at multiple 39 

wavelengths. These properties can be used as inputs for classification schemes (Burton et al., 2012, 40 

2013; Groß et al., 2013; Mamouri et al., 2017; Papagiannopoulos et al., 2018; Nicolae et al., 2018; 41 

Hara et al., 2018; Voudouri et al., 2019; Wang et al., 2021; Mylonaki et al., 2021; Wandinger et 42 

al., 2023; Floutsi et al., 2023b). However, aerosols in the atmosphere often originate from multiple 43 

sources, leading to the mixing of different particle types. To understand the impact of different 44 

aerosol types within a mixture, it is necessary to quantify the content of each type. 45 

In the cases involving mixtures of two aerosol types with significantly different 46 

depolarization ratios, the partitioning of aerosol backscattering coefficients becomes 47 

straightforward (Sugimoto and Lee, 2006; Tesche et al., 2009; Miffre et al., 2020). Burton et al. 48 

(2014) have formulated the mixing rules for several aerosol intensive parameters, such as lidar 49 

ratio, backscatter color ratio, depolarization ratio, and applied these rules to two-component 50 

aerosol mixtures. However, the partition becomes increasingly challenging when dealing with 51 

more than two types of particles. The limited number of lidar-measured intensive particle 52 

properties specific to individual aerosol types contributes to this challenge. Even for a single 53 

aerosol type, the measured particle parameters, such as lidar ratios, demonstrate a wide range of 54 

variability (Floutsi et al., 2023a). Distinguishing between urban and smoke particles poses a 55 

particular challenge as these two types exhibit similar lidar-measured properties (Floutsi et al., 56 

2023a). Therefore, additional independent information is needed to enhance the characterization 57 

of aerosol parameters. 58 

Independent information about aerosol properties can be obtained through fluorescence lidar 59 

measurements (Reichardt et al., 2018, 2023; Veselovskii et al., 2020; Zhang et al., 2021). The 60 

fluorescence lidar allows evaluating the fluorescence backscattering coefficient βF, which is 61 

derived from the ratio of fluorescence and nitrogen Raman backscatters (Veselovskii et al., 2020). 62 
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The particle intensive property in fluorescence lidar measurements is the fluorescence capacity 63 

GF, which is the ratio of βF to the aerosol backscattering coefficient at the laser wavelength. The 64 

fluorescence capacity of smoke is approximately one order higher than that of urban particles, 65 

providing a basis for distinguishing between these two aerosol types (Veselovskii et al., 2022). 66 

Additionally, recent studies have shown that a classification scheme relying on two intensive 67 

parameters - the particle depolarization ratio at 532 nm (δ532) and the fluorescence capacity, 68 

effectively separates four aerosol types: dust, smoke, pollen, and urban, as demonstrated in the 69 

publication of  Veselovskii et al. (2022). It is noteworthy that the classification scheme in that 70 

paper does not discriminate particles based on their absorption properties, so the "urban" type 71 

encompasses both continental aerosol and anthropogenic pollution. Furthermore, maritime aerosol 72 

is not included in the classification at present, as the lidar observations were performed over Lille, 73 

where maritime particles are not prevalent (though the possibility of its inclusion is 74 

acknowledged).  75 

The algorithm presented in the study of Veselovskii et al. (2022) showcases the capability 76 

to perform aerosol classification with high spatiotemporal resolution. However, as mentioned 77 

earlier, it is essential to quantify the content of the mixture. In this study, we extended the approach 78 

beyond classification to partition aerosol mixtures in terms of the backscattering coefficients of 79 

basic aerosol types. To test the algorithm, we analyzed observations at the ATOLL (ATmospheric 80 

Observation at liLLe) at Laboratoire d'Optique Atmosphérique, University of Lille, between 2020 81 

and 2023, performed during periods of strong smoke and dust episodes. We begin by providing a 82 

description of the lidar system (Section 2.1) and in Section 2.2, a novel approach for mixture 83 

partition is presented. In the results section (Section 3), we present three case studies that 84 

demonstrate how the algorithm operates. The paper concludes with a summary of our findings in 85 

the conclusion section. 86 

 87 

2. Experimental setup and approach to aerosol mixture partition 88 

2.1. Lidar system.  89 

The Mie-Raman-fluorescence lidar LILAS (LIlle Lidar AtmosphereS) is equipped with a 90 

tripled Nd:YAG laser that operates at a repetition rate of 20 Hz and has a pulse energy of 91 

approximately 100 mJ at 355 nm. A 40 cm aperture Newtonian telescope is utilized to collect the 92 

backscattered light, and Licel transient recorders with a range resolution of 7.5 m are employed to 93 
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digitize the lidar signals. This configuration allows for simultaneous detection in both analog and 94 

photon counting modes. The objective of the LILAS system is to detect elastic and Raman 95 

backscattering, which enables the measurement of various properties through the 3β+2α+3δ data 96 

configuration. This includes three particle backscattering coefficients (β355, β532, β1064), two 97 

extinction coefficients (α355, α532), and three particle depolarization ratios (δ355, δ532, δ1064). The 98 

particle depolarization ratio, determined as a ratio of cross- and co-polarized components of the 99 

particle backscattering coefficient, was calculated and calibrated in the same way as described in 100 

Freudenthaler et al. (2009). Additionally, the LILAS system is capable of profiling the laser-101 

induced fluorescence of aerosol particles. This is achieved by using a wideband interference filter 102 

with a width of 44 nm, centered at 466 nm, as suggested by Veselovskii et al. (2020). Due to the 103 

strong sunlight background during daytime, the fluorescence observations are limited to nighttime 104 

hours.  105 

The calculation of the fluorescence capacity GF can be performed using backscattering 106 

coefficients at any laser wavelength. In our study, we specifically used β532, as it is determined 107 

using rotational Raman scattering and is considered to be the most reliable, thus 
532

F
FG β

β
= . To 108 

supplement our measurements, additional information about atmospheric properties was obtained 109 

from radiosonde measurements conducted at Herstmonceux (UK) and Beauvechain (Belgium) 110 

stations, which are located approximately 160 km and 80 km away from the observation site, 111 

respectively. The lidar measurements were primarily conducted vertically. In cases where 112 

observations were made at an angle to the horizon, the corresponding information has been 113 

included in the captions of the figures. 114 

 115 

  2.2. Approach for the mixture partition 116 

The lidar system measures up to nine independent properties of aerosols. However, our 117 

main focus is on separation the backscatters of individual aerosol types with high spatiotemporal 118 

resolution. To calculate parameters related to the extinction coefficient, such as lidar ratio or 119 

extinction Angstrom exponent, it is necessary to average lidar profiles over a substantial 120 

spatiotemporal interval. In this study, as a first step, we use three parameters with high resolution 121 

in both height and temporal domains: the backscattering coefficient β532, the depolarization ratio 122 

δ532 and the fluorescence capacity GF. Moreover, the calculation process partially cancels out the 123 
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overlap functions, allowing us to derive β532, δ532 and GF closer to the ground compared to aerosol 124 

extinction. We are considering a scenario where only three externally mixed aerosol types occur, 125 

such as smoke (s), dust (d), and urban (u). The aerosol and fluorescence backscattering coefficients 126 

(β532 and βF) are the sum of their respective contributions. 127 

532 532 532 532
s d uβ β β β= + +           (1) 128 

s d u
F F F Fβ β β β= + +           (2) 129 

The fluorescence capacities for each aerosol type are: 130 

532

i
i F
F iG β

β
=            (3) 131 

where i= s, d, u. The fractions of β532 for individual aerosol types are:  132 

532

532

i

i
βη
β

=   .          (4) 133 

By definition:  134 

1s d uη η η+ + = .          (5) 135 

The fluorescence capacity can be expressed as a linear combination of the fluorescence 136 

capacities of each aerosol type, as shown in Eq. 6:  137 
s d u

F s F d F u FG G G Gη η η= + +           (6) 138 

The particle depolarization ratio is a ratio of the cross- and co-polarized component of the 139 

backscattering coefficient: 532
532

532

βδ
β

⊥

=


. However, for the mixture analysis, the use of the 140 

depolarization potential ' 532
532

5321
δδ
δ

=
+

 is preferable, because δ’, the same as GF, is a linear 141 

combination of the depolarization potentials of individual particle types ( ' ' '
532 532 532, ,s d uδ δ δ ), as outlined 142 

by Burton et al. (2014). 143 
' ' ' '
532 532 532 532

s d u
s d uδ η δ η δ η δ= + +          (7) 144 

Finally, we have a system of three equations (5-7) from which we can determine the relative 145 

contributions of each aerosol type by finding ηs, ηd and ηu. In our study, we solve the system (Eq. 146 

5-7) using the least squares method with an additional constraint on the non-negativity of solutions. 147 

As mentioned earlier, the particle parameters may vary within predetermined ranges, even for a 148 
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specific aerosol type. However, the exact values of i
FG  and '

532δ  at a specific height/time pixel are 149 

unknown. To address the uncertainty in ηi, we employ the Monte Carlo technique, assuming that 150 
i
FG  and '

532δ  are random values uniformly distributed within the predetermined intervals. For each 151 

Monte Carlo trial, random values of i
FG  and '

532δ  are generated. Instead of relying on a single 152 

solution, we conduct a series of Monte Carlo trials in order to obtain a set of solutions and calculate 153 

the average of this set. The dispersion of these solutions is taken as a measure of method 154 

uncertainty. The number of Monte Carlo trials was set to 100 and further increase in this number 155 

did not significantly impact either the final average or the dispersion of solutions. In our 156 

classification scheme, we include four types of aerosols (smoke, pollen, urban, dust). Nevertheless, 157 

the system of equations (Eq. 5-7) consists of only three equations. Given that it is highly unlikely 158 

to have all four aerosol types coexisting at a single height/time pixel, one of the four types can be 159 

excluded a priori based on a GF-δ532 diagram or other pertinent considerations. Another option is 160 

to exclude one aerosol type at each height/time pixel based on the lidar data itself, as described 161 

below. Such method we will call Automatic Type Selection (ATS) 162 

For ATS, we solve the system Eq. 5-7 for the triplets (S, P, U), (S, P, D), (S, D, U), and (P, 163 

D, U), where S, D, U, P denote Smoke, Dust, Urban, Pollen, respectively. To determine which 164 

aerosol types can be excluded, we use the discrepancy for Eq. 6 and 7 as a criterion. Specifically, 165 

we calculate the difference between the input data (GF-δ532) and the corresponding values obtained 166 

by substituting the solution into the right-hand side of Eq. 6 and 7. The aerosol triplet that provides 167 

the least discrepancy is chosen for this single Monte Carlo trial and for the height/time pixel. This 168 

procedure is repeated for every Monte Carlo trial, and after averaging, the spatiotemporal 169 

distributions of ηs, ηp, ηu, and ηd are evaluated. 170 

 171 

3. Application of partition algorithm to lidar observations 172 

3.1. Range of particle parameters used in inversion scheme. 173 

The uncertainty of the partitioning of backscattering coefficients depends on the range of 174 

GF and δ532 variations in each aerosol type. To establish this range, we analyzed measurement 175 

sessions at the ATOLL for the period of 2020-2023. Our focus was on observation episodes 176 

characterized by stable atmospheric conditions, where only a single aerosol type predominated, at 177 

least within specific height/time intervals. Moreover, we took precautions to ensure that the 178 
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relative humidity in the selected intervals remained below 60% to minimize the impact of particle 179 

hygroscopic growth. The example of such impact is presented in Fig.6 of Veselovskii et al. (2024). 180 

Based on the obtained results, we summarized the ranges of parameter variation in Table 1. The 181 

ranges are slightly different from the ones in Table 1 of Veselovskii et al. (2022), because since 182 

that publication numerous observations were performed, providing more material for analysis. The 183 

depolarization ratios δ532 for smoke and urban particles fall within the range of 2%-8%, while for 184 

dust, this range is 25%-35%. The depolarization ratio of long transported dust can be lower, but at 185 

this stage, we do not consider possible modifications of dust properties during transportation. We 186 

attribute lower values of δ532 to the mixing of dust with pollutants (urban aerosol in our model). 187 

Should be mentioned, that depolarization ratio of smoke in the upper troposphere can be as high 188 

as 20% (Ohneiser et al., 2020), however, in the low and middle troposphere, where partitioning 189 

was performed, we limited δ532 by the value of 8%.  190 

The fluorescence capacity of smoke is high, due to the presence of organic carbon. In the 191 

upper troposphere GF can reach 10×10-4 (Veselovskii et al., 2024), but below 8 km, it mainly falls 192 

within the range of (2.5-4.5)×10-4. For dust and urban particles, the values of fluorescence 193 

capacities are within the intervals of (0.05-0.45)×10-4 and (0.2-0.8)×10-4, respectively. 194 

Determining the ranges of δ532 and GF for pollen is particularly challenging because, in the north 195 

of France, pollen is commonly mixed with other aerosol types. Moreover, the depolarization of 196 

pollen particles varies significantly from one type to another (Cao et al., 2010). In the Lille area, 197 

one dominant taxon is birch (Veselovskii et al., 2021) with a depolarization ratio of δ532 at around 198 

30% (Cholleton et al., 2022). In our analysis, the depolarization ratio is set within the 30%-40% 199 

interval. The pollen consist of biological materials and their fluorescence capacity is higher than 200 

that of urban particles. From our measurements the variation range of GF for pollen is estimated 201 

to be within (1.0-2.5)×10-4. 202 

 203 

Table 1. Variation ranges of fluorescence capacity and the particle depolarization ratio for different 204 

types of aerosols. 205 

Type GF, 10-4 δ532, % 

Smoke 2.5÷4.5 2.0÷8 

Pollen 1÷2.5 30÷40 
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Urban 0.2÷0.8 2.0÷8 

Dust 0.05÷0.45 25÷35 

 206 

Below, we present three examples of applying the described approach to measurements performed 207 

at the ATOLL observatory. 208 

 209 

3.2. Episode on March 27-28, 2022. Three types of particles are observed within different 210 

spatiotemporal domains. 211 

The spatiotemporal distributions of the aerosol backscattering coefficient β532, the particle 212 

depolarization ratio δ532, and the fluorescence capacity GF on March 27-28, 2022, are shown in 213 

Fig.1. Relative humidity decreased with height, ranging from 70% at 600 m to 55% at 1800 m. 214 

Aerosols were primarily found below 2500 m, with several distinguishable particle types identified. 215 

The particle depolarization ratio increased to 30% at 2000 m during the 20:00-22:00 UTC period, 216 

indicating the presence of dust. Additionally, high values of the fluorescence capacity (up to 217 

2.5×10-4) for the 00:00-05:00 UTC period suggest the presence of smoke.  218 

Fig.2a presents the GF-δ532 diagram for these measurements (Veselovskii et al., 2022). The 219 

red boxes represent the parameter ranges used for aerosol classification, which are slightly broader 220 

than those outlined in Table 1 to account for mixtures where one type is predominant. Dust, smoke, 221 

and urban particles can be distinguished on the diagram, together with intervals indicating mixed 222 

particle types. Although March is typically a pollen season in Lille, pollen particles did not 223 

significantly contribute to the observed episode. Utilizing this classification scheme, we assess the 224 

spatiotemporal distribution of aerosol types in Fig.2b, following the methodology outlined in 225 

Veselovskii et al. (2022). Regions predominated by dust, smoke, and urban particles are clearly 226 

identified. A small amount of pollen is observed towards the end of the session at approximately 227 

700 m height. The grey color in Fig.2b represents aerosol mixtures where the particle type cannot 228 

be definitively identified. The aerosol classification presented in Fig. 2b finds support in the results 229 

of the HYSPLIT Backward Trajectory Analysis (Stein et al., 2015) depicted in Figure 3. 230 

Specifically, the air masses below 1000 m height were transported over the Belgium, and the 231 

presence of urban aerosol is expected. Conversely, the air masses above 1500 m were transported 232 

over regions with extensive forest fires in Greece, suggesting a potential mixture of smoke and 233 

dust. 234 
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By applying the partition technique described in Sect.2.2, we can determine the contribution 235 

of each particle type to the total backscattering coefficient β532.The spatiotemporal distributions of 236 

ηs, ηu, and ηd in Fig.4 were assessed assuming that pollen contribution can be neglected. The 237 

algorithm operates smoothly, showing distributions without any unrealistic high-frequency 238 

oscillations. By observing the distributions, it can be concluded that the smoke plume actually 239 

contains a significant amount of urban aerosol, while the dust plume does not show the presence 240 

of other particle types.  241 

The distributions in Fig.4 represent the mean values of ηs, ηu, and ηd. To understand the 242 

uncertainty caused by potential variations in particle characteristics, Fig.5 displays the vertical 243 

profiles of ηs, ηu, and ηd for the period between 21:00-22:00 UTC, along with the corresponding 244 

standard deviations. Urban particles are predominant below 1000 m with a deviation from the 245 

mean value of roughly 5%. Above 1500 m, ηu decreases to 0.05 and the uncertainty increases to 246 

100%. Conversely, dust can be disregarded below 1000 m, but becomes predominant above 1000 247 

m. Smoke contribution during the considered time period is low and only becomes noticeable 248 

(ηs~0.15) in the 1250-1500 m range. As mentioned earlier, the results in Fig. 4 were obtained 249 

without considering pollen. To assess the potential impact of pollen on the results, the partition 250 

was carried out for four aerosol types using the ATS approach, as described in Section 2.2. The 251 

corresponding profiles of ηs,4, ηu,4, and ηd,4, are depicted in Fig.5 with magenta lines. Notably, the 252 

profiles obtained for three and four aerosol types are similar. Pollen does have some effect on 253 

smoke contribution (ηs decreased from 0.14 to 0.1), but its influence on dust and urban particle 254 

contribution is negligible.  255 

 256 

3.3. Episode on October 1-2, 2023. Different types of aerosol form the layer structure. 257 

Observations at ATOLL in 2023 were notable for frequent intensive smoke events. North 258 

American wildfire smoke, transported over the Atlantic, was observed from mid-May until 259 

October. In some autumn episodes, smoke descended from the troposphere to ground level. One 260 

such episode is shown in Fig.6, which presents the spatiotemporal distributions of β532, δ532, and 261 

GF during the night of October 1-2, 2023. During this period, the relative humidity decreased with 262 

height, from 50% at 500 m to 30% at 3500 m. Strong aerosol layers were observed up to 5 km in 263 

height, and the depolarization ratio δ532 exceeded 25% above 2000 m, indicating the predominance 264 

of dust. However, below 1000 m, a low depolarization ratio (δ532 < 8%) was accompanied by a 265 
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high fluorescence capacity of particles (up to 3.0×10-4), identifying them as smoke. The GF-δ532 266 

diagram in Fig.7a highlights the pixels attributed to dust, smoke, and urban particles. There are 267 

also intervals where these types were mixed. These regions with mixed aerosols are represented 268 

by the grey color in the distribution of particle types in Fig.7b. The results of aerosol classification 269 

agree with HYSPLIT backward trajectories analysis. Fig.8 shows the five-days back trajectories 270 

over Lille on October 2, 2023, at 00:00 UTC. The air masses over the Atlantic, containing North 271 

American smoke, descend from 5000 m to the ground, leading to the predominance of smoke over 272 

Lille at 500 m. The air masses at 1500 m are transported over the continent and may contain 273 

pollutants, whereas the air masses at 2700 m arrive from Africa and are loaded with dust. Fig. 9 274 

depicts the spatiotemporal distributions of ηs, ηu, ηd, derived in assumption that only three aerosol 275 

types occur. Urban aerosol is localized primarily between the smoke and dust layers. Vertical 276 

profiles of ηs, ηu, ηd for the 22:00-23:00 UTC period are presented in Fig.10. Smoke predominates 277 

below 1000 m, with a smoke contribution (ηs=0.7 at 750 m) evaluated with an uncertainty of about 278 

20%. The contribution of urban particles within the smoke layer (at 750 m) is ηu=0.3, with a 279 

corresponding uncertainty of approximately 30%. Dust predominates above 2000 m (ηd=0.8), and 280 

the uncertainty of ηd estimation is below 15%. Although the existence of pollen in October is quite 281 

improbable, for testing purposes, we performed an inversion for four aerosol types using the ATS 282 

method (magenta lines in Fig.10). The impact of including pollen is most pronounced for dust at 283 

1750 m, where ηd is about 25% decreased. However, the values obtained still fall within the 284 

estimated range of uncertainty. From the examples considered, we conclude that the contributions 285 

of three aerosol components to the backscattering coefficient can be determined through joint 286 

fluorescence and polarization measurements. The volume concentration, Vi, of i-th aerosol 287 

component can be estimated from the backscattering coefficient using the corresponding lidar ratio,288 

532
iS , and the extinction-to-volume conversion factors i

VC  (Mamouri and Ansmann, 2017; 289 

Ansmann et al., 2019, 2021; He et al., 2023). Thus, for the i-th aerosol component: 290 

                  532 532
i i

i i VV S Cβ η= × × ×                                                     (8) 291 

The values of the conversion factors at 532 nm, derived from AERONET observations, along with 292 

some reported lidar ratios, are summarized in Table 2. Therefore, the presented information allows 293 

us to quantify the composition of the aerosol mixture. 294 

  295 
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Table 2. Lidar ratios ( 532
iS ) and extinction-to-volume conversion factors ( i

VC ) for different types 296 

of aerosol. 297 

Type Lidar ratio 532
iS , sr i

VC , µm3cm-3/Mm-1 

Urban 53-70 1 0.3-0.41 2 

Smoke (North 

American, aged) 

55-73 1 

50-785 

0.13 4 

 

Dust (North 

Africa) 

40-50 4 0.61-0.64 2 

0.67-0.73 3 

0.64-0.67 6 

1Burton et al., 2013; 2Mamouri and Ansmann, 2017; 3Ansmann et al., 2019; 4Ansmann et al., 2021; 5 Hu et al., 298 
2022; 6He et al., 2023.  299 
 300 

3.4. Heatwave over Lille in July 2022. 301 

The heatwave in France in July 2022 was attributed to a high-pressure system known as the 302 

Azores High, which usually sits off Spain and pushed farther north, resulting in elevated 303 

temperatures and multiple fires. The Sun photometer and lidar observations at ATOLL consistently 304 

recorded an increase in aerosol content over Lille in the middle of July 2022. Fig.11 displays the 305 

aerosol optical depth (AOD) at 500 nm and the Angstrom exponent for 380/500 nm wavelengths 306 

provided by AERONET. Lidar observations were performed from July 16 to July 23, as shown in 307 

the frame in Fig.10. Within this interval, the optical depth increased, reaching its peak on July 18. 308 

The Angstrom exponent decreased, indicating the presence of dust. Fig.11 shows the column-309 

integrated particle volume, provided by AERONET, presented separately for the fine and coarse 310 

mode particles. After July 16, the volume of the coarse mode increased approximately fourfold, 311 

while the fine mode did not show significant changes, further supporting the presence of dust 312 

particles. Unfortunately, volume retrievals are not available after July 20 due to the presence of 313 

clouds. The methodology outlined in Sect. 2.2 was used to analyze the composition of aerosols 314 

during the heatwave.  315 

In Fig.13, we can see the spatiotemporal distributions of β532, δ532 and GF for four 316 

measurement sessions between July 16 and July 23, 2022. On July 16-17, after midnight, a dust 317 

layer with δ532 exceeding 20% appeared at a height of 5 km. The following night (July 17-18), the 318 

lower border of the dust layer descended to 2 km. By the night of July 18-19, we observed strong 319 
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aerosol backscattering (above 1.0 Mm-1sr-1) from the ground up to a height of 5 km. Dust was 320 

primarily found within two height ranges: 0.75-2.0 km and 3.0-5.0 km, where the particle 321 

depolarization ratio δ532 exceeded 20%. The aerosol between these dust layers showed high 322 

fluorescence capacity (above 2.0×10-4), indicating the presence of smoke. Unfortunately, we could 323 

not make long-term lidar observations from July 19-21 due to cloud cover. However, by the night 324 

of July 22-23, we observed localized aerosols below 3 km. The values of δ532 and GF were below 325 

10% and 1.0×10-4, respectively, which is typical for urban particles. The relative humidity during 326 

the measurements for July 16-19 was below 60 % within the height range being considered. On 327 

the night of July 22-23, the relative humidity was higher, reaching up to 80%. In Fig.14, we provide 328 

the GF-δ532 diagrams for the measurements shown in Fig.13. On the night of July 16-17, the 329 

clusters corresponding to dust and smoke/urban particles are distinct. However, for July 17-19, 330 

dust was mixed with smoke and urban particles, resulting in a characteristic pattern on the GF-δ532 331 

diagram (Veselovskii et al., 2022). By the night of July 22-23, only one cluster, corresponding to 332 

urban aerosol, was observed. The distributions of particle types in Fig.14 for the period of July 16-333 

19 contain extended gray regions where different types of particles are mixed and cannot be 334 

identified. In Fig.15, we can see the partition technique used to evaluate the contributions of dust, 335 

smoke, and urban aerosol to β532. From this analysis, we can conclude that on the night of July 16-336 

17, the aerosol below 2.5 km was a mixture of smoke and urban particles, and the elevated dust 337 

layer (00:00-03:00 UTC) contained a significant amount of urban particles (ηu is up to 0.4). On 338 

July 18-19, the aerosol between the two dust layers, within the height range of 2-3 km, was also a 339 

mixture of smoke and urban particles.  340 

The aerosol classification based on fluorescence and depolarization measurements is 341 

supported by the analysis of backward trajectories. Fig.16 shows the five-day backward 342 

trajectories for four measurement sessions from Figure 15 at altitudes of 1500 m, 3000 m, and 343 

4500 m. On July 16-17, the dust layer above 4000 m originates from North Africa, while smoke 344 

at 3000 m is likely transported from North America. The air masses at 3000 m on July 17-18 are 345 

transported from Africa over regions of wildfires in Spain, indicating a mixture of dust and smoke. 346 

Smoke at 3000 m on July 18-19 again originates from wildfires in Spain, while the source of the 347 

dust layers at 1500 m and 4000 m is in Africa. Finally, on July 22-23, the heat wave was over. The 348 

air masses arrive from the West outside dust and smoke sources, and aerosol in Fig. 15 within the 349 

1000-3000 m range is identified as urban.  350 
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 As mentioned, the volume concentration of each component can be estimated using Eq. 8. 351 

Fig.17 presents the vertical profiles of volume concentration for smoke, urban, and dust particles 352 

for four measurement sessions from Fig.15. In the calculations, we used the mean values of ηs, ηu, 353 

ηd, as well as the mean values of the lidar ratios and fluorescence capacity from Table 2. The lidar 354 

ratios used for smoke, urban, and dust are 64 sr, 61 sr, and 45 sr, respectively, and the fluorescence 355 

capacity values are 0.13×10-4, 0.35×10-4, and 0.7×10-4. The main contributors to the volume are 356 

urban and dust particles, with smoke contributing noticeably only on July 18 and 19, but with a 357 

volume density still below 5 µm3cm-3. The volume concentration can be recalculated to the mass 358 

concentration, if the particle density is known. The profiles of mass concentration are shown in 359 

Fig.17 as dash lines. In computations we utilized a smoke density of ρs=1.15 g/cm3 (Ansmann et 360 

al., 2021) and a dust density of ρd=2.6 g/cm3 (He et al., 2023). For urban aerosol a density of 361 

ρu=1.5 g/cm3 was selected for sulfate particles. 362 

To assess the validity of our volume estimations, we compared our results with AERONET 363 

retrievals. For this comparison, the volume density profiles of each component from Fig.17 were 364 

extrapolated to the ground, and the total column-integrated volume was calculated. The results are 365 

depicted in Fig.12 by stars, with an additional measurement on July 19 (22:00-23:00) included. It 366 

is evident that the results provided by AERONET are in reasonable agreement with the results 367 

provided by the lidar. 368 

 369 

Conclusion 370 

In conclusion, this study introduces an approach to partition aerosol mixtures in terms of 371 

backscattering coefficients, based on fluorescence and polarization lidar measurements. 372 

Specifically, we used the particle depolarization ratio at 532 nm and the fluorescence capacity, 373 

allowing for the partitioning of a three-component aerosol mixture at every height/time pixel. The 374 

robustness of this approach is demonstrated through testing with Mie-Raman-fluorescence lidar 375 

observations at the ATOLL instrumental site, providing valuable insights into the composition and 376 

dynamics of atmospheric aerosols. One notable advantage of the proposed approach is its 377 

applicability even in conditions of low aerosol content or for aerosol layers in the upper 378 

troposphere, where deriving profiles of extinction coefficients might be challenging. Additionally, 379 

backscattering coefficients of aerosol components can be converted to particle volume densities 380 

using corresponding lidar ratios along with extinction-to-volume conversion factors. While this 381 



14 
 

conversion provides a rough volume estimation, considering the variability of the lidar ratios and 382 

the conversion factors within a given aerosol type, a comparison of lidar-derived particle volume 383 

during the heatwave over Lille in July 2022 demonstrates promising agreement with AERONET 384 

retrievals. At this stage, we have simplified our classification scheme by incorporating four aerosol 385 

types: smoke, dust, pollen, and urban particles. It is important to note that the use of fluorescence 386 

is an efficient way to distinguish between urban and smoke particles, which is a challenge for other 387 

methods that do not utilize fluorescence. However, we recognize the need to expand our approach 388 

to include additional aerosol types, particularly those with strong absorption such as polluted urban 389 

aerosol. This expansion will involve incorporating additional particle parameters, like lidar ratios, 390 

and is planned for our future research. It is crucial to acknowledge that the particle hygroscopic 391 

growth complicates the use of fluorescence capacity, resulting in increased uncertainty. To address 392 

this, we aim to utilize the additional independent information about aerosol type provided by the 393 

fluorescence spectrum. Importantly, the fluorescence spectrum is not affected by relative humidity. 394 

In our future research, we plan to further enhance the fluorescence capabilities by increasing the 395 

number of fluorescence channels in the lidar. 396 
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 547 

 548 
Fig.1. Spatiotemporal distributions of (a) the backscattering coefficient at 532 nm, (b) particle 549 

depolarization ratio at 532 nm and (c) fluorescence capacity during the night of March 27-28,  550 

2022. The depolarization ratio and fluorescence capacity are calculated only for the values β532>0.1 551 

Mm-1sr-1. The measurements were taken at an angle of 450 to the horizon.  552 

 553 

 554 

 555 

 556 

 557 
Fig.2. (a) The δ532-GF diagram for observations in the height range of 350 m–2800 m and (b) the 558 

spatiotemporal distribution of aerosol types during the night of March 27–28, 2022. 559 

  560 
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 561 

Fig.3. The HYSPLIT five-day backward trajectories for the air mass over Lille at altitudes 600 m, 562 

1500 m, and 2000 m on March 28,  2022 at 02:00 UTC. Red dots depict the regions of forest fires. 563 

 564 

 565 

 566 

 567 
Fig.4. Relative contributions of (a) smoke (ηs), (b) urban (ηu), and (c) dust (ηd) particles to the 568 

backscattering coefficient β532 during the night of March 27–28, 2022. 569 

 570 
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 572 
Fig.5. Vertical profiles of the relative contributions of smoke (ηs), urban (ηu), and dust (ηd) particles 573 

to the backscattering coefficient β532 on March 27, 2022. These profiles are derived under the 574 

assumption that only three aerosol types occur. The black lines depict the deviation of solutions 575 

from the mean value (ηi±σi). Magenta lines show the relative contributions of smoke, urban and 576 

dust particles (ηs,4, ηu,4, ηd,4) when four aerosol types (including pollen) are considered. 577 
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 579 

 580 
Fig.6. Spatiotemporal distributions of (a) the backscattering coefficient at 532 nm, (b) particle 581 

depolarization ratio at 532 nm and (c) fluorescence capacity during the night of October 1-2, 2023. 582 

The depolarization ratio and fluorescence capacity are calculated only for values of β532>0.1 Mm-583 
1sr-1. 584 

 585 

 586 
Fig.7. (a) The δ532-GF diagram and (b) the spatiotemporal distribution of aerosol types during the 587 

night of October 1-2, 2023. 588 

  589 



24 
 

 590 

Fig.8. The HYSPLIT five-day backward trajectories for the air mass over Lille at altitudes 500 m, 591 

1500 m, and 2700 m on October 2, 2023 at 00:00 UTC. 592 
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 594 

 595 
Fig.9. The relative contributions of (a) smoke (ηs), (b) urban (ηu), and (c)dust (ηd) particles to the 596 

backscattering coefficient β532 during the night of October 1-2, 2023. 597 
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 602 
Fig.10. Vertical profiles of the relative contributions of smoke (ηs), urban (ηu), and dust (ηd) 603 

particles to the backscattering coefficient β532 on October 1, 2023. The profiles are derived under 604 

the assumption that only three aerosol types occur. The black lines depict the deviation of solutions 605 

from the mean value (ηi±σi). The magenta lines show the relative contributions of smoke, dust and 606 

urban particles (ηs,4, ηu,4, ηd,4) when four aerosol types (including pollen) are considered. 607 
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 610 
Fig.11. The aerosol optical depth (AOD) at 500 nm and the Angstrom exponent (AE) provided by 611 

AERONET over Lille in July 2022. Magenta box depicts the time period during which lidar 612 

observations in this study were analyzed. 613 
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Fig.12. Column-integrated aerosol volume (circles) in July 2022 provided by AERONET. The 615 

triangles and squares represent the volumes of the fine and coarse modes, respectively. Black stars 616 

depict the total particle volume derived from lidar observations.  617 
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 619 

 620 

 621 

 622 
Fig.13. Spatiotemporal distributions of (a-d) the backscattering coefficient β532, (e-h) the particle 623 

depolarization ratio δ532, and (i-l) the fluorescence capacity GF for the nights of July 16-17, 17-18, 624 

18-19 and 22-23, 2022. The depolarization ratio and fluorescence capacity are calculated only for 625 

the values β532>0.1 Mm-1sr-1. 626 
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 628 

 629 
 630 

Fig.14. (a-d) The δ532-GF diagram and (e-h) the spatiotemporal distribution of aerosol types for the 631 

nights of July 16-17, 17-18, 18-19 and 22-23, 2022. The grey coloring represents an undefined 632 

aerosol type.  633 

 634 
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 636 

 637 
Fig.15. The relative contributions of (a-d) smoke, (e-h) urban and (i-l) dust particles to the 638 

backscattering coefficient at 532 nm for the nights of July 16-17, 17-18, 18-19 and 22-23, 2022. 639 
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 641 

 642 

 643 

 644 
 645 
Fig.16. The HYSPLIT five-day backward trajectories for the air mass over Lille at altitudes 1500 646 

m, 3000 m, and 4500 m on (a) July 17, 2022 at 03:00 UTC; (b) July 17, 2022 at 23:00 UTC; (c) 647 

July 18, 2022 at 22:00 UTC; (d) July 22, 2022 at 22:00 UTC. Red dots depict the regions of forest 648 

fires. 649 

 650 

 651 



31 
 

 652 
 653 

Fig.17. Vertical profiles of the volume concentration of smoke, dust and urban particles derived 654 

from ηs, ηu, and ηd presented in Fig.13, using the mean values of the lidar ratios and the conversion 655 

factors from Table 2. Profiles are shown for the episodes on (a) 17 July, (b) 18 July, (c) 19 July 656 

and (d) 23 July 2022. Dash lines depict the mass concentration calculated for the particle densities 657 

ρs=1.15 g/cm3, ρu=1.5 g/cm3, and ρd=2.6 g/cm3. 658 


