
Comments on the manuscript “Reconstruction of 3D precipitation measurements from FY-
3G MWRI-RM imaging and sounding channels” by Yang et al. 
Overview 
The authors present a neural network approach to reconstruct radar reflectivity profiles from 
passive microwave observations. The network is trained using a month (October 23 to 
November 31, 2023) of spatially and temporally collocated radar and microwave radiometer 
data from the FengYun 3G (FY-3G) satellite, i.e., the 35 GHz Precipitation Measurement Radar 
(PMR) and the 10.65 to 190.31 GHz Micro-Wave Radiation Imager for the Rainfall Mission 
(MWRI-RM). The authors estimated the effects of temperature sounding channels at 50-53 
and 118 GHz and polarization difference on the prediction by comparing three networks 
trained with different input channel combinations. The experiments show that the 50-53 and 
118 GHz channels improve the reconstruction of radar reflectivity profiles, especially over land. 
The observation-based link between active and passive microwaves on global scales provides 
new opportunities to extract information from passive microwave observations as they do not 
rely on forward model assumptions and could be beneficial for global assimilation of passive 
microwaves. 
General comments 
The work is well structured, and the case studies prove the model’s ability to reconstruct radar 
reflectivity profiles. Below are a few general comments on the neural network training and 
evaluation that require additional work but need to be addressed in a revised version of the 
manuscript. 
There are various problems during the data preparation, model architecture, and training 
procedure that likely cause overfitting and limited generalization capabilities of all three 
trained models. Such a lack of generalization would make it difficult to relate their prediction 
skill to the information content of the model input. Despite the results being relatively close 
to the expectation, I would highly recommend adjusting several methodological aspects. 
The authors perform a random split into training and test data sets with a ratio of 80/20. 
However, the input data is autocorrelated in space and time. In the current setup, a test scene 
can be as close as a few ten kilometers to the center of a training scene. This might lead to 
the model learning the reflectivity profile of single mesoscale precipitation systems rather 
than learning the generalized radiative TB feature’s relation to reflectivity profiles. I suggest 
that the authors split their data into, e.g., weekly chunks. Also, the oversampling of 
precipitation scenes before splitting the data into training and test sets might lead to the 
occurrence of the same precipitation scene in training and test sets. However, this should be 
avoided. A way to replicate but still challenge the model would be data augmentation by 
rotating or flipping the TB field around the central footprint. Additionally, an independent 
validation set is needed to compare the three models. This was done only during case studies 
but without any quantification. Currently, the scores are computed only on the test data, 
which is problematic not only for the reasons stated above but also as its loss was used to 
determine the optimal parameters during early stopping. Finally, the number of model 
parameters exceeds the number of samples by a factor of five, although it should not exceed 
a factor of 0.1. The first fully connected layer contains more than 5 million parameters that 
would be sufficient for the model to learn a range of reflectivity profiles encountered during 
training. 



Response: 
Thank you for your suggestions. We agree that there are some issues with the data splitting 
and model architecture design. We would have liked to retrain the models according to your 
recommendations, but due to time constraints, we have instead chosen to test the 
generalization performance of the existing models using an independent sample. Specifically, 
we selected 288,892 samples from the period of December 1 to December 11, 2023, and 
preprocessed them according to the methods section. The evaluation results are consistent 
with previous ones, but with some differences in the details. The specific results are presented 
in Table 3 and Figure 3 of the revised manuscript, along with corresponding analysis updates. 
Additionally, to further demonstrate the model's generalization ability, we show the 
reconstruction performance for Typhoon Khanun, with an overall reconstruction RMSE of 
approximately 3.84 dBZ. 

 



 
 
I would like to encourage the authors to publish their prepared samples used to train, 
test, and evaluate the models as well as the three fully trained models to make their 
results reproducible. 
 
Response： 
Thank you for your suggestion to make the data and trained models publicly available for 
reproducibility. Unfortunately, due to the large size of the sample data, we are unable to 
upload the full dataset. However, we have provided the code for sample processing in the 
manuscript, which should allow interested researchers to replicate our data processing steps. 
Additionally, the Level 1 products of PMR and MWRI-RM can be downloaded from the 
FENGYUN Satellite Data Center website (https://satellite.nsmc.org.cn). 
Regarding the trained models, we are unable to provide them due to potential copyright 
considerations. As such, we respectfully request your understanding in this matter. We hope 
that the provided sample processing code and data access will still allow others to reproduce 
our results to a meaningful extent. 
 
The oversampling of precipitation scenes before splitting the data into training and test 
sets might lead to the occurrence of the same precipitation scene in training and test 
sets. 
 
Response： 
Thank you for pointing this out. Upon reviewing the manuscript, we realized that our original 
description was inaccurate. We did not oversample non-precipitating samples as stated; 
instead, we downsampled them to match the number of precipitating samples. This approach 
was implemented to balance the dataset and ensure equal representation of both sample 
types during model training. 
 
Specific comments 
Figure 1: This figure contains many errors. I suggest removing it entirely, especially since 
TRMM and GPM CO are not part of the manuscript. The MWRI-RM channels should be 
presented in a table, ideally linked to the three experiments following later. Correct the 
MWRI-RM channel definitions using Table 4 in 



https://doi.org/10.34133/remotesensing.0097 
Line 106: Provide a table that lists the footprint dimensions of the different channels. 
 
Response: 
Thank you for your suggestions. We have removed Figure 1 as recommended and added a 
table detailing the specifications of MWRI-RM channels. The table is also linked to the three 
experiments discussed later in the manuscript, ensuring better alignment and clarity. 
 
Line 40: MWRI-RM observes only V-pol at 166 GHz, while GMI observes both 
polarizations at this frequency. How would the addition of polarization information at 
this frequency improve the reconstruction of radar reflectivity profiles, especially under 
higher scattering by snow? 
 
Response: 
Previous studies analyzing polarization differences from GMI have shown that at higher 
frequencies such as 166 GHz, the polarimetric signals are more sensitive to the scattering 
effects of ice particles compared to lower-frequency channels (e.g., 89 GHz). The presence of 
dual polarization at this high frequency can provide valuable information about the 
orientation, shape, and phase of frozen hydrometeors within the precipitation system. This 
can be especially beneficial under intense scattering conditions induced by snow and other 
frozen particles, allowing the model to discriminate precipitation types better, identify layered 
structures (including the melting layer), and refine the retrieved vertical distributions of radar 
reflectivity. 
However, in the current study, we do not specifically analyze the influence of polarization at 
the 166 GHz channel on the reconstruction of radar reflectivity profiles. While we recognize 
that incorporating polarization differences at this frequency could potentially enhance the 
accuracy and vertical structure representation—particularly in cases of heavy snow 
scattering—this aspect remains an avenue for future investigation. 
 
Line 45: How many independent height levels of liquid water content can be retrieved 
from dual oxygen absorption sounding channels? This information would be helpful to 
understand the physical limitations of reconstructing radar profiles with >100 vertical 
degrees of freedom. 
 
Response: 
Thank you for your comment. As indicated by Han et al. (2015), each dual oxygen absorption 
sounding channel pair provides roughly one independent piece of vertical information in 
terms of liquid water content retrieval. Given that our MWRI-RM configuration includes four 
sets of such dual-channel pairs, we can obtain on the order of four independent vertical layers 
of liquid water content. This is a fundamental limitation due to the physical nature of passive 
microwave measurements. Unlike radar observations, which can resolve over a hundred 
vertical layers due to their much finer vertical resolution, microwave radiometers are 
inherently constrained by their weighting functions' limited vertical information content. We 
have added the relevant discussion in section 4 of the revised manuscript. 
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Line 52: Provide a table with the accuracy for each channel. How does the channel 
accuracy affect the reconstructed radar profiles? Would it be helpful to inform the model 
on channel accuracy? 
 
Response: 
Thank you for your insightful suggestion. He et al. (2024). provides a cross-comparison 
between MWRI-RM and GMI instruments, with the reported differences serving primarily as 
a reference for understanding the potential accuracy of MWRI-RM. As with any satellite-
based observation, there are inherent measurement errors in both instruments, which may 
affect the accuracy of individual channels. However, a detailed analysis of how channel 
accuracy impacts the reconstructed radar profiles was beyond the scope of the current study. 
We agree that investigating the influence of channel accuracy is both important and necessary. 
For example, assessing the model's sensitivity to input uncertainties by perturbing the 
brightness temperatures in specific channels could help identify how robust the reconstructed 
radar reflectivity profiles are to observational errors. Such experiments could provide valuable 
insights into channel contributions and model stability. Additionally, informing the model 
explicitly about the accuracy or uncertainty of each channel might improve its ability to weigh 
the channels appropriately during training. 
We acknowledge the significance of this topic and plan to address it in future work. This will 
include systematic experiments to quantify the impact of channel errors on the reconstruction 
performance and explore methods to enhance the model's robustness under input 
uncertainties. Thank you for raising this point, which will help guide our future investigations. 
 
Line 65: This sentence is unclear to me. Which direct relationships between active and 
passive microwave observations need to be identified? Explain why a direct relationship 
between TB and radar reflectivity is needed. In general, forward models can simulate 
both the active and passive signal. Is it due to assumptions in the forward model or due 
to differences in weather models and reality? This is a key question of this work that 
needs to be explained. 
 
Response: 
Thank you for pointing out the confusion in our original wording. We have removed the 
problematic sentence in the revised manuscript. Our intention was not to overstate the direct 
correlation between active and passive microwave observations but rather to emphasize that 
meaningful relationships exist and can be explored using deep learning techniques. By doing 
so, we aim to better understand how two fundamentally different types of observations—
active radar data and passive microwave radiances—can be mapped onto each other to 
retrieve more detailed three-dimensional precipitation structures. 
 
Line 73: It would be helpful to have a table of previous work and the respective methods. 
How does the method used in this work differ from the Res-UNet in Brüning et al. (2024), 
and how are the differences motivated? What is the accuracy of other work that 
replicates radar reflectivity profiles? 



 
Response: 
Thank you for the suggestion. In the revised manuscript, we have reorganized the literature 
review to focus on a selection of representative studies that are most relevant to our work. 
Due to time constraints, we have not provided a comprehensive table listing all related studies. 
Instead, we have highlighted some key works that illustrate the range of methodologies, data 
sources, and achieved accuracies in Lines 69-77. This approach allows us to give a more 
detailed and meaningful comparison without overwhelming the reader. 
Our study primarily builds upon the work of Yang et al. (2024), which pioneered the use of 
passive microwave (PMW) radiances from GMI to reconstruct DPR reflectivities. While their 
study achieved an RMSE below 4 dBZ across all altitudes by incorporating polarization 
differences and temperature profiles, it was limited to oceanic precipitation scenarios. In 
contrast, we extend their approach by leveraging the newly launched FY-3G satellite’s MWRI-
RM and PMR instruments. The addition of dual oxygen absorption channels (50 and 118 GHz) 
addresses the challenges of reconstructing reflectivity over land and provides more detailed 
information about the melting layer. We also explicitly analyze the impact of polarization 
differences, a factor not thoroughly examined in Yang et al. (2024), to further refine our 
retrievals and capture precipitation structures with greater fidelity. 
 
 
Line 76: What is meant by “limited to specific precipitation scenarios due to limited 
spectral channels of GMI”? Are only specific scenarios used to train the model in that 
work? 
 
Response: 
Thank you for your comment. The statement refers to the fact that the previous work focused 
on reconstructing radar reflectivity specifically for oceanic precipitation scenarios. This 
limitation arises because the GMI sensor has fewer spectral channels, which restricts its ability 
to capture the diverse atmospheric and surface conditions necessary for reconstructing 
reflectivity over land. We have clarified this point in the revised manuscript in Lines 82-83. 
 
Line 85: It might be confusing to mention 3D structures when the output of your model 
is 1D. The network does not know about the 3D nature of radar reflectivity fields and is 
not forced to be spatially consistent in the radar reflectivity space. Only the consecutive 
application of the model along and across track dimensions leads to a 3D field. Would 
an improved model performance be expected if the output is a 3D field? Why was this 
approach not chosen for this work? 
 
Response: 
Thank you for your insightful comment. We agree that the vertical information provided by 
passive microwave observations has certain limitations, making it challenging to fully achieve 
realistic 3D radar reflectivity reconstruction. In this work, we focused on using 2D multi-
channel brightness temperature data to reconstruct multi-layer reflectivity profiles. This 
approach was chosen to leverage spatial information in the brightness temperature data to 



compensate for the limited vertical information. 
In future work, we aim to address this challenge by incorporating more diverse input data 
sources and adopting more powerful deep learning architectures. These enhancements could 
enable more complete 3D radar reflectivity reconstructions, improving spatial consistency and 
capturing the 3D nature of radar reflectivity fields.  
 
Line 86: Why are the non-precipitating scenes not split into land and ocean as well? 
 
Response: 
Thank you for your comment. We have now split the non-precipitating scenes into land and 
ocean categories, and the corresponding evaluation results are presented in Table 3.  
 
Figure 2b: Mention how the footprints are scaled in size and number instead of adding 
“not to scale.” What does “*Npoints” mean? Indicate the footprints used for training 
here and combine them with Fig. 3. 
Figure 3: This should be added to Fig. 2 for better understanding. Indicate the size of a 
15x15 patch in kilometers. 
 
Response： 
Thank you for your helpful suggestions. "Npoints" refers to the number of scanning points 
along each scan line, and we have added an explanation of this in the revised manuscript in 
the caption of Figure 1. Figure 2b is a schematic illustration of the observation geometry of 
PMR and MWRI-RM, and it is not intended to represent an exact scale based on real 
observations. The precise instantaneous field of view for each channel is provided in Table 1. 
The footprints used for training are shown in Figure 3, which correspond to 15x15 footprints 
around each matching point. We have merged Figures 2 and 3 for better clarity and 
understanding, as suggested. 
 
Line 115: Are the Level 1 products of PMR corrected for two-way attenuation by liquid 
water and water vapor? If not, how does this affect the reconstruction and comparison 
with PMR observations under varying incidence angles? How does multiple scattering 
affect the reconstruction in the presence of high-density ice particles typical for extreme 
precipitation events? 
 
Response: 
Thank you for your comment. The PMR Level 1 product we used has not been corrected for 
two-way attenuation by liquid water and water vapor. We acknowledge that varying incidence 
angles result in different path lengths, leading to varying degrees of attenuation. However, in 
this study, we only used reflectivity profiles with an incidence angle less than 2° for training, 
where the differences in path length are negligible. For consistency, our model evaluations 
also focused primarily on reconstructing reflectivity profiles with an incidence angle below 2°. 
As the model directly learns relationships from the data, it is possible that it has implicitly 
accounted for some attenuation effects caused by precipitation particles. This remains an 
interesting topic for further investigation. The PMR Level 2 product provides reflectivity 



corrected for attenuation, and we plan to use this product in future work to refine our 
reconstructions and analyze the differences between using corrected and uncorrected 
reflectivity data. This will help better understand the effects of attenuation and multiple 
scattering under extreme precipitation conditions. 
 
 
Line 116: Why are case studies using data from July 2023 if the data is released after 
October 23, 2023? Clarify this. I assume the model was trained on the 
October/November data. If that is true, do you expect the same performance for other 
months of the year? What is meant by “used here for the preliminary research”? 
Line 259: The month of July is not mentioned in the data section. 
 
Response: 
Thank you for your comments. Before the official data release, we were granted access to 
PMR observations from July 2023, including data from Typhoon Khanun and the Beijing 
extreme rainfall event. These two cases represent extreme precipitation events, making them 
valuable for further evaluating the model's generalization ability. We have clarified this in the 
revised manuscript in Lines 281-283. 
Our model was trained using one month of officially released data from October 23 to 
November 31, 2023. Due to the limited amount of officially released data available at the time 
of our research, we used only one month of data for training. We acknowledge that this may 
affect the model’s generalization ability. However, the trained model still demonstrated 
reasonably good reconstruction performance when applied to independent test samples, 
including these July case studies. 
In future work, we plan to use more data to fine-tune the current model and further enhance 
its generalization ability. We have clarified this information in the revised manuscript, 
including the mention of July in the data section. Thank you for highlighting these points. 
 
Line 126: Mention the PMR scan interval of 0.7° and provide the number of cross-track 
scans that match the 2° incidence angle criterion. 
 
Response: 
Thank you for your comment. We have included the PMR scan interval of 0.7° in the revised 
manuscript in Line 104. Based on the 2° incidence angle criterion, five cross-track scan points 
per scan line meet this requirement. This information has been included in the revised 
manuscript in Line 136. 
 
Line 130: A threshold of 8 km cuts off the reflectivity profiles during the case studies. 
Also, the additional 183.31+/-2 GHz channel of MWRI-RM compared to GMI peaks 
around this height, depending on humidity levels. By how much does the threshold of 8 
km change the ratio of clear-sky and cloudy pixels compared to a 9 or 10 km threshold? 
 
Response: 
Thank you for your comment. Based on our analysis of reflectivity profile samples under 



precipitation conditions, the ratio of clear-sky to cloudy pixels is approximately 0.4 when using 
an 8 km threshold. When the threshold is increased to 10 km, this ratio decreases to 
approximately 0.3. 
 
Line 133: How do 136 range bins from 1.1 to 8 km match with the range resolution of 
250 m of PMR? Also, note that in Table 1, the output is 138. Why are both different? 
How was the noise, sidelobe clutter, and ground clutter filtered, and is the filter 
considered surface type? 
Response: 
Thank you for your comment. The mention of 136 range bins in Line 133 is incorrect and has 
been revised to 138. The PMR samples in the range direction at 50 m intervals, resulting in 
138 bins from 1.1 to 8 km. 
The noise, sidelobe clutter, and ground clutter were filtered based on the quality flag data 
(flagEcho) provided in the PMR's HDF file. This ensures the filtering process considers the 
surface type and other relevant quality indicators. 
We appreciate your feedback and have corrected this in the revised manuscript. 
 
Line 138: What does NaN mean in the context of the loss function? How is terrain treated, 
i.e., subsurface PMR pixels? It would be important information for the reconstruction to 
know the lowest boundary of the precipitation field. In Fig. 7, it seems that mountains 
extend up to 2 km, and the models add precipitation below the surface (see. Fig. 7i right 
above the letter A) 
Line 236: How much of the uncertainty over land can be attributed to the lack of 
topography information? 
 
Response: 
In the context of the loss function, NaN indicates bins that are marked as invalid due to the 
influence of sidelobes or ground clutter, which can negatively affect the reconstruction. These 
bins are excluded during loss calculation to ensure that they do not introduce bias or degrade 
the model's performance. By skipping these NaN values, the loss function focuses only on 
valid data points, leading to a more robust and accurate reconstruction. 
Thank you for your insightful comments. We have indeed noticed the issue of reflectivity 
appearing below the surface when reconstructing reflectivity profiles over land. In our future 
work, we will address this problem by developing a targeted model specifically for 
reconstructing land-based precipitation reflectivity. 
We plan to incorporate the strategies, such as adding terrain height information as an input 
feature, applying post-processing techniques to mask invalid reflectivity values below the 
surface, and designing the loss function to account for surface constraints. These 
improvements aim to enhance the model's accuracy and ensure physically consistent outputs. 
The discussion on this issue is provided in the revised manuscript in Lines 348-354. 
 
 
Line 143: Could it happen that two PMR columns are assigned to the same MWRI-RM 
footprint due to their different spatial resolution? Are those duplicates filtered out? 



 
Response: 
Thank you for your comment. In our matching process, the MWRI-RM observation point is 
used as the target, and each MWRI-RM point is matched to the nearest PMR observation 
point. This ensures that each MWRI-RM footprint corresponds to a single PMR column, 
avoiding any duplication issues. 
We have clarified this process in the revised manuscript in Lines 148-150 to address your 
concern. Thank you for bringing this up. 
 
 
Line 152: How is a precipitation event defined? Provide information on the filter method 
or threshold. 
Line 215: See comment on line 152. 
 
Response: 
Thank you for your comment. In our analysis, precipitation events were defined based on the 
precipitation flag (flagPrecip) provided in the PMR data. This flag distinguishes between 
precipitating and non-precipitating samples. 
We have clarified this definition and the use of flagPrecip in the revised manuscript in Lines 
164-165 to ensure transparency and address your concern. Thank you for pointing this out. 
 
Line 155: How many samples were available prior to the oversampling? Based on this 
description and the diagram in Fig. 4, it seems that oversampling was performed prior 
to the data splitting. Clarify this. See also the general comment regarding random data 
splitting. 
 
Response: 
Thank you for pointing this out. Upon reviewing the manuscript, we realized that our original 
description was inaccurate. We did not oversample non-precipitating samples as stated; 
instead, we undersampled them to match the number of precipitating samples. This approach 
was implemented to balance the dataset and ensure equal representation of both sample 
types during model training. 
Regarding the number of samples prior to undersampling, while we did not explicitly record 
the exact number of non-precipitating samples, it is clear that this number was significantly 
larger than the undersampled total, as non-precipitating samples far outnumbered 
precipitating ones in the original dataset. We will clarify this in the revised manuscript in Lines 
162-164. 
 
Line 157: Describe the standardization method. 
 
Respons: 
Thank you for your comment. The standardization method used in our study follows the 
approach shown in Equation (1): 



 
where x is the original value, μ is the arithmetic mean, and σ is the standard deviation. This 
normalization is applied independently to each channel using the mean and standard 
deviation.  
This information has been included in the revised manuscript in Lines 172-175. 
 
Line 157: Does logarithmic transformation mean Ze was transformed to dBZ? Clarify this. 
 
Response: 
The reflectivity data provided in PMR Level 1 is already in dBZ. In our preprocessing, we 
applied a logarithmic transformation to these dBZ values using np.log(). This transformation 
was not a unit conversion, but rather a preprocessing step aimed at enhancing the model's 
learning process. The logarithmic transformation was used to normalize the data distribution 
and reduce the range of values, which helps the model better handle variations in the 
reflectivity data 
 
Figure 4: Explain the meaning of “values adjustment” in the PMR branch. 
 
Response: 
Thank you for pointing out the ambiguity in the term "values adjustment" in the PMR branch. 
We agree that the original description was unclear, and we have updated it in the revised 
manuscript for better clarity. 
Specifically, "values adjustment" refers to noise marking in the PMR branch. Radar bins 
affected by noise were assigned a baseline value of 10 dBZ. This baseline value helps to 
differentiate non-precipitating and precipitating conditions while minimizing the influence of 
radar noise on the reconstruction process. Importantly, this adjustment does not significantly 
alter the overall distribution of reflectivity values, ensuring the integrity of the reconstructed 
profiles. 
 
Table 1: The number of parameters is very large and exceeds the number of samples. 
The first dense layer contains 28800 * 200 + 200 (5.76 M parameters). This is much more 
than the number of samples (about 1 M) and will likely lead to poor generalization of all 
three trained models. Pooling layers could help to reduce dimensionality before passing 
to dense layers. Also, note that the number of parameters is not correctly shown in the 
table because the bias terms are missing for Conv (32, 64, 128) and FC (200, 138). It 
might be more meaningful to show the activation shape, activation size, and total 
number of parameters for each layer. Mention the kernel size in the text. Also, see the 
comment on line 133 regarding the confusion about the vertical resolution of the Ze 
profile (136 or 138 bins). 
 
Response: 
Thank you for your detailed feedback and suggestions. We acknowledge the concerns 



regarding the large number of parameters, particularly in the fully connected layers, and the 
potential for overfitting due to the current architecture. While we agree that introducing 
pooling layers could help reduce dimensionality and improve generalization, due to time 
constraints, we are unable to modify the model architecture and retrain the models for this 
version of the manuscript. 
To address your comments, we have revised Table 2 to provide accurate information, 
including the bias terms for the convolutional and fully connected layers. Additionally, we now 
include the activation shapes, activation sizes, and the total number of parameters for each 
layer to ensure clarity. The kernel size for convolutional layers (3×3) has been explicitly stated, 
and the table reflects the current model architecture used in our experiments. 
We acknowledge that the parameter count in the dense layers is large relative to the sample 
size, which may limit the model's generalization ability. This is an important observation, and 
we will explore architectural refinements such as the addition of pooling layers or 
regularization techniques in future work to optimize model performance and efficiency. 
Thank you for raising these valuable points, which will guide our future improvements. For 
now, the updated table ensures transparency regarding the model’s current configuration. 
 
Line 170: Use shorter names for the experiments (e.g., Ex14, Ex26, etc.). 
 
Response: 
Thank you for your suggestion. We have simplified the experiment names to shorter forms, 
such as Ex14, Ex26, etc., throughout the manuscript to improve clarity and readability. We 
appreciate your feedback, which has helped enhance the presentation of our work. 
 
Line 171: Mention the batch size, number of epochs / early stopping, learning rate, and 
other details on training (restore best weights, etc.). Add figures of the training and test 
loss for each epoch until training is stopped for each of the three models to the appendix. 
 
Response: 
Thank you for your comment. We have included the requested training details in the revised 
manuscript. Specifically, we used eight A800 GPUs to train the models with a batch size of 
512 and 100 epochs. The learning rate was initialized at 1e-3 and adjusted using an 
InverseTimeDecay schedule. Early stopping was applied, and the best weights were restored 
during training. This information has been included in the revised manuscript in Lines 201-
203. 
Additionally, we have added the loss curves for training and testing across epochs for each 
of the three models in the appendix. Thank you for your valuable suggestion, which has 
helped improve the clarity and transparency of our methodology. 
 
Line 173: Clarify why the published code has a different loss than MSE (sum of squared 
errors: tf.reduce_sum(tf.square(y_true_filtered - y_pred_filtered))) in line 58 of 
training_cnn.py. 
 
Thank you for pointing out the discrepancy regarding the loss function used in our published 



code versus what is stated in the manuscript. Upon review, we realize that our manuscript's 
description may have caused some confusion. To clarify: 
In line 58 of training_cnn.py, the actual loss function implemented is Sum of Squared Errors 
(SSE), defined as: 
tf.reduce_sum(tf.square(y_true_filtered - y_pred_filtered)) 
This is consistent with the published code. However, in the manuscript, we referred to the loss 
as "MSE," which was imprecise. We appreciate your feedback, and we will revise the 
manuscript to explicitly state that SSE was used as the loss function. 
The reason for choosing SSE over MSE is based on findings from our previous studies. In the 
context of radar reflectivity reconstruction, the following characteristics of the task make SSE 
more appropriate: 

1. Emphasis on Overall Reconstruction Error: Reflectivity reconstruction involves 
capturing the full profile's structure across all vertical levels. SSE directly sums up the 
reconstruction error across all samples and levels without normalization, ensuring that 
significant deviations in key regions are not diluted. 

2. Sensitivity to Sparse High Values: Reflectivity profiles often feature sparse but 
crucial high values (e.g., during precipitation events) embedded in a majority of 
background values. SSE's quadratic nature amplifies the contribution of these high-
value regions, leading the model to focus on reconstructing these physically 
meaningful regions more accurately. 

3. Handling of Imbalanced Vertical Distributions: Reflectivity values tend to exhibit 
significant vertical variability, with lower levels often containing larger and more 
impactful values for precipitation and hydrometeorology. SSE effectively accounts for 
these variations by prioritizing larger deviations without introducing explicit weighting 
mechanisms. 

We have clarified in the revised manuscript in Lines 203-210 to clarify the above rationale 
and explicitly state that the loss used in our code and experiments is SSE. 
 
Line 174: It would be good to separate the description of experiments from the model 
architecture chapter. The paragraphs of each experiment repeat large parts of the 
introduction and do not belong to the methodology section. 
 
Response: 
Thank you for your suggestion. We agree that the detailed explanations of the three 
experiments were somewhat redundant in the methodology section. In the revised 
manuscript, we have streamlined this section by retaining only the descriptions of the different 
inputs for each experiment. This ensures clarity and avoids unnecessary repetition while 
maintaining focus on the methodology. 
We appreciate your feedback, which has helped improve the structure and readability of the 
manuscript. 
 
Line 193: Explain how the model output advances weather forecasting techniques and 
links to hydrometeors simulated by weather models. 
Line 225: See comment on line 193. 



 
Response: 
Thank you for your comment. Upon review, we recognize that the original statement 
regarding the advancement of weather forecasting techniques was unclear and, at this stage, 
speculative. As the operational applicability of the reconstructed reflectivity profiles remains 
to be further evaluated, we have removed the related discussion from the manuscript to avoid 
overstating the findings.  
 
Line 231: It would be good to split non-precipitation in land and ocean as well; see 
comment on line 86. How does the model perform in coastal regions where parts of the 
passive channel are affected by land? 
 
Response:   
Thank you for your suggestion. We agree that splitting non-precipitation cases into land and 
ocean categories, as well as analyzing coastal regions where passive channels are influenced 
by land, provides valuable insights into the model’s performance. We have filtered these 
samples and included them in the evaluation. The results have been added to Table 3 in the 
revised manuscript, along with the corresponding analysis.   
We appreciate your feedback, which has significantly improved the thoroughness of our 
evaluation.   
 
Table 2: Reduce the precision of metrics to those digits that are significant. The names 
of the experiments are wrong; all are named “baseline.” The F1 score is the same for 
land and ocean for all three models. Is that correct? 
Line 254: How does the F1 score vary between land and ocean? See comment on Table 
2. 
 
Response:   
Thank you for your comment. In the revised manuscript, we have addressed the concerns 
regarding Table 2. We have corrected the experiment names, reduced the precision of metrics 
to reflect only significant digits, and clarified the results. Additionally, we have decided to 
exclude the F1 score from the analysis to avoid potential confusion, as it did not provide 
meaningful distinctions between land and ocean cases.   
 
Line 234: In general, the melting layer is below 3 km in mid-latitudes, which are also 
covered by the satellite. Why does the RMSE show a peak at 4-5 km only and not at 
lower heights? 
 
Response: 
Thank you for your comment. Currently, we do not have access to PMR-specific melting layer 
products. Therefore, we referred to the analysis presented in the work by Hu et al. (2024), 
which investigates the quasi-global climatological features of the melting layer over the 
latitude range of 65°S to 65°N by Utilizing the detection from the Dual-frequency 
Precipitation Radar onboard the Global Precipitation Measurement Mission Core Observatory 



during 2018-2022. 
Their study shows that a larger amount of ML occurs more frequently in tropical regions 
(30°S–30°N), especially in the Asia-Pacific region (fig. 1d). The melting layer height varies with 
latitude, being higher in tropical regions (30°S–30°N) and lower in mid- and high-latitudes 
(fig. 1a and d). Specifically, in tropical areas (0°–30°N), the top of the melting layer is generally 
distributed between 4–5 km, and the bottom height is primarily between 2–4 km. This finding 
aligns with our results. 
In the revised version of the manuscript (Line 243), we have incorporated the referenced work 
by Hu et al. (2024). By including this reference, we aim to make our analysis more robust and 
provide a clearer context for the RMSE peak at 4–5 km. 
 

 

 
Hu, X., Ai, W., Qiao, J., and Yan, W.: Insight into global climatology of melting layer: latitudinal dependence 

and orographic relief, Theor Appl Climatol, 155, 4863–4873, https://doi.org/10.1007/s00704-024-04926-6, 

2024. 

 
Line 244: The scattering signal of precipitation at the 50-53 and 118 GHz channels is 
very small. 
 
Response: 
Thank you for your feedback. We have removed the phrase “the scattering signal of 
precipitation” in the revised manuscript to address this issue and avoid potential 
misunderstandings. We appreciate your careful review and constructive suggestions. 
 



Line 260: Explain why these events are “challenging” for the model. Those are strong 
precipitation events with clear passive microwave signatures. 
 
Response: 
Thank you for your comment. While strong precipitation events often exhibit clear passive 
microwave signatures, they remain challenging for deep learning models due to their extreme 
nature. These events typically involve highly complex and dynamic atmospheric conditions, 
which can introduce significant variability and non-linear interactions that are difficult for the 
model to generalize. Additionally, extreme precipitation often pushes the model beyond the 
range of conditions it has encountered during training, further impacting its performance. 
We will clarify this in the revised manuscript in Lines 278-281 to provide a more detailed 
explanation of the challenges associated with these events. 
 
Line 280: The discussion following this line is very vague and subjective. I recommend 
quantifying the comparison between PMR and the reconstructed profiles and providing 
a difference and scatter plot between the observed profile and the predictions.  
Line 303: Provide a quantitative comparison between observation and prediction. 
 
Response： 
Thank you for your suggestion. We have incorporated two quantitative metrics (RMSE and 
MBE as) and scatter plot to evaluate the reconstruction performance of different models for 
the specific case study. 
 
The discussion on the melting layer could be supported by comparing it with reanalysis 
data. 
 
Response： 
We appreciate your suggestion to incorporate reanalysis data into our discussion of the 
melting layer. However, our primary objective was to assess the model’s capability to 
reconstruct the vertical structure of reflectivity, particularly the position of high-reflectivity 
features such as the bright band. The bright band serves as an indirect indicator of the melting 
layer, and its accurate representation in our modeling framework already implies a reasonable 
portrayal of the underlying thermodynamic structure. This correspondence between the 
observed and reconstructed reflectivity profiles allows us to infer that the model has captured 
the melting layer’s position effectively without explicitly computing it. Direct comparison with 
reanalysis data, such as the zero-degree-level fields, falls outside the scope of our current 
analysis. Nevertheless, we acknowledge the value of such comparisons and will consider them 
in future studies to further validate and refine the model’s performance. 
 
Figure 5: Use the same x-axis among the columns to make them comparable, ideally 
starting at 0 for RMSE and STD. How was the yellow area in a and d calculated, 
considering that the melting layer varies with latitude? In panels g and I, the polarization 
model performs worse than the model without polarization close to the surface. Why?  
 



Response： 
Thank you for your suggestions. We have revised Figure 5 to use a consistent x-axis across 
all columns, starting at 0 for RMSE and STD, to facilitate comparison. Regarding the yellow 
shaded area in panels a and d, it represented the empirically estimated range of melting layer 
heights. However, as it was not based on a specific calculation and could potentially lead to 
misunderstanding, we have removed this shaded area in the revised figure to avoid confusion. 
 
Line 294: What is meant by “vertical resolution,” and how was it determined? 
Line 354: Clarify if resolution means vertical or horizontal. 
 
Response: 
Thank you for pointing this out. We agree that the term “vertical resolution” may be 
misleading. While the reconstructed reflectivity profiles have the same resolution as the actual 
observations in terms of their vertical discretization, the inherent ambiguity of the passive 
microwave signals used as input affects the final output accuracy. This can lead to limitations 
in capturing finer details, such as the exact height of high-reflectivity regions like the melting 
layer. 
We have revised the manuscript to avoid the use of “vertical resolution” and provide a more 
precise explanation of the factors influencing the reconstruction accuracy. Thank you for 
highlighting this important clarification. 
 
Line 295: Add a reference to the precipitation amount. 
 
Response： 
Thank you for your comment. We have revised the text to include a detailed description of 
the precipitation amount during the “23·7” BTH extreme rainfall (BTHER) event, based on the 
findings of Zhao et al. (2024). 
 
Zhao, D., Xu, H., Li, Y., Yu, Y., Duan, Y., Xu, X., and Chen, L.: Locally opposite responses of the 2023 Beijing–

Tianjin–Hebei extreme rainfall event to global anthropogenic warming, npj Clim Atmos Sci, 7, 1–8, 

https://doi.org/10.1038/s41612-024-00584-7, 2024. 

 
Line 296: Mark the regions mentioned in the text inside the map. 
 
Response: 
Thank you for your suggestion. We have added the location markers for the regions 
mentioned in the text to the map in the revised version of the manuscript to enhance clarity 
and alignment between the text and figures.  
 
Line 321: Add ground-based radar data to the data section. 
 
Response: 
Thank you for your suggestion. We have added a description of the ground-based radar data 
in the data section in Lines 115-121. Specifically, we utilized the dual-polarization radar from 



the China Next Generation Weather Radar (CINRAD/SA) network for comparison with the 
land precipitation reflectivity reconstruction results. The CINRAD/SA products have a radial 
distance resolution of 250 m and an azimuthal resolution of 1 degree. The Volume Coverage 
Pattern 21 (VCP21) scan mode was selected, which sweeps 9 elevation angles of 0.5, 1.5, 2.4, 
3.4, 4.3, 6.0, 9.9, 14.6, and 19.5 degrees in 6 minutes (Teng et al., 2023). Based on the 
interpolation method used in Xiao and Liu (2006), we transformed the radar data from 
spherical coordinates into a unified Cartesian coordinate system, creating a 3D grid. The radar 
data were then stitched and organized to generate the CAPPIs (Constant Altitude Plan 
Position Indicator) data used in this study. 
 
Line 321: What does “consistent” mean? It is not obvious from Fig. 9 and Fig. 8b. Plot 
both data in one figure with the same geographic extent and color bar. Ideally, a simple 
scatter plot should be made to show that the model and observation agree. 
 
Response: 
Thank you for your suggestion. In response to your comment, we have merged the two 
figures into one, ensuring that they share the same geographic extent and color bar for direct 
visual comparison. Additionally, we have revised the manuscript to provide a more precise 
analysis of the reconstructed reflectivities and their comparison with ground-based radar 
observations (Lines 370-374). This includes specific statements about areas where 
precipitation is detected and the position of reflectivity maxima to make the comparison more 
explicit. 
We agree that a quantitative comparison, such as a scatter plot, between the ground-based 
radar reflectivity and the reconstructed spaceborne radar reflectivity would offer valuable 
insights. However, due to differences in radar wavelength, spatial resolution, and scanning 
geometry, such a quantitative comparison requires significant additional effort. This includes 
aligning the datasets, compensating for different measurement characteristics, and 
addressing inherent discrepancies.  
Given the scope and time constraints of this work, we are unable to provide this analysis in 
the current manuscript. However, we plan to address this in future work by focusing on a 
more detailed quantitative evaluation of the reconstructed reflectivity profiles, particularly in 
regions beyond the PMR's actual scanning area, to further validate the model’s performance.  
 
Line 353: What is meant by representative training dataset? Why is the data used here 
not representative? 
 
Response: 
At line 353, we initially referred to having a "representative training dataset," which may have 
been misleading. The data used in this study were collected within a one-month period 
(2023-10-23 to 2023-11-31), and, as a result, the dataset did not fully capture the variability 
and diversity of global precipitation scenarios, particularly for land-based precipitation in the 
Northern Hemisphere. This limited data coverage reduces the model’s ability to generalize 
well to a wide range of conditions, as it has fewer samples from certain environments (e.g., 
less land precipitation data from the Northern Hemisphere). To clarify this point, we have 



removed the term "representative" from the revised manuscript. In future work, we plan to 
incorporate a more diverse and extensive dataset spanning multiple seasons, regions, and 
precipitation types, which will help improve the model’s generalization capabilities. 
 
Line 363: Mention snow scattering as well. 
 
Response: 
Thank you for your suggestion. We have included a mention of snow scattering in the revised 
manuscript as requested. 
 
Line 369: What exactly is the advantage of GANs and diffusion models compared to the 
method selected here? This needs more explanation, potentially linked with the 
introduction where previous work is presented. 
 
Response: 
Thank you for your suggestion. The generative models have demonstrated remarkable 
capabilities in capturing fine-grained details and generating realistic outputs in various fields, 
which makes them relevant for radar reflectivity reconstruction as well. 
GANs are particularly known for their ability to model complex data distributions and produce 
high-quality, detailed reconstructions. As shown in the work of Leinonen et al. (2019), a CGAN 
framework was applied to generate two-dimensional cloud vertical structures that would be 
observed by the CloudSat satellite-based radar, using only four input variables derived from 
MODIS (cloud top pressure, cloud optical depth, effective radius, and cloud water path). The 
CGAN in their study was capable of generating sharp and realistic images that closely 
resembled radar reflectivity fields. Furthermore, it demonstrated robustness to missing input 
data by effectively interpolating into regions with data gaps and was able to exploit spatial 
structures in the input data to infer features such as multilayer clouds. This example highlights 
how GANs, particularly CGANs, can leverage their generative capacity to recover subtle spatial 
variations and infer complex structures in atmospheric systems. 
Diffusion models, on the other hand, provide an alternative generative modeling framework 
that excels in generating high-resolution and diverse samples. These models gradually 
transform noise into a structured data distribution through an iterative denoising process, 
allowing them to capture fine-scale spatial details and subtle variations that are often 
challenging for traditional deterministic methods. Their ability to preserve high-resolution 
information during generation makes them particularly suitable for reconstructing spatially 
complex systems, such as precipitation structures observed in radar reflectivity profiles. 
While our current method adopts a deterministic approach to reconstruct radar reflectivity 
profiles, which ensures computational efficiency and straightforward implementation, it may 
face challenges in capturing finer-scale features or handling under-sampled regions. By 
contrast, generative models such as GANs and diffusion models have the potential to address 
these limitations by providing more nuanced reconstructions and effectively dealing with 
missing or noisy input data. In the context of PMR reconstruction, leveraging these models 
could improve the quality and resolution of the reconstructed reflectivity profiles, particularly 
in cases involving complex precipitation systems or incomplete data coverage. 



In the revised manuscript, we have referred to the works of Leinonen et al. (2019) to make 
our discussion more profound (Lines 425-430). 
 
 
Line 372: “fully replicate” sounds as if it is, in principle, possible to create a radar 
reflectivity profile from passive microwave observations equivalent to a radar 
observation with the right AI method. I suggest to rewrite this. It is impossible to retrieve 
unique information on each height bin from the limited information of passive 
microwave observations.  
 
Response: 
Thank you for pointing this out. We agree that our original wording may have been too 
absolute. It is indeed not feasible to fully replicate radar reflectivity profiles from passive 
microwave observations due to the inherent limitations in the vertical resolution and 
information content of passive microwave data. We have revised the statement to reflect this 
limitation more accurately and acknowledge that while AI methods can reconstruct radar-like 
profiles with useful detail, they cannot fully replace the unique vertical information provided 
by active radar observations. We have clarified in the revised manuscript in Lines 430-434. 
 
However, it would be interesting to see which channels provide information on the 
height level of the reflectivity profile. Could this be seen when computing the Jacobian 
of the model with 35 input channels? 
 
Response: 
Thank you for your suggestion. We agree that analyzing the contribution of each channel to 
the height levels of the reflectivity profile, for instance by computing the Jacobian of the 
model with respect to the 35 input channels, is a valuable approach. Such an analysis can 
indeed reveal which channels provide the most information regarding the vertical structure 
of the reflectivity. 
We are currently conducting related work to extract gradient-based information to assess the 
influence of input channels on the output reflectivity profiles. However, due to time 
constraints, we were unable to include this analysis in the present study. We plan to 
incorporate this analysis in future work, as it can provide deeper insights into the role of 
individual channels and further improve the interpretability and performance of the model. 
Thank you again for your valuable suggestion, which will help guide our ongoing and future 
research. 
 
Technical corrections 
Line 7: What does “VPR” stand for? I suggest using “reflectivity profiles.” and not “VPR.” 
Line 15: The start of the sentence should be a capitalized letter. 
Line 22: Mentioning nations is distracting. Remove them throughout the manuscript. 
Line 25: See comment on line 22. 
Line 28: Remove the word “wideband.” 
Line 32: Rephrase the beginning of the sentence to more neutral wording like “To further 



advance global precipitation observations.” 
Line 49: Remove the word “strong.” 
Line 56: The year in the reference is missing. 
Line 61: See comment on line 18. 
Line 73: Does “precipitation measurement radar” refer to PMR or any radar? 
Line 90: The “HIW” acronym is not needed. 
Line 93: See comment on line 22. 
Line 96: DPR is written instead of PMR. 
Line 104: Replace “frequency points” with “channels.” 
Line 112: Move this to the data availability section. 
Line 128: Remove the word “detrimental.” 
Line 165: Remove the word “advanced.” 
Line 168: Remove the word “enriched.” 
Line 249: Replace “precipitation reflectivity” with “radar reflectivity.” 
Line 294: Replace the word “fuzziness.” 
 
Response：Thank you for your careful scrutiny, we have revised it accordingly! 
 
Line 18: The acronym “AWR” is rarely used. Use “radar” instead. 
 
Response: 
Thank you for your suggestion. While "radar" is indeed commonly used, we adopted the term 
“Active Microwave Sensors (AMW)” following its usage in recent literature, such as in the 
works of de Roda Husman et al. (2021) and Sharifnezhadazizi (2022). These references employ 
the term to emphasize the distinction between active and passive microwave sensors in 
remote sensing applications. However, we understand that clarity and common terminology 
are crucial for broader readership. We will revise the manuscript to use “radar” instead, 
ensuring consistency and accessibility for the audience. 
 
de Roda Husman, S., Lhermitte, S., and Wouters, B.: Towards Improved Spatio-Temporal Resolution Surface 

Meltwater Detection on the Antarctic Ice Shelves from the Synergy of Active and Passive Microwave Remote 

Sensing, 2021, C52B-04, 2021. 

Sharifnezhadazizi, Zahra, "Data Fusion and Synergy of Active and Passive Remote Sensing; An application for 

Freeze Thaw Detections" (2022). CUNY Academic Works. 

 
 


