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Abstract.

Urban surveillance cameras offer a valuable resource for high spatiotemporal resolution observations of near surface
precipitation type (SPT), with significant implications for sectors such as transportation, agriculture, and meteorology.
However, distinguishing between common SPT—rain, snow, and graupel—present considerable challenges due to their
visual similarities in surveillance videos. This study addresses these challenges by analyzing both daytime and nighttime
videos, leveraging meteorological, optical, and imaging principles to identify distinguishing features for each SPT.
Considering both computational accuracy and efficiency, a new deep learning framework is proposed. It leverages transfer
learning with a pre-trained MobileNet V2 for spatial feature extraction and incorporates a Gated Recurrent Unit network to
model temporal dependencies between video frames. Using the newly developed 94-hour SPT Surveillance Video (SPTV)
dataset, the proposed model is trained and evaluated alongside 24 comparative algorithms. Results show that our proposed
method achieves an accuracy of 0.9677 on the SPTV dataset, outperforming all other relevant algorithms. Furthermore, in
real-world experiments, the proposed model achieves an accuracy of 0.9301, as validated against manually corrected Two-
Dimensional Video Disdrometer measurements. It remains robust against variations in camera parameters, maintaining
consistent performance in both daytime and nighttime conditions, and demonstrates wind resistance with satisfactory results
when wind speeds are below 5 m/s. These findings highlight the model's suitability for large-scale, practical deployment in
urban environments. Overall, this study demonstrates the feasibility of using low-cost surveillance cameras to build an
efficient SPT monitoring network, potentially enhancing urban precipitation observation capabilities in a cost-effective

manner.

1 Introduction

Near surface precipitation type (SPT) refer to any atmospheric particle consisting of liquid or solid water, which are integral

to precipitation processes and play a crucial role in the water cycle and cloud microphysics (Pruppacher and Klett, 1980).
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Despite SPT and ground conditions (i.e., snow or rain on ground) are related, note that they are different. The identification
of SPT contributes to the improvement of quantitative precipitation estimation algorithms and promotes the understanding of
precipitation microphysical processes, thus providing scientific support for the improvement of microphysics scheme of
numerical weather prediction. Common examples of SPTs include rain, snow, graupel. They account for more than 90% of
the SPT and influence urban transportation, communication, electricity, and other industries (Casellas et al., 2021a; Zhou et
al., 2020). Especially in winter, a weather process may contain multiple SPTs and often co-exist or convert to each other.
Given the same amount of precipitation, the impacts of different SPTs may vary considerably (Leroux et al., 2023). For
example, if 5 mm of precipitation falls in 24 hours, it is only light rain for the liquid precipitation but heavy snow for the
solid precipitation, severely influencing social production and life. In winter, when snow, rain, and graupel co-exist or
alternate frequently, it is tough for forecasters to know the actual weather conditions, which seriously affects the quality of
forecasts (Haberlie et al., 2015). Therefore, the accurate discrimination of the SPT, especially for the rain, snow, and graupel,
has significant scientific and practical value.

Nowadays, many countries and regions no longer observe precipitation information manually (e.g., in January 2014, China
cancelled ground-based manual observation). Ground-based Disdrometers (i.e., OTT Parsivel, Two-Dimensional Video
Disdrometer), airborne optical and electromagnetic wave detection devices, and dual-polarization radars have become the
primary tools (Jennings et al., 2023). However, (1) with the rapid development of urbanization, ground-based disdrometers
in urban areas face outstanding problems such as high construction costs, difficulty in management and maintenance, and
low deployment density, resulting in limited spatial representativeness of the SPT observations (Arienzo et al., 2021). (2)
The data collected by airborne equipment is mainly used for validating and analysing scientific experiments, which is
challenging to apply on a large scale and in real-time observation tasks (Schirmacher et al., 2024). (3) Dual polarization
radar can alternatively or simultaneously transmit and receive polarized waves in both horizontal and vertical directions to
obtain the echo information in different directions of the target scatterer and thus identify the SPT in the cloud (Casellas et
al.,, 2021b). However, precipitation particles undergo a complex physical evolution from high altitude to the ground,
especially in urban areas, where the temperature may have significant spatial differences, leading to large differences in the
SPT between regions (Speirs et al., 2017). In summary, existing techniques have not effectively addressed SPT’s high
temporal and spatial resolution discrimination.

The development of the new observation method has received much attention. Some researchers have adopted the idea of
“Citizen Science” by encouraging residents to report precipitation they see to provide the actual value of the SPT (Crimmins
and Posthumus, 2022). Extensive investigations have demonstrated the effectiveness of the citizen science-based approach
(Arienzo et al., 2021; Jennings et al., 2023), which provides important insights for our study. According to a survey by
Comparitech (https://www.comparitech.com/), there are approximately 770 million surveillance cameras worldwide.
Surveillance video allows 24/7 observation of the precipitation process and provides clues for SPT discrimination (Wang et
al., 2023a). If every surveillance camera is regarded as an observation site, such a vast number of surveillance cameras

provide a high spatial resolution observation. At the same time, the surveillance video is transmitted through fiber optic, 4G,
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and 5G communication networks, enabling transmission back 15-25 surveillance images per second, which offer a high
temporal resolution sensing of SPT. Moreover, the SPT observation mission can be deployed on existing surveillance
resources, showcasing the advantage of low operation and maintenance costs. Compared to the other citizen science-based
approach, the SPT observation network composed of surveillance cameras offered a more objective record of the
precipitation process, which has the potential advantages of low cost, all-day, and high spatiotemporal resolution.

However, extensive analysis and comparison experiments have revealed that rain, snow, and graupel show greater similarity
in surveillance videos (e.g., graupel and rain, as well as graupel and snow, are more similar in daytime surveillance videos
under different precipitation intensities, whereas at nighttime, the distinguishing image features of the three are much closer,
making the distinction much more difficult (For more details, see Section 3.1). This study focuses on the discrimination of
three SPT, i.e., rain, snow, and graupel particles via surveillance video, and develops a deep learning-based SPT
discrimination method. Considering that surveillance cameras capture visible and near-infrared video during daytime and
nighttime, respectively, this study first analyzes the video imaging model of three different particles and compares their
differences in surveillance video features. Taking the above findings as a priori knowledge, a deep learning-based SPT
classification model is proposed. An efficient convolutional neural network (CNN) called MobileNet V2 is used to extract
spatial features from surveillance images based on transfer learning. These features are stacked together and fed to a gated
recurrent unit (GRU) network, which enables modeling the long-term dynamics of the SPT in a video sequence. Then, a SPT
surveillance video (SPTV) dataset is constructed for the deep learning model training and testing. Finally, the effectiveness
of the proposed method is evaluated on both the SPTV dataset and the real-world experiments. To the authors' knowledge,
this is the first study on graupel observation from surveillance video data. The research findings can provide technical and
data support for understanding the microphysical process of precipitation, improving the microphysical calculation model of
precipitation and improving the accuracy of satellite/radar retrievals.

The rest of this paper is organized as follows. Following this introduction, we present the related works in Section 2; and
explain the details of the proposed deep-learning model in Section 3; and finally, we discuss the experimental results in

Section 4 and conclude in Section 5.

2 Literature Review

Visual perception is an effective way to distinguish SPT. Visual sensors, such as surveillance cameras, cell phones, digital
cameras, and vehicle cameras, are considered potential weather phenomena observers in existing studies. Considering the
research theme, visual is primarily defined as optical images obtained from the ground. This does not include data obtained
from LiDAR, Radar, or similar technologies. The authors divided the existing visual-based SPT identification work into
three categories: traffic surveillance cameras, in-vehicle cameras, and user-generated visual data. It should be noted that
“weather” is a more generic and broad expression that includes rain, snow, fog, sunny or cloudy conditions, etc. Meanwhile,

“hydrometeor” or “precipitation type” specifically refers here to rain, snow and graupel.
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2.1. Traffic surveillance camera

During rainy and snowy weather, roads suffer from snow, ice, and ponding, affecting transportation efficiency. Timely
weather information reports are significant for traffic warning, diversion, and management. However, with the limited
number of weather stations and delays in radar/ satellite-based weather information release, some researchers exploited
weather recognition from outdoor road surveillance cameras (Li et al., 2014; Lu et al., 2014). As shown in Fig.1, these

studies include two categories:

0 Direct measurement

Indirect measurement

L

-

Figure 1: Weather classification using traffic surveillance cameras. Direct measurement methods focus on the
image/video features exhibited during the precipitation particle's falling process, while indirect measurements involve snow
or water accumulation on the ground.

(1) Indirect measurement mainly refers to detecting snow, pounding, and road surface wetness from video to deduce the
weather. Therefore, these methods mainly focus on the information on the road surface rather than precipitation
processes; specifically, they focus on whether there is snow on the ground rather than whether it is snowing. For
example, Shibata et al. (2014) used the texture features of the surveillance images to quantify the pattern and texture of
the road surface and detect road surface conditions (wet and snow) by surveillance cameras from day to night (or low-
light scenarios). Morris and Yang (2021) constructed a road extract method by Mask R-CNN and then built a gradient-
boosting ensemble classifier to predict pavement wetness. Ramanna et al. (2021) used deep CNNs to label the road
surveillance images into five conditions and constructed a dataset for deep learning models training. Extensive
experiments have shown that the EfficientNet-B4 network-based system achieved optimal performance. Landry and
Akhloufi (2022) utilized the SVM and CNN to extract snow areas in the image. They built a model using surveillance
cameras to estimate the percentage of the snow-covered road surfaces. To reduce the difficulty of model training and
improve accuracy, Khan and Ahmed (2022) introduced a transfer learning method to apply several pre-trained CNN
models for weather and road condition classification tasks. Lii et al. (2023) pre-processed the surveillance images
through the road segmentation network to obtain the binary images to obtain the road image features. Subsequently, a
convolutional neural network, composed of overall network branches and road network branches, was established and

used to extract the overall image area features and focus on extracting the road weather features, respectively. Askbom
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(2023) first used CNN-based deep learning to determine the weather condition (mainly focusing on snow), then
constructed a road condition classification deep learning network with the premise of road area has been extracted by the
U-Net model. Additionally, in an innovative and impressive work, Carrillo and Crowley (2020) integrated roadside
surveillance images and weather data from weather stations to improve the performance of road surface condition
evaluation. The fusion of surveillance cameras and other observations provides novel insights for road weather
identification.
However, there is still a period between the occurrence of rain or snow and the appearance of ponding or snow on the road
surface. Thus, these indirect measurements are difficult to meet the needs of some applications with high real-time
requirements. Moreover, the above methods will not work for those surveillance cameras with no road surface or other
specific region as a reference in the observed area.
(2) Direct measurement refers to identifying the SPT by the captured information of falling raindrops, snowflakes. For
example, Zhao et al. (2011) classified weather conditions into steady, dynamic, and nonstationary and employed four
direction templates to analyze the max directional length of motion blur caused by rain streaks or snowflakes. In this way,
rain and snow can be distinguished from traffic cameras. After analysing the image features of different weather conditions,
Li et al. (2014) adopted the decision tree to model the image features captured during different weather conditions and built
an SVM classifier to predict the weather. Afterward, Lee (2017) proposed a more straightforward method, which used the
histogram features of road images as metrics to discriminate fog and snow in road surveillance cameras. A serious CNN-
based weather classification effort has been implemented with the development of a deep learning algorithm. Xia et al. (2020)
took the residual network ResNet50 as the basis and proposed a simplified model for weather feature extraction and
recognition on traffic roads. Sun et al. (2020) built a deeply supervised CNN to identify road weather conditions through the
road surveillance system. Dahmane et al. (2021) constructed a deep CNN to differentiate between five weather conditions
from traffic surveillance cameras, such as no precipitation, foggy, and rainy. Some advanced deep learning networks or
methods like Attention and transformer were naturally introduced, such as Dahmane et al. (2018), who used CNN to identify
rain, fog, and snow weather from road cameras and applied on large-scale from day to night through the learning transfer
method. Wang et al. (2023b) built a Multi-Stream Attention-aware Convolutional Neural network to identify dust storm from
city surveillance cameras. Chen et al. (2023) built a deep learning model that employs multiple convolutional layers to
extract features from weather images and a Transformer encoder to calculate the probability of each weather condition based
on these extracted features.
Compared to indirect measurements, direct measurements do not require road surface conditions as a reference and thus have
a broader range of applications. That is, direct measure methods can also be deployed in non-traffic surveillance cameras,

which are also adopted in this study.
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2.2. In-vehicle cameras

Some researchers concentrated on recognizing weather conditions from images captured by in-vehicle cameras. For example,
Kurihata et al. (2005) used image features from PCA to detect raindrops on a windshield and to judge rainy weather. Roser
and Moosmann (2008) presented an approach that employed SVM to distinguish between multiple weather situations based
on the classification of single monocular color images. Considering that lighting conditions have a significant impact on
weather identification from vehicle-mounted imagery, Pavlic et al. (2013) used spectral features and a simple linear
classifier to distinguish between clear and foggy weather situations in both day-time and night-time scenarios to improve the
visual perception accuracy degradation of in-vehicle cameras in harsh weather and low light conditions. Additionally, CNN-
based deep learning algorithms also have been employed (Dhananjaya et al., 2021; Triva et al., 2022). From the perspective
of hardware, Zhang et al. (2022) mounted visible and infrared cameras in front of the car to collect day-time and night-time
road images. After that, they proposed two single-stream CNN models (visible light and thermal streams) and one dual-
stream CNN model developed to classify winter road surface conditions automatically. Samo et al. (2023) argued that a
single image may include more than one type of weather. Then, they built a multilabel transport-related dataset of seven
weather conditions and assessed different deep-learning models to address multilabel road weather detection tasks. In
particular, sensing the transition between these extreme weather scenes (sunny to rainy, rainy to sunny, and others) is a
significant concern for driving safety and is less of a concern. For this, Kondapally et al. (2023)proposed a way to interpolate
the intermediate weather transition data using a variational autoencoder and extract its spatial features using VGG. Further,
they modelled the temporal distribution of these spatial features using a gated recurrent unit to classify the corresponding
transition state. In addition, Aloufi et al. (2024) treated weather classification and object detection as a single problem and
proposed a new classification network, which integrated image quality assessment, Super-Resolution Generative Adversarial
Network, and a modified version of the YOLO network. This work adds dust storm weather recognition, which has yet to be
considered in previous research.

However, weather visual data collected by In-vehicle cameras and that of surveillance cameras remain different. Take snow
as an example, snow images captured by different visual sensors are presented in Fig.2. Surveillance cameras are usually
shot from an overhead view, while the in-vehicle cameras are mainly from a horizontal view. Different shooting angles result
in images with different backgrounds. These efforts take a different perspective than surveillance cameras for weather

recognition and provide substantial theoretical and methodological references and guidance for our study.
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(a) Surveillance camera (b) In-vehicle camera (c) Personal phone camera

(Sun et al., 2020) (Triva et al., 2022) (Xiao et al., 2021)
Figure 2: Snow captured by different visual sensors. (a) Snow captured by a traffic surveillance camera; (b) Snow
captured by an in-vehicle camera; (¢) Snow captured by a mobile phone camera. Taking snow as an example, a comparison

reveals the visual feature differences of precipitation events captured by these three different types of visual data.

2.3. User-generated visual data

Here, the user-generated visual data means the pictures/videos taken by visual devices other than surveillance cameras (i.e.,
cell phones, digital cameras, and web cameras). Nowadays, with rapid dissemination on the Internet and social media
platforms, visual data with spatial (geotags) and temporal (timestamps) information can collectively reveal weather
information around the world. Based on this, researchers could collect user-generated visual data from the Internet or social
media platforms for weather condition classification purposes. For example, Chu et al. (2017) used the random forest
classifier to build a weather properties estimator; Zhao et al. (2018) propose to treat weather recognition as a multi-label
classification task and present a CNN-RNN architecture to identify multi- weather-label from images; Wang et al. (2018)
combine the real-time weather data with the image feature as the final feature vector to identify different weather; Guerra et
al. (2018) explored using super-pixel masks as a data augmentation technique, considering different CNN architectures for
the feature extraction process when classifying outdoor scenes in a multi-class setting using general-purpose images. Ibrahim
et al. (2019) proposed a new framework named WeatherNet for visibility-related road condition recognition, including
weather conditions. WeatherNet takes single-images as input and used multiple deep convolutional neural network (CNN)
models to recognise weather conditions such as clear, fog, cloud, rain, and snow. Togagar et al. (2021) used GoogLeNet and
VGG-16 models to extract image features and use them as input to construct a spiking neural network for weather
classification; Xiao et al. (2021) proposed a novel deep CNN named MeteCNN for weather phenomena classification. Mittal
and Sangwan (2023) extracted features using a pre-trained deep CNN model and used transfer learning techniques to build a
weather classification framework to save the time and resources needed for the system to work and increase the reliability of
the results.

In contrast, as shown in Fig.2, user-generated visual data differs significantly from surveillance images/videos in terms of
resolution, clarity, background content, etc., and the image characteristics of weather conditions may also differ. Therefore,
there are considerable differences in the algorithm design ideas and result accuracy for determining the weather from web
images and surveillance images.

Table 1 presents a comparison of surveillance camera-based weather classification/recognition algorithms. Since ordinary
surveillance cameras differ in the images captured during daytime and nighttime, the working time is divided into daytime
and nighttime (low-light scenarios are categorized as nighttime). Moreover, the weather types that can be

recognized/classified are also listed. Combined with previous review and analysis, we can summarise:
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In terms of working time: Existing studies mainly focus on weather condition in daytime, while that of nighttime is given

little attention.

In terms of weather: It can be found from Table 1 that the existing works have not yet paid attention to the distinction of

graupel, which is more challenging due to its similarity to rain and snow particles.

In terms of methodology: mainstream classification methods have shifted from traditional machine learning methods to

deep learning methods. For data-driven deep learning methods, a wealthy and high-quality training dataset is the foundation

for deep learning model construction. We are pleased to see some datasets for road weather being released (Karaa et al.,

2024; Bharadwaj et al., 2016; Guerra et al., 2018). However, existing methods are primarily focused on single-image

information. Compared to images, videos, which contain temporal dependencies between image frames, are seldom used,

although this will help improve the accuracy of recognition results.

Table 1: Comparison of surveillance camera-based weather classification/recognition studies.

Working time Weather can be recognized
Daytime | Nighttime | Rain | Snow Foggy | Cloudy | Sunny Dust Others
Storm
Zhao et al. (2011) N J N/ N/
Shibata et al. (2014) «/ N V
Li et al. (2014) J J J J N
Lee (2017) J J J o
Dahmane et al. (2018) v N N, J J
Carrillo and Crowley (2020) v N J
Xia et al. (2020) v N J J J
Sun et al. (2020) v N J J J
Ramanna et al. (2021) v N N J J
Dahmane et al. (2021) v N, J
Morris and Yang (2021) v J J
Landry and Akhloufi (2022) v J
Khan and Ahmed (2022) v J J
Lii et al. (2023) v V J i J
Askbom (2023) v J J
Chen et al. (2023) v v v v N N
Wang et al. (2023b) v J J J J
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3 Methodology

Previous meteorological studies have explored the size, shape, brightness, and terminal velocity (mainly referring to the
terminal velocity of particles during free fall near surface) of rain, snow, and graupel, providing an essential foundation for
analyzing their visual characteristics. It is important to emphasize that in this study, graupel, also known as snow pellets,
refers specifically to solid particles “consisting of crisp, white, opaque ice particles, round or conical in shape and about 2—5
mm in diameter” according to the World Meteorological Organization terminology (WMO, 2017). In this study, no mixed
phase precipitation is considered. After analyzing a large number of surveillance videos, the distinctions between rain, snow,
and graupel particles can be primarily summarized in terms of brightness and shape from the perspective of video
observations. To enhance clarity, we present a comparison of these precipitation types in both visible and near-infrared video
footage.

Brightness: Ordinary surveillance cameras take visible light video during the day and near-infrared video at night. Therefore,
the brightness of the particles differs in the day and night-time images/videos. In the daytime, rain and graupel particles have
strong forward reflections of visible light and appear brighter than the background. In contrast, snow appears in white; at

night, the brightness of the three particles is similar, with little differentiation, as shown in Fig.3.

Day

\
>

Night

-

Rain Snow Graupel

Figure 3: Comparison of rain, snow, and graupel in day and night surveillance images (Particles are labelled by red
circles). Differences in image features such as brightness, color, and trajectory exhibited by rain, snow, and graupel in
daytime visible light and nighttime near-infrared images, due to their varying optical properties, interactions with light, and
terminal fall speeds.

Shape: Due to the long exposure time of surveillance cameras, rain, and graupel particles have a large deformation in

surveillance images, usually appearing as lines. These lines describe the trajectories of rain and graupel particles. However,
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as shown in Fig.3, meteorological studies have pointed out that, in general, the speed of graupel particles (Heymsfield and
Wright, 2014; Kajikawa, 1975) is greater than that of rain (Montero-Martinez et al., 2009). In combination with the imaging
principles of the camera, the trajectory of a graupel particle is longer than that of a raindrop particle of the same size in the
same surveillance camera. Moreover, rain has a greater number concentration value (the number of particles per unit volume)
(10 - 10*m™) than graupel (1-10 m™) (Zhang, 2016). That is to say, the number of raindrops in the surveillance images is
denser compared to graupel. And snow particles have less shape change due to their slower falling speed (<1 m/s) (Vazquez-
Martin et al., 2021). Overall, the length of rain is wider and shorter than that of graupel, while snow is the shortest.

The analysis shows that distinguishing snow is relatively straightforward, given the significant differences in brightness,
shape, and terminal velocity when compared to that of rain and graupel. However, the primary challenge of this study lies in
differentiating between rain and graupel. While there are notable differences in their number concentrations, rain and graupel
share similar speeds, shapes, and brightness, which complicates accurate differentiation. Traditional hand-crafted features
fall short in capturing the subtle distinctions between rain and graupel particles, making it necessary to employ deep learning
features. Furthermore, accurate classification requires not only spatial features from images but also temporal features from
video sequences.

In practical applications, the timeliness of precipitation data extracted from surveillance videos is essential to ensure the
value of the data. With the widespread availability of high-definition, full high-definition, and ultra-high-definition
surveillance cameras, video resolution is continuously improving, leading to rapid increases in surveillance data volume. In
this context, where numerous cameras generate massive amounts of real-time data, it is vital to consider not only memory
and computational resources but also the speed and efficiency of the SPT recognition algorithm, alongside accuracy, for

effective processing.

3.1. SPT classification model construction

In this section, surveillance video-based SPT identification is approached as a video classification task. To balance accuracy,
computational speed, and computational load in designing the SPT classification algorithm, a deep learning model that
integrates MobileNetV2 and GRU is proposed. First, a pre-trained MobileNetV2 model based on ImageNet is adapted for
spatial feature extraction using a transfer learning strategy, enabling it to capture differences between surveillance images
from various SPT events. These features are then fed into a GRU network to model the long-term dynamics of the
surveillance video sequence. The structure of the surveillance camera-based SPT identification system is illustrated in Fig. 4.
The surveillance video is divided into 5-second segments. Within each segment, sequences of 5, 10, and 15 frames are
selected and fed into the spatial feature extraction module (the effect of sequence length on the classification results is
discussed in Section 4.4). The extracted feature vectors are then input into the temporal model for precipitation type

classification.

10



280

285

290

295

MobileNet V2 P
GRU Rainy

GRU ]—-‘[ Softmax ]—

MobileNet V2 17 [ | cevees

MobileNet V2
Snowy

Graupel

11

GRU

0908

MobileNet V2

Temporal feature

I
|

extraction
Surveillance video  Spatial feature

sequence extraction
Figure 4: The structure of the surveillance camera-based SPT identification system. Frames are selected from the
surveillance video and fed into the spatial feature extraction module. The extracted spatial feature vectors are then

aggregated and input into a temporal feature extraction module composed of GRUs, enabling the differentiation of SPT.

3.1.1 Spatial feature extraction model

As analyzed previously, the primary distinctions between rain, snow, and graupel in surveillance images are reflected in their
brightness, shape, and number concentration. The role of the spatial feature extractor is to identify and capture these

differences from surveillance images captured during both daytime and nighttime conditions. MobileNetV2, a lightweight
framework, is widely used for visual object classification, recognition, and tracking tasks, offering an effective trade-off
between accuracy and model efficiency in terms of size and computational speed. These advantages align well with the

requirements for spatial feature modelling of various SPT particles, making MobileNetV2 the chosen backbone for the

spatial feature extraction model. MobileNetV2 builds upon MobileNetV1 and is based on two primary components: the

inverted separable convolution (ISC) block and the inverted residual (IR) block.

ISC block: This block utilizes a 1 x 1 convolution with batch normalization and a ReLU®6 activation function (1 x 1 R-Conv)
to expand the number of channels in the input feature map. It then calculates the feature maps through depth-wise

convolution (DW), after which the number of channels is reduced using a linear 1 x 1 convolution.

IR block: Built upon the ISC block, this block reduces the stride of the DW convolution to 1, maintaining the feature map

size before and after processing. It also incorporates a shortcut connection between each residual block, similar to the

residual network structure (He et al., 2016). This setup allows the feature maps following the 1 x 1 linear convolution (1 % 1

L-Conv) to be added to the input feature maps, completing the calculation of the residual feature maps. The structures of the

ISC and IR blocks are shown below.

11
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Figure 5: The structure of the inverted separable convolution (ISC) block and inverted residual (IR) block.
Figure 6 presents the architecture of the existing MobileNet V2 backbone model. Here, we set the input size of the
300 MobileNet V2 to 512x512x3, and output seven groups of feature maps of different sizes, from 112x112x32 to 7x7x160, to

the temporal feature extraction model for feature fusion processing.

ImageNet
Dataset

ISC Block
IR Block

ISC Block
IR Block

ISC Block
IR Block

ISC Block
ISC Block
ISC Block
ISC Block
ISC Block

3x3 Conv
IR Block
ISC Block

MobileNet V2

MobileNet V2 ‘ Transfer Parameters

X6

3x3 Conv
ISC Block
ISC Block
ISC Block
IR Block

ISC Block
ISC Block
ISC Block
ISC Block
ISC Block
ISC Block

112x112x32

112x112x16 56x56x24 14x14x64

TxTx160

28x28x32  14x14x96

Figure 6: The structure of MobileNet V2 backbone network. The spatial feature extraction module, based on MobileNet
V2, is initially trained on the ImageNet dataset to leverage its large, diverse image data for general feature extraction.
305 Subsequently, transfer learning is applied, and the model is fine-tuned on our constructed PPSV dataset, allowing it to adapt

to the specific characteristics of precipitation-related images in our study.
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Transfer learning involves leveraging knowledge from one task to inform another, eliminating the need for feature extractors
to be trained from scratch. This approach accelerates training, reduces the risk of overfitting, and enables the construction of
accurate models more efficiently. Previous research has shown that pre-trained models, developed using extensive datasets
like ImageNet, offer an excellent foundation for new tasks where dataset size is limited. Consequently, the final two layers of
MobileNetV2 were removed and replaced with global average pooling (GAP), batch normalization (BN), and temporal
feature extraction layers (detailed in Section 3), including GRU layers. Finally, the pre-trained MobileNetV2, fine-tuned on

the ImageNet dataset, was adapted through transfer learning to extract spatial features of SPT from surveillance images.

3.1.2 Temporal feature extraction model

Another critical indicator for differentiating between rain, snow, and graupel particles is their varying falling velocities, as
illustrated in Fig.7 (Zhang, 2016). While such differences are challenging to detect in single images, they become much
more pronounced in video sequences. Consequently, the temporal feature extractor builds upon the spatial feature extractor
by capturing the temporal dependencies between adjacent frames, thereby enabling the modeling of falling velocities for rain,
snow, and graupel particles. Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and Gated Recurrent
Units (GRU) are widely recognized networks for learning temporal dependencies, effectively leveraging contextual
information. This capability is particularly valuable in tasks such as natural language processing, video classification, and
speech recognition. RNNs apply recurrent operations to each element in a sequence, where the current computation is
influenced by both the current input and previous states. However, traditional RNNs are prone to the vanishing and
exploding gradient problems, which limit their effectiveness in capturing long-term dependencies, confining them mostly to
short-term dependencies. To address these limitations, variants such as LSTM and GRU were introduced. These networks
are specifically designed to capture long-term dependencies. The GRU, a streamlined version of LSTM, features fewer
parameters, making it more efficient in terms of memory usage and computational speed. A GRU consists of three primary
components: the update gate, the reset gate, and the current memory gate.

o Update gate: Controls the extent to which previous information is retained and carried forward to future states (Eq.

(1)).
e Reset gate: Determines the amount of past information that should be discarded (Eq. (2)).
e Current memory gate: Computes the current state by integrating the previous hidden state with the current input

(Eq. (3)). The final memory is determined as described in Eq. (4).

z,=o(W_-[h_,x]+b.) 1)
r=0W, [h_,x]+b,) (2)
h, = tanh(W -[1, % h,_,,x,]+b) 3)
hy=(=z)%h_ +z,*h 4)
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where, VVZ W, ,and W are learnable weight matrices, ht_l is the previous hidden state, X, is the input vector, & and tanh

are the sigmoid and tanh activation function, * represents the Hadamard product, and bZ , br and b are biases.

After extracting spatial features, they are input into a GRU layer with 93 hidden units to capture temporal dependencies. The
outputs from the GRU layer are concatenated and passed through a dense layer. Following the dense layer, a batch
normalization layer is applied, which is subsequently connected to a fully connected output layer. This final layer uses a
SoftMax activation function to classify the SPT event from the surveillance video sequence. The spatial feature map has an
input shape of 1280 x N, where N represents the length of the video sequence utilized for temporal dependency modeling.

The impact of different values of N on the accuracy of SPT classification is analyzed in Section 4.4.
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Figure 7: Comparison of terminal velocities of different particles. The differences in fall velocities among different

precipitation particles (rain (Atlas et al., 1973), snow (Brandes et al., 2007), graupel (Kajikawa, 1975; Magono and Lee,
1966)) serve as an important basis for constructing our temporal feature extraction module. It is important to note that this

study primarily focuses on solid graupel particles.

3.2. Dataset building

For training and testing the deep-learning model, a new SPTV dataset was constructed. As illustrated in Fig. 8, 20
surveillance cameras were deployed at the National Benchmark Climate Station in Nanjing, Jiangsu, China. Of these, videos
from 17 cameras (IDs 4 to 20) were utilized to build the dataset, while the remaining 3 cameras (IDs 1 to 3) were reserved
for real-world precipitation observation experiments, as discussed in Section 4.5.

Considering the broad range of potential applications, the deployed urban surveillance cameras exhibit substantial variation
in parameters, including resolution (960x720, 1280x960, 1920x1080, 2592x1944), focal length (4mm, 6mm, 8mm, 12mm),

and frame rate (15fps, 20fps, 25fps). This diversity ensures that the collected video data reflects real-world surveillance
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conditions, thereby minimizing the gap between the performance of the deep-learning model on the SPTV dataset and its

applicability in real-world scenarios.
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Figure 8: Overview of the study area. Due to space limitations, we only present the scenes captured by three surveillance
cameras. The use of a variety of 20 surveillance cameras deployed in different places ensures the dataset's diversity and
generalizability, enhancing the model's applicability and reliability in real-world scenarios.

After a long period of observation (starting from March 2023 and ending in July 2024), we captured a huge amount of
surveillance video data for different SPTs. During this period, we captured extreme precipitation surveillance videos such as
snowstorms with intensities of 27 mm/h and heavy rainfalls of 195 mm/h. These rare and precious precipitation scenarios
play an important role in improving the generalization and diversity of our dataset. Finally, about 94 hours of surveillance
videos from day to night were selected and categorized into four categories: rainfall, snowfall, graupel, and no precipitation.
The videos were divided into segments, each of which was 5 seconds in length, with a frame rate ranging from 15-25 fps,
and were saved in .mp4 format. More details can be found in Table 2.

In addition, the Two-Dimensional Video Disdrometer (2-DVD), a professional precipitation measurement instrument, works
in synchronization with the surveillance cameras to provide the true value/label of the SPT for the surveillance videos.
Simultaneous observations by researchers are also conducted, and their observed data are used to refine the 2DVD
measurements, ensuring the accuracy of the true value/label of SPT. The precipitation intensity values are calculated every

minute. Therefore, the values in Table 2 refers to the precipitation intensity during a 1-minute period, not an hourly intensity.
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The maximum distance between the 2DVD and the camera is 1 km, which ensures that the SPT observed by the two is the

same.

380 Table 2: Description of the SPTV dataset. Each video clip with length of Ss.

385

390

395

Day-time Night-time Precipitation intensity

(video clips) (video clips) (mm/h) for video clips

No precipitation 6903 7378
Rain 11183 11249 from 0 mm/h to 195 mm/h
Snow 8086 7938 from 0 mm/h to 27 mm/h
Graupel 7272 7692 from 0 mm/h to 23 mm/h

4. Experiment and discussion
4.1. Experimental environment

Our experiments were performed on a workstation with Ubuntu 11.2.0 (Linux 5.15.0-25-generic) for the operating system.
More specifications are as follows:

4x Intel Xeon Silver 4216 CPU@2.10 GHz (32 cores);

8XNVIDIA GEFORCE GTX2080Ti graphics cards equipped with 11 GB GDDR6 memory ;

188 GB RAM;

Python 3.9.16;

TensorFlow 2.4.1, Scikit-learn 1.2.1, and Keras 2.4.3 libraries;

CUDA 11.8 and CUDNN 8&;

4.2. Evaluation metrics

To evaluate the SPT classifiers, we selected 3 different established metrics: the balance accuracy, weighted precision, and

weighted recall. The balance accuracy metric ( Accuracy ) is described as:

I TP
Accuracy =— ) —
ns S

i

)

where TP, and S, stand for the number of True Positive and sample size of class i , respectively.

16



400

405

410

415

The weighted precision metric ( Precision ) can be calculated as follows:

< TP,
Precision= ) ————xr, 6

2 m)” ©
where FF, is the number of False Positive of class i and 7; is the ratio between the number of samples of class i and the

total number of samples.
The weighted recall ( Recall ) is calculated as follows:

Recall = i i

— E— 7}
i=1 (TPi+FNi) " (7)

4.3. Model training details

The SPTV dataset was split into training, validation, and test datasets according to the ratio of 7:2:1. Training and validation
sets were employed to construct the deep learning model. To analyze the performance of the proposed method, some
classical CNN models with ImageNet pre-trained weights such as: DenseNet 121 (Huang et al., 2017), EfficientNet BO (Tan
and Le, 2019), Inception V3 (Szegedy et al., 2016), and ResNet 50 (He et al., 2016) are used to extract the spatial features of
precipitation images, while some commonly used neural networks for temporal signal analysis like RNN, LSTM, 1D-CNN
(Kiranyaz et al., 2021), and Bi-LSTM (Huang et al., 2015) are employed to extract the temporal features of precipitation
surveillance videos, respectively. In terms of realization, transfer learning is exploited, and the last layer of each spatial
extraction architecture (i.e., the fully connected (FC) and Softmax layers) was deleted and replaced with two layers: GAP
and BN, to extract the deep spatial features based on transfer learning. Second, the spatial features were sent to temporal
feature extraction networks listed above. The Softmax function was used as a classifier to identify SPT. Thus, a total of 25
deep-learning algorithms are constructed and compared. The hyper-parameters deep-learning models were set as listed in
Table 3.

Table 3: Hyper-parameters for deep-learning models.

Spatial feature extractor Temporal feature extractor

Hyper-parameters Value Hyper-parameters Value
Learning Rate 0.001 Learning Rate 0.001
Batch Size 32 Batch Size 32
Number of Epoches 100 Number of Epoches 100
Dropout Rate 0.5 Dropout Rate 0.5
Filters [64, 128,256, 512] | Activation Functions Sigmoid

Activation Functions

Weight Initialization

ReLU

He Initialization

Weight Initialization

Loss Function

Glorot Initialization

Mean Squared Error
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4.4. Experiments on the SPTV dataset

420 Given the length of the input frames on the temporal feature extraction, we evaluated the performance of different algorithms
when screening 5, 10, and 15 frames per second from the video clips for comparison. The results of different numbers of
frames per second (NFS) as input to temporal feature extraction are shown in Tables 4, 5, and 6, the bold black entries
indicate relatively better performance.

Table 4: Comparison of SPT recognition by different deep-learning algorithms (NFS = 5).

RNN LSTM | GRU ID-CNN | Bi-LSTM

Accuracy | 09479 | 0.8856 | 0.9656 | 0.9295 0.9334
?;fseNet Precision | 0.9428 | 0.8874 | 0.9639 | 0.9278 0.9335
Recall 09415 | 0.8903 |0.9617 |0.9322 0.9341
, Accuracy 09051 | 0.9508 | 0.9253 | 0.9550 0.9558
Egﬁ"‘enmet Precision | 0.8993 | 0.9522 | 0.9245 | 0.9408 0.9574
Recall 09072 | 0.9498 |0.9208 |0.9558 0.9497
, Accuracy | 0.8887 | 0.9448 | 0.9237 | 0.9418 0.9442
g‘;ept“’“ Precision | 0.8693 | 0.9414 | 0.9201 | 0.9373 0.9485
Recall 0.8921 | 0.9431 |0.9199 |0.9487 0.9471
Accuracy 09390 | 0.9660 | 0.9581 | 0.9287 0.9558

ResNet -
) Precision | 0.9302 | 0.9599 | 0.9517 | 0.9189 0.9576
> Recall 09323 | 09674 |0.9585 |0.9207 0.9511
, Accuracy | 09576 | 0.9496 | 0.9671 | 0.9610 0.9440
Mz"bﬂeNet Precision | 0.9526 | 0.9469 | 0.9597 | 0.9624 0.9487
v Recall 09513 | 09502 |0.9634 |0.9626 0.9398

425
Table 5: Comparison of SPT recognition by different deep-learning algorithms (NFS = 10).

RNN LSTM | GRU ID-CNN | Bi-LSTM

Accuracy | 09104 | 0.9376 | 0.9507 | 0.9483 0.9620

?;lnseNet Precision | 09115 | 09336 | 0.9487 | 0.9402 0.9643
Recall 09127 | 09258 |0.9512 |0.9477 0.9601

, Accuracy | 09247 | 0.9274 | 0.9368 | 0.9516 0.9335
Egﬁc‘entNet Precision | 0.9202 | 0.9243 | 0.9402 | 0.9475 0.9278
B Recall 09253 | 09148 |0.9335 |0.9514 0.9238
, Accuracy | 08962 | 0.9336 | 0.9498 | 0.9476 0.9641
i‘/‘;epnon Precision | 0.9012 | 0.9345 | 0.9464 | 0.9427 0.9578
Recall 0.8913 | 09402 |0.9352 |0.9453 0.9622

Accuracy | 09152 | 0.9306 | 0.9651 | 0.9526 0.9521

ResNet Precision | 0.9158 | 0.9267 | 0.9645 | 0.9516 0.9502
>0 Recall 09127 | 09317 |0.9661 |0.9548 0.9544
. Accuracy | 09108 | 0.9211 | 0.9677 | 0.9433 0.9546
El/lzoblleNet Precision | 0.9121 09217 | 0.9644 |0.9423 0.9549
Recall 09098 | 09159 |0.9758 | 0.9409 0.9601
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Table 6: Comparison of SPT recognition by different deep-learning algorithms (NFS = 15).

RNN LSTM |GRU | ID-CNN | Bi-LSTM

Accuracy | 0.9291 | 0.8821 | 0.9490 | 0.9067 0.9265
?;fseNet Precision | 09322 | 0.8689 | 0.9347 | 0.8874 0.9202
Recall 09107 | 0.8778 |0.9426 | 0.8955 0.9178
, Accuracy | 0.8857 | 0.9105 | 0.9320 | 0.9012 0.9272
EgﬁCIentNet Precision | 0.8656 | 0.9047 | 0.9189 | 0.9036 0.9178
Recall 0.8645 | 0.8993 | 0.9275 | 0.8998 0.9302
. Accuracy | 09124 | 0.9271 | 0.9225 | 0.9254 0.9404
Inception = (09111 09215 | 09057 |09114 0.9287
V3 Recall 0.9074 | 0.9303 | 09154 |0.9233 0.9444
Accuracy | 0.9087 | 0.8952 | 0.9385 | 0.9554 0.9248

ResNet —
% Precision | 0.8954 | 0.9012 | 0.9346 | 0.9547 0.9301
Recall 09111 | 0.8872 | 09245 | 0.9504 0.9287
. Accuracy | 0.8938 | 0.9275 | 0.9577 | 0.9189 0.9350
Eg’bﬂeNet Precision | 0.8952 | 0.9245 | 0.9542 | 0.9105 0.9374
Recall 0.8911 | 09147 |0.9553 |0.9233 0.9326

The results indicate that when the number of frames (NFS) is set to 5, the accuracy of our proposed method closely aligns
with those of the DenseNet 121+GRU, ResNet 50+LSTM, and MobileNet V2+1D-CNN models. When the NFS is increased
to 10, the performance of our proposed method, DenseNet 121+Bi-LSTM, Inception V3+Bi-LSTM, and ResNet 50+GRU
converges, showing minimal differences in classification accuracy, which ranges from 0.960 to 0.967. However, with NFS at
15, the accuracy of our proposed method surpasses that of DenseNet 121+GRU and ResNet 50+1D-CNN models, though it
slightly declines to approximately 0.949 to 0.957.

The observed improvement in deep learning model performance when increasing NFS from 5 to 10 frames can be attributed
to the enriched temporal features provided by the additional frames. These features enhance the models’ ability to
differentiate between various SPTs. Nonetheless, when the NFS reaches 15 (equivalent to 75 frames per video clip), the
lengthier temporal sequences challenge the RNN and 1D-CNN architectures, resulting in reduced classification accuracy. In
contrast, the GRU architecture, with its more compact structure and computational efficiency, facilitates faster aggregation
during training on the SPTV dataset, allowing it to sustain high accuracy even with longer NFS. Our proposed algorithm
demonstrates classification accuracies of 0.9671, 0.9677, and 0.9577 across the three experimental settings, thereby
exhibiting consistently superior stability compared to other methods.

To further assess model performance, confusion matrices are utilized as visual tools, elucidating the relationship between
actual and predicted classifications. Figure 9 presents the confusion matrices for our proposed deep learning models on the
SPTV dataset, detailing SPT discrimination capabilities (confusion matrices for comparison models are provided in

Appendix A). In these matrices, columns denote true labels, while rows represent predicted classifications by different
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algorithms. Additionally, violin plots in Fig.10 quantify the SPT classification performance across models, providing further

450 insight into the comparative strengths of each approach.
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Figure 9: Confusion matrix of proposed algorithm. No P means No precipitation. The three subplots share the same
legend on the far right.
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Figure 10: Violin plots quantify the deep-learning algorithms’ performance for SPT classification.
Overall, the classification accuracy of above listed algorithms is slightly higher for “no precipitation” and “snow” conditions

460 compared to “rain” and “graupel.” The confusion matrices indicate that the primary source of misclassification among the
algorithms lies in differentiating between “rain” and “graupel” events. This issue arises due to the distinct shape, color, and
falling velocity of snow particles, which starkly contrasts with rain and graupel, thereby making snowy conditions easier to
classify. As discussed in Section 3, both “rain” and “graupel” share similar visual and temporal characteristics in both
daytime visible and nighttime near-infrared videos, posing significant challenges for the classification algorithms.

465 Furthermore, Fig.9 illustrates occasional misclassification between “no precipitation” and other SPTs. Upon analysing the
SPTV dataset, it was observed that these errors typically occurred during low-intensity precipitation events, where only a
minimal number of rain, snow, or graupel particles were present. While the 2-DVD device—known for its high sensitivity—
can detect such subtle precipitation events, capturing these minute particles in surveillance videos remains challenging,

particularly when affected by lighting conditions and external environmental factors within the camera’s field of view.
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Our proposed method effectively balances temporal and spatial features in precipitation surveillance videos, achieving
classification accuracies for “no precipitation,” “rain,” “snow,” and “graupel” of 0.9454, 0.9652, 0.9657, and 0.9439,
respectively, at NFS = 5. The accuracies improve to 0.9713, 0.9795, 0.9775, and 0.9438 at NFS = 10, and 0.9811, 0.9519,
0.9532, and 0.9445 at NFS = 15. These results demonstrate our algorithm’s consistently high and balanced accuracy across
all SPTs, with NFS = 10 being the optimal setting. This configuration has been adopted for real-world precipitation

observation experiments, as detailed in Section 4.5.

4.5. Real-world experiments

Next, we evaluate the performance of the proposed method in real precipitation scenarios. The 2-DVD measurements,
calibrated through simultaneous observations by researchers, are used as the true value to validate the effectiveness of the
verification method. Here, six precipitation events are selected, including three types of precipitation scenarios: rain, snow,
and shrapnel from day-time to night-time, and the duration of each precipitation event is 2 hours. More details about each
precipitation event are presented in Table 7. Considering the impact of wind on the trajectory and falling speed of
precipitation particles, we have taken further measures to enhance the robustness and accuracy of the model. Specifically, we
installed an anemometer next to the surveillance camera to capture real-time changes in wind speed and direction. This
measure provides the model with relevant wind field data to better account for wind interference when predicting SPT. Since
the orientation of the surveillance camera is generally fixed, the wind direction data collected by the anemometer can be
combined with the camera's viewpoint to calculate the relative orientation of the wind to the camera lens.

Table 7: Precipitation duration of real-world experiments.

Date (UTC+8)

Day-time July 12, 2024, 8.00-10.00 a.m.
Rain

Night-time | July 19, 2023, 1.30-3.30 a.m.

Day-time December 18, 2023, 9.00-11.00 a.m.
Snow

Night-time | December 18,2023, 9.30-11.30 p.m.

Day-time February 22,2024, 12.30-3.30 p.m.

Graupel
Night-time | December 15, 2023, 10.00-12.00 p.m.

Three surveillance cameras (ID: 1, 2, and 3, as shown in Fig.8) are used for real-world precipitation observation experiments.
The key parameters of these three EZVIZ CS5 series cameras are as following:

®  image resolution: 2592 X 1944, 1920 X 1080, 1280 X 960;

®  focal lengths: 4 mm, 6 mm, and 8§ mm;

®  frame rate: 15fps, 20fps, 25fps;
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The three selected surveillance cameras simultaneously recorded the same precipitation event, although each camera

495  captured a different scene. This arrangement supports the stability analysis of the deep learning algorithm. The field of view

of the three cameras is shown in Fig.11.

2024-04-19 12:30:00

(a) Camera_1 (b) Camera_2 (c) Camera_3
Figure 11: The field of view of the three cameras.

500 In line with the findings presented in Section 4.4, surveillance videos were processed by the model with a 5-second interval
between frames, capturing 10 frames per second (NFS=10) for temporal feature extraction. The classification performance
for various SPTs from Camera 1 is illustrated in Fig.12, while the results from Camera 2 and Camera_ 3 are provided in
Appendix B. In practical applications, the occurrence of false alarms significantly reduces the effectiveness of SPT

recognition system. Therefore, the "no precipitation" label was also included in the evaluation. More detailed experimental

505 results can be found in Table 8.
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Table 8: Identification accuracy of the proposed method for real-world SPT.

Camera 1 Camera 2 | Camera 3 Average

Day-time 0.9252 0.9174 0.9086 0.9171

Rain
Night-time 0.9151 0.9134 0.9052 09112
Day-time 0.9673 0.9657 0.9581 0.9637

Snow
Night-time 0.9534 0.9606 0.9625 0.9588
Day-time 0.8756 0.8675 0.8923 0.8785

Graupel

Night-time 0.8581 0.8583 0.8836 0.8667
No Day-time 0.9874 0.9781 0.9578 0.9744
Precipitation | Night-time 0.9785 0.9672 0.9657 0.9705
Average 0.9326 0.9285 0.9292 0.9301

In real-world precipitation observation experiments, the proposed method achieves an average classification accuracy of

0.9301. Specifically, under daytime conditions, the method achieves classification accuracies of 0.9171, 0.9670, 0.8785, and

nn nn

0.9744 for "no precipitation," "rain," "snow," and "graupel," respectively. Under nighttime conditions, the corresponding
classification accuracies are 0.9112, 0.9225, 0.8667, and 0.9705. Overall, the classification accuracies for "rain" and
"graupel" are comparatively lower, which aligns with the results observed in the SPTV dataset. Upon further analysis, many

misclassifications occur when precipitation intensity is low, often being misidentified as "no precipitation". This is likely due
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to the fact that under low precipitation intensity, the number concentration of the precipitation particles is small, making
them difficult to detect in both daytime and nighttime videos. This issue is also supported by the data shown in Fig.12 and
Appendix B, where low-intensity precipitation events are hard to identify. As analysed in Section 4.4, the validation data
used in this study mainly comes from the 2-DVD, which captures falling precipitation particles using a linear array scanning
method, offering a high sensitivity to precipitation particles (Kruger and Krajewski, 2002). This allows the 2-DVD to detect
precipitation events even at low particle concentrations, while such events may be missed in the surveillance video due to
frame rate limitations or lighting conditions. This discrepancy leads to misclassification of some precipitation events as "no
precipitation". Moreover, as our method employs frame skipping when feeding video frames into the deep learning network
(NFS=10), the probability of missing precipitation particles is further increased. Using more video frames as inputs to the
deep learning model is a feasible approach. This would increase the temporal capture of precipitation particles, thereby
reducing the likelihood of misclassification. However, this approach would also lead to an increase in model complexity and
computational delay. Therefore, while optimizing the input data strategy, a balance needs to be found between model
accuracy and computational efficiency to ensure real-time performance and stability in practical applications.

As analysed in Section 3, it is evident that the visual characteristics of rain, snow, and graupel differ between daytime and
nighttime surveillance videos. Especially, during nighttime, present additional challenges due to varying light sources such
as streetlights, vehicle headlights, and other ambient lighting interferences, which can significantly impact image features of
SPT. Despite these variations, the results indicate that the proposed algorithm performs consistently well under both day and
night conditions. This robustness underscores the algorithm’s ability to effectively capture and distinguish the spatiotemporal
features of various SPTs across complex illumination scenarios, making it highly suitable for SPT recognition tasks
throughout the entire day. Furthermore, these findings suggest that exploring the distinctions between different SPTs from
both spatial and temporal dimensions provides a reliable benchmark for future model enhancements. This also lays a solid
foundation for refining deep learning models to improve their generalization ability across diverse real-world surveillance
conditions.

Based on the previous introduction to camera parameters, the three surveillance cameras used in this study have different
fields of view, image resolutions, and frame rates. In particular, differences in frame rates often imply variations in exposure
time, leading to discrepancies in the captured images of the same precipitation particle, such as rainstreak length and width.
This increases the challenge of distinguishing GPH. Despite the significant differences in camera parameters, our algorithm
demonstrates consistent performance across all devices, exhibiting remarkable stability. This robustness can be attributed to
two key factors. First, the self-constructed SPTV dataset is derived from a large number of real-world urban surveillance
scenarios captured by cameras with varying parameters. Second, the results indicate strong generalization capability, thereby
enhancing stability in cross-camera observations. Our method effectively integrates the temporal and spatial (image)
characteristics of different SPTs, combining spatiotemporal-based features in a unified framework. This resilience to
variations in camera parameters makes our approach particularly suitable for large-scale practical applications, as urban

surveillance cameras typically exhibit substantial configuration differences. The demonstrated robustness ensures reliable
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performance across diverse surveillance environments, enhancing the applicability of our proposed algorithm in real-world
scenarios.

The influence of wind on precipitation particles mainly lies in altering their movement direction and falling speed, which, in
turn, affects their representation in the camera’s field of view. To investigate this, we examined the impact of wind speed
and direction on the performance of the SPT recognition method. As shown in Fig.12, surveillance cameras capture 2D
images to represent a 3D space, meaning that wind causes particles to enter the camera’s field of view from the front, rear,
left, or right. The left and right directions are symmetrical, so particles entering from these two directions exhibit similar
characteristics in the image or video. This is because wind from the left or right does not significantly affect the projected
shape of the particles. Furthermore, since the directions are symmetrical, the paths, speeds, and variations of particles
entering from these directions present similar features in the image. In contrast, particles entering from the front and rear
exhibit different visual effects when projected onto the image plane. This difference is due to variations in the camera's focal
length, field depth, and distance. Particles entering from the front appear to grow larger in the video, whereas those from the
rear appear smaller. This phenomenon arises from the pinhole imaging principle followed by the monitoring camera, where
objects closer to the camera appear larger in the field of view, and those farther away appear smaller. Thus, particles from
the front and rear present distinct characteristics in the image, following the "near large, far small" imaging rule. As shown in

Fig.13, we categorized particle’s relative direction to surveillance cameras (orientation of the surveillance camera as 0° )

into four classes:
®  Normal: Particles fall vertically and enter the camera’s field of view, showing typical image/video features.
®  Side direction: Particles enter from the left or right, presenting similar characteristics due to symmetry.
®  Front direction: Particles enter from the front, with their size changing according to the distance from the camera.
®  Rear direction: Particles enter from the rear, with their size decreasing as they move farther away.
0°:
4 Camera Orientation

. Front direction -

270° . Side direction
) e direction 90°

Rear direction

4

180°"
Surveillance Particle Direction Categories

camera
/ 2
w./ Y ‘b H

Normal Side direction Front direction Rear direction

Figure 13: The definition of particle’s relative direction to surveillance cameras.

25



585

590

595

600

Since the orientations of the three surveillance cameras are known, the relative wind direction of camera can be calculated by:
AB=(6,—-6,)mod360
®)

where, 6, represents the wind direction provided by the anemometer, 8, represents the orientation of the surveillance
camera.

As shown in Fig.13, the particle’s relative direction to the camera can be determined based on the value of A€, as follows:
Side direction: A@ [45, 135)U[225,325) ; Front direction: A@ €[325,45) ; Rear direction: A@ €[135,225) . Next, we have
statistically analyzed the recognition accuracy of SPTs under different wind speeds and directions. The data in the figure

represent the average values from the three surveillance cameras. Considering that wind speeds ranging from 0 to 1 m/s

cause minimal tilting of the precipitation particles, these cases are classified as "Normal" and are not separately reported.

Rain Graupel
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Figure 14: The influence of wind speed and direction on the accuracy of SPT classification.

Overall, wind negatively impacts the classification accuracy of SPT, with its influence becoming more pronounced as wind
speed increases. In particular, distinguishing between rain and graupel presents greater challenges under windy conditions, as
the model's classification accuracy deteriorates significantly with increasing wind speed. Nevertheless, when wind speed is
below 5 m/s, the proposed method still achieves an accuracy of approximately 0.8 for rain-graupel classification, indicating
that the method remains effective within this wind speed range. In comparison, when wind speed is below 6 m/s, the
proposed model maintains a classification accuracy above 0.9 for snow under different wind directions, demonstrating high
reliability. Furthermore, the influence of particle direction (i.e., wind direction) is also significant and follows certain
patterns. For instance, the classification accuracy for particles arriving from the side direction is higher than for those coming
from that of front or rear directions. This may be because side-entering particles produce clearer projections in the images,
providing the model with more distinguishable features and thereby improving classification accuracy. In contrast, particles

arriving from the front or rear exhibit greater variability in their image representation due to differences in viewing angles
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and distances (as shown in Fig. 13), leading to a reduction in classification accuracy. In summary, the proposed method
demonstrates a certain degree of robustness against wind, particularly when wind speed is below 5 m/s, where it continues to
perform reliably and effectively mitigates the impact of wind on precipitation particle classification.

In addition to the discussion on algorithm accuracy, computational complexity is also a critical factor in practical
applications. Specifically, when scaling from a single camera to a large-scale surveillance network, the overall computational
complexity may increase exponentially, significantly impacting system efficiency and resource consumption. Therefore,
evaluating and optimizing the algorithm’s computational cost while maintaining identification accuracy is essential for
ensuring feasibility in real-world deployments. Here, two crucial metrics for evaluating the complexity and practicality of
deep learning models for SPT identification are Floating Point Operations (FLOPs) and Parameters(Rump et al., 2008; Carr
and Kennedy, 1994). FLOPs denote the total number of floating-point operations required to execute a network model once,
reflecting the computational demand during a single forward propagation. This metric is widely used to assess a model's
computational efficiency and processing speed. Meanwhile, Parameters encompass the total number of parameters within a
model, as well as those that require training, which indicates the GPU memory resources needed for model training. A
detailed comparison of FLOPs and Parameters across various deep-learning models is presented below, models with
relatively lower Parameters and FLOPs are highlighted in bold black and underlined.

Table 9: The Parameters of deep-learning models.

RNN LST™M GRU 1D-CNN | Bi-LSTM
DenseNet Total 7048781 | 7048811 | 7048801 | 7048785 | 7048803
121 Trainable 6965133 | 6965163 | 6965153 | 6965137 | 6965155
EfficientNet | Total 4063657 | 4036387 | 4063677 | 4063661 | 4063679
BO Trainable 4021641 | 4021671 | 4021661 | 4021645 | 4021663
Inception Total 21825325 | 21825355 | 21825345 | 21825329 | 21825347
V3 Trainable 21790893 | 21790923 | 21790913 | 21790897 | 21790915
ResNet 50 Total 23610253 | 23610283 | 23610273 | 23610257 | 23610275
Trainable 23557133 | 23557163 | 23557153 | 23557137 | 23557155
MobileNet | Total 2272077 | 2272107 | 2272097 | 2272081 | 2272099
V2 Trainable 2237965 | 2237995 | 2237985 | 2237969 | 2237987

Table 10: The FLOPs of deep-learning models.
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RNN LSTM GRU 1D-CNN Bi-LSTM

DenseNet 121 30213894 30213918 | 30213910 30213877 30213927

EfficientNet BO | 17203088 17203112 | 17203104 17203071 17203121

Inception V3 88144876 88144900 | 88144892 88144859 88144909

ResNet 50 95565102 95565126 | 95565118 95565085 95565135

MobileNet V2 9880644 9880668 | 9880660 9880627 9880677

As shown in Tables 9 and 10, our proposed method exhibits significantly lower Parameters and FLOPs values compared to
deep learning models based on alternative spatial feature extraction frameworks. While the GRU, which is used as our
temporal feature extraction framework, presents a slightly higher complexity than RNN, LSTM, and 1D-CNN, it offers a
clear advantage in terms of accuracy. This increased complexity is offset by the improved performance, demonstrating the
ability of GRU to better capture the temporal dependencies inherent in SPT observation tasks. In summary, the proposed
method represents an optimal choice for large-scale deployment and SPT observation applications. It not only achieves
superior accuracy but also ensures efficiency in both the SPTV dataset and real-world experiments, outperforming other
algorithms in terms of both computational resource usage and recognition performance. This makes it highly suitable for

practical, large-scale applications where both accuracy and efficiency are paramount.

4.6. Discussion

In our years of video data collection and real-world experiments, we have found that under certain conditions, our method
may fail. For example,
®  when raindrops adhere to the camera lens, the image becomes blurred, which affects the image quality and leads to
inaccurate SPT identification. Since surveillance cameras are typically exposed to the external environment, this
issue occurs not only during the day but also at night, as shown in Fig.15 (a) and (b). In particular, under windy
conditions, raindrops are more likely to attach to the lens, increasing the blurriness and unclear nature of the image.
This not only affects the resolution of precipitation particles but also makes it difficult to accurately classify SPTs.
®  Strong winds may also cause camera shake, blurring precipitation images in the surveillance field of view. Under
strong wind conditions, the movement trajectories of precipitation particles become unstable, and rain droplets,
snowflakes, and other particles may be scattered by the wind, as shown in Fig.15 (c). This not only alters their fall
paths but may also cause the precipitation patterns to become unclear, increasing the complexity of algorithmic
interpretation.
®  High air humidity during precipitation events is also a contributing factor. When humidity increases, particularly
during continuous rainfall or wet weather, water droplets or mist tend to condense on the camera lens, leading to

blurred images, as shown in Fig.15 (d). This phenomenon is commonly observed during early mornings or at night
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when humidity levels are higher, and it may also occur during sudden precipitation events. The accumulation of
moisture prevents the lens from clearly presenting the shape and movement trajectories of precipitation particles,
further complicating the identification process.

® Lightning can also affect the performance of surveillance cameras. As shown in Fig.15 (e), the intense light from
lightning and the rapidly changing environmental conditions can interfere with the camera's automatic exposure
system, leading to overexposure or underexposure, or even uneven exposure in the image. This strong light and the
rapid changes in the scene can disturb the normal functioning of the algorithm, resulting in misjudgment or loss of
precipitation images, especially in thunderstorms with frequent lightning.

®  Additionally, dust on the lens can also affect image quality, though this impact is smaller compared to raindrops or
humidity. When dust accumulates on the lens, the image may become slightly blurry, but it won't cause significant
distortion like raindrops or fog, as shown in Fig.15 (f). However, in cases of severe dust accumulation, it may affect

the separation of SPT from the background, thus impacting the accurate recognition of SPT.

In practical applications, manually cleaning each camera lens is resource-intensive and difficult to implement on a large
scale, particularly in large-scale surveillance networks. Currently, advanced image denoising and deblurring techniques have
been developed in the field of computer vision, which can improve image quality to some extent by removing blur and
enhancing the clarity of surveillance footage(Wang et al., 2020; Li et al., 2021). However, these techniques are primarily
designed for conventional monitoring tasks, especially for object detection, such as monitoring people, vehicles, and other
targets. In these applications, precipitation particle images are often considered "noise," causing details and shapes of the
precipitation particles to become blurred or even completely lost. This loss of information is critical for particle type
classification, which negatively impacts SPT recognition tasks. To address this issue, two feasible solutions are proposed:
Develop a dedicated video/image quality recognition model: This model could evaluate image clarity and identify abnormal
images caused by raindrop attachment, lens blur, high humidity, and other factors leading to degraded image quality. When
the system detects that the image quality is insufficient, it can discard low-quality images. The main function of this model
would be to preprocess the input videos or images, determining whether their quality is clear enough to meet the
requirements of SPT identification tasks.

Incorporate low-quality images as a new class in the training dataset: By adding low-quality images as a new category, the
model can learn how to recognize quality issues in precipitation images and make corresponding judgments. Specifically,
this new class could be labelled as "low-quality image" or a similar label, representing images that are affected by raindrops,
mist, lens stains, or other factors that degrade their quality. In this way, the model can not only recognize normal SPTs but
also effectively differentiate which images cannot be accurately classified due to quality issues, thereby improving the

accuracy and reliability of the results.
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Figure 15: Different types of surveillance image quality degradation. These special cases can be regarded as scenarios
where our proposed method fails to work.

Mixed-phase precipitation holds significant importance in meteorology, particularly prominent during the winter season
(Jennings et al., 2023). Surveillance videos capture precipitation particle groups, and under mixed precipitation conditions,
variations in the proportions of solid and liquid particles lead to significant differences in image and video features. Firstly,
the image features of mixed precipitation are not merely a simple superposition of single-particle images; optical effects such
as refraction and reflection between particles further alter the visual characteristics(Mishchenko et al., 2002), increasing the
complexity of visual feature modeling. Additionally, in mixed precipitation, the considerable fluctuations in the overall fall
velocity of the precipitation particle group captured in the videos pose challenges to the temporal feature modeling based on
existing single-phase particle fall theoretical formulas (e.g., Fig.7). While this study establishes a basis for mixed-phase
precipitation recognition, the present algorithm, which is largely constructed around the microphysical characteristics of
single-phase precipitation (e.g., color, particle size, fall velocity), still exhibits notable uncertainty in accurately identifying
mixed-phase events. In future work, we plan to introduce a “mixed precipitation” category or further subdivide it into
multiple types such as “rain-snow mixture” and “snow-graupel mixture” to more accurately reflect the complexity of SPTs.
Meanwhile, considering the scarcity of mixed precipitation surveillance video samples, we plan to expand the dataset and
optimize the algorithm to improve the model’s accuracy and stability in recognizing various precipitation types in practical

applications, thereby enhancing its practical value and potential for broader deployment.
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5. Conclusion

In this study, we focus on identifying three SPTs—rain, snow, and graupel—using surveillance cameras. We analyse their
distinguishing characteristics in both daytime and nighttime videos to inform our classification approach. To balance
precision, latency, and efficiency requirements in real-world applications, we employ a MobileNet V2 network with transfer
learning to extract image and spatial features, followed by a GRU network to capture temporal information, enabling high-
accuracy SPT discrimination. For training and testing, we constructed the SPTV dataset, a SPT video dataset totalling
approximately 94 hours. To evaluate the performance of our proposed deep learning model, we compared it against 24
alternative deep-learning models. Experiments on the SPTV dataset show that the proposed algorithm achieves an optimal
accuracy of 0.9677 when NFS = 10. Although some comparative algorithms demonstrate slightly lower accuracy, our
method exhibits significantly reduced computational and time complexity, making it highly suitable for practical deployment.
Furthermore, six real-world experiments yielded an average accuracy of 0.9301, with comparable performance during both
daytime and nighttime, demonstrating the algorithm’s stability even when faced with varying camera parameters. Moreover,
our method demonstrates a certain degree of wind resistance, achieving satisfactory performance when wind speed is below
5 m/s. This robustness makes our method a viable solution for large-scale, all-day, high-accuracy SPT observation tasks.
Currently, the method faces limitations in distinguishing between rain and graupel, with the recognition accuracy for graupel
reaching only 0.8726 in real-world applications. Enhancing graupel discrimination accuracy is a key area for future
improvement. Additionally, addressing challenges such as reducing misclassifications in “no precipitation” conditions and
improving the system’s ability to detect failure cases in special scenarios will be essential for increasing reliability and
applicability in diverse real-world environments. To further improve the recognition of various SPTs, the SPTV dataset will
be expanded to include hail and mixed precipitation surveillance videos, thereby enhancing the model’s accuracy and
robustness in practical applications.
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Appendix. A

The Confusion matrixs of different deep learning algorithms are presented as follows:

Table Al: Confusion matrix of different deep learning algorithms (NFS = 15).
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Table A2: Confusion matrix of different deep learning algorithms (NFS = 10).
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Table A3: Confusion matrix of different deep learning algorithms (NFS = 5).
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Appendix. B

760 Real-world SPT identification by surveillance camera_2 and camera 3 is shown as below:
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Figure B1: Real-world SPT identification by surveillance camera_2 and camera_3.
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