
1 

 

Surveillance Camera-Based Deep Learning Framework for High-

Resolution Near Surface Precipitation Type Observation 

Xing WANG1,2,3, Kun ZHAO2,3, Hao HUANG2,3, Ang ZHOU2,3, Haiqin CHEN2,3 

1School of Computer Engineering, Nanjing Institute of Technology, Nanjing, 211167, China   

2School of Atmospheric Sciences, Nanjing University, Jiangsu 210023, China 5 

3Key Laboratory of Radar Meteorology and State Key Laboratory of Severe Weather, China Meteorology Administration, 

Beijing 100044, China 

Correspondence to: Kun ZHAO (zhaokun@nju.edu.cn) 

Abstract.  

Urban surveillance cameras offer a valuable resource for high spatiotemporal resolution observations of near surface 10 

precipitation type (SPT), with significant implications for sectors such as transportation, agriculture, and meteorology. 

However, distinguishing between common SPT—rain, snow, and graupel—present considerable challenges due to their 

visual similarities in surveillance videos. This study addresses these challenges by analyzing both daytime and nighttime 

videos, leveraging meteorological, optical, and imaging principles to identify distinguishing features for each SPT. 

Considering both computational accuracy and efficiency, a new deep learning framework is proposed. It leverages transfer 15 

learning with a pre-trained MobileNet V2 for spatial feature extraction and incorporates a Gated Recurrent Unit network to 

model temporal dependencies between video frames. Using the newly developed 94-hour SPT Surveillance Video (SPTV) 

dataset, the proposed model is trained and evaluated alongside 24 comparative algorithms. Results show that our proposed 

method achieves an accuracy of 0.9677 on the SPTV dataset, outperforming all other relevant algorithms. Furthermore, in 

real-world experiments, the proposed model achieves an accuracy of 0.9301, as validated against manually corrected Two-20 

Dimensional Video Disdrometer measurements. It remains robust against variations in camera parameters, maintaining 

consistent performance in both daytime and nighttime conditions, and demonstrates wind resistance with satisfactory results 

when wind speeds are below 5 m/s. These findings highlight the model's suitability for large-scale, practical deployment in 

urban environments. Overall, this study demonstrates the feasibility of using low-cost surveillance cameras to build an 

efficient SPT monitoring network, potentially enhancing urban precipitation observation capabilities in a cost-effective 25 

manner. 

1 Introduction 

Near surface precipitation type (SPT) refer to any atmospheric particle consisting of liquid or solid water, which are integral 

to precipitation processes and play a crucial role in the water cycle and cloud microphysics (Pruppacher and Klett, 1980). 



2 

 

Despite SPT and ground conditions (i.e., snow or rain on ground) are related, note that they are different. The identification 30 

of SPT contributes to the improvement of quantitative precipitation estimation algorithms and promotes the understanding of 

precipitation microphysical processes, thus providing scientific support for the improvement of microphysics scheme of 

numerical weather prediction. Common examples of SPTs include rain, snow, graupel. They account for more than 90% of 

the SPT and influence urban transportation, communication, electricity, and other industries (Casellas et al., 2021a; Zhou et 

al., 2020). Especially in winter, a weather process may contain multiple SPTs and often co-exist or convert to each other. 35 

Given the same amount of precipitation, the impacts of different SPTs may vary considerably (Leroux et al., 2023). For 

example, if 5 mm of precipitation falls in 24 hours, it is only light rain for the liquid precipitation but heavy snow for the 

solid precipitation, severely influencing social production and life. In winter, when snow, rain, and graupel co-exist or 

alternate frequently, it is tough for forecasters to know the actual weather conditions, which seriously affects the quality of 

forecasts (Haberlie et al., 2015). Therefore, the accurate discrimination of the SPT, especially for the rain, snow, and graupel, 40 

has significant scientific and practical value. 

Nowadays, many countries and regions no longer observe precipitation information manually (e.g., in January 2014, China 

cancelled ground-based manual observation). Ground-based Disdrometers (i.e., OTT Parsivel, Two-Dimensional Video 

Disdrometer), airborne optical and electromagnetic wave detection devices, and dual-polarization radars have become the 

primary tools (Jennings et al., 2023). However, (1) with the rapid development of urbanization, ground-based disdrometers 45 

in urban areas face outstanding problems such as high construction costs, difficulty in management and maintenance, and 

low deployment density, resulting in limited spatial representativeness of the SPT observations (Arienzo et al., 2021). (2) 

The data collected by airborne equipment is mainly used for validating and analysing scientific experiments, which is 

challenging to apply on a large scale and in real-time observation tasks (Schirmacher et al., 2024). (3) Dual polarization 

radar can alternatively or simultaneously transmit and receive polarized waves in both horizontal and vertical directions to 50 

obtain the echo information in different directions of the target scatterer and thus identify the SPT in the cloud (Casellas et 

al., 2021b). However, precipitation particles undergo a complex physical evolution from high altitude to the ground, 

especially in urban areas, where the temperature may have significant spatial differences, leading to large differences in the 

SPT between regions (Speirs et al., 2017). In summary, existing techniques have not effectively addressed SPT’s high 

temporal and spatial resolution discrimination. 55 

The development of the new observation method has received much attention. Some researchers have adopted the idea of 

“Citizen Science” by encouraging residents to report precipitation they see to provide the actual value of the SPT (Crimmins 

and Posthumus, 2022). Extensive investigations have demonstrated the effectiveness of the citizen science-based approach 

(Arienzo et al., 2021; Jennings et al., 2023), which provides important insights for our study. According to a survey by 

Comparitech (https://www.comparitech.com/), there are approximately 770 million surveillance cameras worldwide. 60 

Surveillance video allows 24/7 observation of the precipitation process and provides clues for SPT discrimination (Wang et 

al., 2023a). If every surveillance camera is regarded as an observation site, such a vast number of surveillance cameras 

provide a high spatial resolution observation. At the same time, the surveillance video is transmitted through fiber optic, 4G, 
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and 5G communication networks, enabling transmission back 15-25 surveillance images per second, which offer a high 

temporal resolution sensing of SPT. Moreover, the SPT observation mission can be deployed on existing surveillance 65 

resources, showcasing the advantage of low operation and maintenance costs. Compared to the other citizen science-based 

approach, the SPT observation network composed of surveillance cameras offered a more objective record of the 

precipitation process, which has the potential advantages of low cost, all-day, and high spatiotemporal resolution. 

However, extensive analysis and comparison experiments have revealed that rain, snow, and graupel show greater similarity 

in surveillance videos (e.g., graupel and rain, as well as graupel and snow, are more similar in daytime surveillance videos 70 

under different precipitation intensities, whereas at nighttime, the distinguishing image features of the three are much closer, 

making the distinction much more difficult (For more details, see Section 3.1). This study focuses on the discrimination of 

three SPT, i.e., rain, snow, and graupel particles via surveillance video, and develops a deep learning-based SPT 

discrimination method. Considering that surveillance cameras capture visible and near-infrared video during daytime and 

nighttime, respectively, this study first analyzes the video imaging model of three different particles and compares their 75 

differences in surveillance video features. Taking the above findings as a priori knowledge, a deep learning-based SPT 

classification model is proposed. An efficient convolutional neural network (CNN) called MobileNet V2 is used to extract 

spatial features from surveillance images based on transfer learning. These features are stacked together and fed to a gated 

recurrent unit (GRU) network, which enables modeling the long-term dynamics of the SPT in a video sequence. Then, a SPT 

surveillance video (SPTV) dataset is constructed for the deep learning model training and testing. Finally, the effectiveness 80 

of the proposed method is evaluated on both the SPTV dataset and the real-world experiments. To the authors' knowledge, 

this is the first study on graupel observation from surveillance video data. The research findings can provide technical and 

data support for understanding the microphysical process of precipitation, improving the microphysical calculation model of 

precipitation and improving the accuracy of satellite/radar retrievals. 

The rest of this paper is organized as follows. Following this introduction, we present the related works in Section 2; and 85 

explain the details of the proposed deep-learning model in Section 3; and finally, we discuss the experimental results in 

Section 4 and conclude in Section 5. 

2 Literature Review 

Visual perception is an effective way to distinguish SPT. Visual sensors, such as surveillance cameras, cell phones, digital 

cameras, and vehicle cameras, are considered potential weather phenomena observers in existing studies. Considering the 90 

research theme, visual is primarily defined as optical images obtained from the ground. This does not include data obtained 

from LiDAR, Radar, or similar technologies. The authors divided the existing visual-based SPT identification work into 

three categories: traffic surveillance cameras, in-vehicle cameras, and user-generated visual data. It should be noted that 

“weather” is a more generic and broad expression that includes rain, snow, fog, sunny or cloudy conditions, etc. Meanwhile, 

“hydrometeor” or “precipitation type” specifically refers here to rain, snow and graupel.  95 
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2.1. Traffic surveillance camera 

During rainy and snowy weather, roads suffer from snow, ice, and ponding, affecting transportation efficiency. Timely 

weather information reports are significant for traffic warning, diversion, and management. However, with the limited 

number of weather stations and delays in radar/ satellite-based weather information release, some researchers exploited 

weather recognition from outdoor road surveillance cameras (Li et al., 2014; Lu et al., 2014). As shown in Fig.1, these 100 

studies include two categories:  

 
Figure 1: Weather classification using traffic surveillance cameras. Direct measurement methods focus on the 

image/video features exhibited during the precipitation particle's falling process, while indirect measurements involve snow 

or water accumulation on the ground. 105 

(1) Indirect measurement mainly refers to detecting snow, pounding, and road surface wetness from video to deduce the 

weather. Therefore, these methods mainly focus on the information on the road surface rather than precipitation 

processes; specifically, they focus on whether there is snow on the ground rather than whether it is snowing. For 

example, Shibata et al. (2014) used the texture features of the surveillance images to quantify the pattern and texture of 

the road surface and detect road surface conditions (wet and snow) by surveillance cameras from day to night (or low-110 

light scenarios). Morris and Yang (2021) constructed a road extract method by Mask R-CNN and then built a gradient-

boosting ensemble classifier to predict pavement wetness. Ramanna et al. (2021) used deep CNNs to label the road 

surveillance images into five conditions and constructed a dataset for deep learning models training. Extensive 

experiments have shown that the EfficientNet-B4 network-based system achieved optimal performance. Landry and 

Akhloufi (2022) utilized the SVM and CNN to extract snow areas in the image. They built a model using surveillance 115 

cameras to estimate the percentage of the snow-covered road surfaces. To reduce the difficulty of model training and 

improve accuracy, Khan and Ahmed (2022) introduced a transfer learning method to apply several pre-trained CNN 

models for weather and road condition classification tasks. Lü et al. (2023) pre-processed the surveillance images 

through the road segmentation network to obtain the binary images to obtain the road image features. Subsequently, a 

convolutional neural network, composed of overall network branches and road network branches, was established and 120 

used to extract the overall image area features and focus on extracting the road weather features, respectively. Askbom 
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(2023) first used CNN-based deep learning to determine the weather condition (mainly focusing on snow), then 

constructed a road condition classification deep learning network with the premise of road area has been extracted by the 

U-Net model. Additionally, in an innovative and impressive work, Carrillo and Crowley (2020) integrated roadside 

surveillance images and weather data from weather stations to improve the performance of road surface condition 125 

evaluation. The fusion of surveillance cameras and other observations provides novel insights for road weather 

identification.  

However, there is still a period between the occurrence of rain or snow and the appearance of ponding or snow on the road 

surface. Thus, these indirect measurements are difficult to meet the needs of some applications with high real-time 

requirements. Moreover, the above methods will not work for those surveillance cameras with no road surface or other 130 

specific region as a reference in the observed area. 

(2) Direct measurement refers to identifying the SPT by the captured information of falling raindrops, snowflakes. For 

example, Zhao et al. (2011) classified weather conditions into steady, dynamic, and nonstationary and employed four 

direction templates to analyze the max directional length of motion blur caused by rain streaks or snowflakes. In this way, 

rain and snow can be distinguished from traffic cameras. After analysing the image features of different weather conditions, 135 

Li et al. (2014) adopted the decision tree to model the image features captured during different weather conditions and built 

an SVM classifier to predict the weather. Afterward, Lee (2017) proposed a more straightforward method, which used the 

histogram features of road images as metrics to discriminate fog and snow in road surveillance cameras. A serious CNN-

based weather classification effort has been implemented with the development of a deep learning algorithm. Xia et al. (2020) 

took the residual network ResNet50 as the basis and proposed a simplified model for weather feature extraction and 140 

recognition on traffic roads. Sun et al. (2020) built a deeply supervised CNN to identify road weather conditions through the 

road surveillance system. Dahmane et al. (2021) constructed a deep CNN to differentiate between five weather conditions 

from traffic surveillance cameras, such as no precipitation, foggy, and rainy. Some advanced deep learning networks or 

methods like Attention and transformer were naturally introduced, such as Dahmane et al. (2018), who used CNN to identify 

rain, fog, and snow weather from road cameras and applied on large-scale from day to night through the learning transfer 145 

method. Wang et al. (2023b) built a Multi-Stream Attention-aware Convolutional Neural network to identify dust storm from 

city surveillance cameras. Chen et al. (2023) built a deep learning model that employs multiple convolutional layers to 

extract features from weather images and a Transformer encoder to calculate the probability of each weather condition based 

on these extracted features.  

Compared to indirect measurements, direct measurements do not require road surface conditions as a reference and thus have 150 

a broader range of applications. That is, direct measure methods can also be deployed in non-traffic surveillance cameras, 

which are also adopted in this study. 
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2.2. In-vehicle cameras 

Some researchers concentrated on recognizing weather conditions from images captured by in-vehicle cameras. For example, 

Kurihata et al. (2005) used image features from PCA to detect raindrops on a windshield and to judge rainy weather. Roser 155 

and Moosmann (2008) presented an approach that employed SVM to distinguish between multiple weather situations based 

on the classification of single monocular color images. Considering that lighting conditions have a significant impact on 

weather identification from vehicle-mounted imagery, Pavlic et al. (2013) used spectral features and a simple linear 

classifier to distinguish between clear and foggy weather situations in both day-time and night-time scenarios to improve the 

visual perception accuracy degradation of in-vehicle cameras in harsh weather and low light conditions. Additionally, CNN-160 

based deep learning algorithms also have been employed (Dhananjaya et al., 2021; Triva et al., 2022). From the perspective 

of hardware, Zhang et al. (2022) mounted visible and infrared cameras in front of the car to collect day-time and night-time 

road images. After that, they proposed two single-stream CNN models (visible light and thermal streams) and one dual-

stream CNN model developed to classify winter road surface conditions automatically. Samo et al. (2023) argued that a 

single image may include more than one type of weather. Then, they built a multilabel transport-related dataset of seven 165 

weather conditions and assessed different deep-learning models to address multilabel road weather detection tasks. In 

particular, sensing the transition between these extreme weather scenes (sunny to rainy, rainy to sunny, and others) is a 

significant concern for driving safety and is less of a concern. For this, Kondapally et al. (2023)proposed a way to interpolate 

the intermediate weather transition data using a variational autoencoder and extract its spatial features using VGG. Further, 

they modelled the temporal distribution of these spatial features using a gated recurrent unit to classify the corresponding 170 

transition state. In addition, Aloufi et al. (2024) treated weather classification and object detection as a single problem and 

proposed a new classification network, which integrated image quality assessment, Super-Resolution Generative Adversarial 

Network, and a modified version of the YOLO network. This work adds dust storm weather recognition, which has yet to be 

considered in previous research. 

However, weather visual data collected by In-vehicle cameras and that of surveillance cameras remain different. Take snow 175 

as an example, snow images captured by different visual sensors are presented in Fig.2. Surveillance cameras are usually 

shot from an overhead view, while the in-vehicle cameras are mainly from a horizontal view. Different shooting angles result 

in images with different backgrounds. These efforts take a different perspective than surveillance cameras for weather 

recognition and provide substantial theoretical and methodological references and guidance for our study. 

           180 
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(a) Surveillance camera                     (b) In-vehicle camera                       (c) Personal phone camera  

(Sun et al., 2020)                                 (Triva et al., 2022)                             (Xiao et al., 2021) 

Figure 2: Snow captured by different visual sensors. (a) Snow captured by a traffic surveillance camera; (b) Snow 

captured by an in-vehicle camera; (c) Snow captured by a mobile phone camera. Taking snow as an example, a comparison 

reveals the visual feature differences of precipitation events captured by these three different types of visual data. 185 

2.3. User-generated visual data 

Here, the user-generated visual data means the pictures/videos taken by visual devices other than surveillance cameras (i.e., 

cell phones, digital cameras, and web cameras). Nowadays, with rapid dissemination on the Internet and social media 

platforms, visual data with spatial (geotags) and temporal (timestamps) information can collectively reveal weather 

information around the world. Based on this, researchers could collect user-generated visual data from the Internet or social 190 

media platforms for weather condition classification purposes. For example, Chu et al. (2017) used the random forest 

classifier to build a weather properties estimator; Zhao et al. (2018) propose to treat weather recognition as a multi-label 

classification task and present a CNN-RNN architecture to identify multi- weather-label from images; Wang et al. (2018) 

combine the real-time weather data with the image feature as the final feature vector to identify different weather; Guerra et 

al. (2018) explored using super-pixel masks as a data augmentation technique, considering different CNN architectures for 195 

the feature extraction process when classifying outdoor scenes in a multi-class setting using general-purpose images. Ibrahim 

et al. (2019) proposed a new framework named WeatherNet for visibility-related road condition recognition, including 

weather conditions. WeatherNet takes single-images as input and used multiple deep convolutional neural network (CNN) 

models to recognise weather conditions such as clear, fog, cloud, rain, and snow. Toğaçar et al. (2021) used GoogLeNet and 

VGG-16 models to extract image features and use them as input to construct a spiking neural network for weather 200 

classification; Xiao et al. (2021) proposed a novel deep CNN named MeteCNN for weather phenomena classification. Mittal 

and Sangwan (2023) extracted features using a pre-trained deep CNN model and used transfer learning techniques to build a 

weather classification framework to save the time and resources needed for the system to work and increase the reliability of 

the results. 

In contrast, as shown in Fig.2, user-generated visual data differs significantly from surveillance images/videos in terms of 205 

resolution, clarity, background content, etc., and the image characteristics of weather conditions may also differ. Therefore, 

there are considerable differences in the algorithm design ideas and result accuracy for determining the weather from web 

images and surveillance images. 

Table 1 presents a comparison of surveillance camera-based weather classification/recognition algorithms. Since ordinary 

surveillance cameras differ in the images captured during daytime and nighttime, the working time is divided into daytime 210 

and nighttime (low-light scenarios are categorized as nighttime). Moreover, the weather types that can be 

recognized/classified are also listed. Combined with previous review and analysis, we can summarise: 
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In terms of working time: Existing studies mainly focus on weather condition in daytime, while that of nighttime is given 

little attention. 

In terms of weather: It can be found from Table 1 that the existing works have not yet paid attention to the distinction of 215 

graupel, which is more challenging due to its similarity to rain and snow particles. 

In terms of methodology: mainstream classification methods have shifted from traditional machine learning methods to 

deep learning methods. For data-driven deep learning methods, a wealthy and high-quality training dataset is the foundation 

for deep learning model construction. We are pleased to see some datasets for road weather being released (Karaa et al., 

2024; Bharadwaj et al., 2016; Guerra et al., 2018). However, existing methods are primarily focused on single-image 220 

information. Compared to images, videos, which contain temporal dependencies between image frames, are seldom used, 

although this will help improve the accuracy of recognition results. 

Table 1: Comparison of surveillance camera-based weather classification/recognition studies. 

 Working time Weather can be recognized  

 Daytime Nighttime Rain Snow Foggy Cloudy Sunny 
Dust 

Storm 
Others 

Zhao et al. (2011) √  √ √ √     

Shibata et al. (2014) √  √ √      

Li et al. (2014) √  √ √ √  √   

Lee (2017) √   √ √    √ 

Dahmane et al. (2018) √ √ √ √ √     

Carrillo and Crowley (2020) √  √ √      

Xia et al. (2020) √  √ √ √  √   

Sun et al. (2020) √  √ √ √  √   

Ramanna et al. (2021) √ √ √ √   √   

Dahmane et al. (2021) √  √  √     

Morris and Yang (2021) √   √     √ 

Landry and Akhloufi (2022) √   √      

Khan and Ahmed (2022) √   √   √   

Lü et al. (2023) √  √ √  √ √   

Askbom (2023) √   √     √ 

Chen et al. (2023) √  √ √ √ √ √   

Wang et al. (2023b) √    √ √ √ √  
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3 Methodology 

Previous meteorological studies have explored the size, shape, brightness, and terminal velocity (mainly referring to the 225 

terminal velocity of particles during free fall near surface) of rain, snow, and graupel, providing an essential foundation for 

analyzing their visual characteristics. It is important to emphasize that in this study, graupel, also known as snow pellets, 

refers specifically to solid particles “consisting of crisp, white, opaque ice particles, round or conical in shape and about 2–5 

mm in diameter” according to the World Meteorological Organization terminology (WMO, 2017). In this study, no mixed 

phase precipitation is considered. After analyzing a large number of surveillance videos, the distinctions between rain, snow, 230 

and graupel particles can be primarily summarized in terms of brightness and shape from the perspective of video 

observations. To enhance clarity, we present a comparison of these precipitation types in both visible and near-infrared video 

footage. 

Brightness: Ordinary surveillance cameras take visible light video during the day and near-infrared video at night. Therefore, 

the brightness of the particles differs in the day and night-time images/videos. In the daytime, rain and graupel particles have 235 

strong forward reflections of visible light and appear brighter than the background. In contrast, snow appears in white; at 

night, the brightness of the three particles is similar, with little differentiation, as shown in Fig.3. 

 

Figure 3: Comparison of rain, snow, and graupel in day and night surveillance images (Particles are labelled by red 

circles).  Differences in image features such as brightness, color, and trajectory exhibited by rain, snow, and graupel in 240 

daytime visible light and nighttime near-infrared images, due to their varying optical properties, interactions with light, and 

terminal fall speeds. 

Shape: Due to the long exposure time of surveillance cameras, rain, and graupel particles have a large deformation in 

surveillance images, usually appearing as lines. These lines describe the trajectories of rain and graupel particles. However, 
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as shown in Fig.3, meteorological studies have pointed out that, in general, the speed of graupel particles (Heymsfield and 245 

Wright, 2014; Kajikawa, 1975) is greater than that of rain (Montero‐Martínez et al., 2009). In combination with the imaging 

principles of the camera, the trajectory of a graupel particle is longer than that of a raindrop particle of the same size in the 

same surveillance camera. Moreover, rain has a greater number concentration value (the number of particles per unit volume) 

(10 - 104 m-3) than graupel (1-10 m-3) (Zhang, 2016). That is to say, the number of raindrops in the surveillance images is 

denser compared to graupel. And snow particles have less shape change due to their slower falling speed (≤1 m/s) (Vázquez-250 

Martín et al., 2021). Overall, the length of rain is wider and shorter than that of graupel, while snow is the shortest. 

The analysis shows that distinguishing snow is relatively straightforward, given the significant differences in brightness, 

shape, and terminal velocity when compared to that of rain and graupel. However, the primary challenge of this study lies in 

differentiating between rain and graupel. While there are notable differences in their number concentrations, rain and graupel 

share similar speeds, shapes, and brightness, which complicates accurate differentiation. Traditional hand-crafted features 255 

fall short in capturing the subtle distinctions between rain and graupel particles, making it necessary to employ deep learning 

features. Furthermore, accurate classification requires not only spatial features from images but also temporal features from 

video sequences. 

In practical applications, the timeliness of precipitation data extracted from surveillance videos is essential to ensure the 

value of the data. With the widespread availability of high-definition, full high-definition, and ultra-high-definition 260 

surveillance cameras, video resolution is continuously improving, leading to rapid increases in surveillance data volume. In 

this context, where numerous cameras generate massive amounts of real-time data, it is vital to consider not only memory 

and computational resources but also the speed and efficiency of the SPT recognition algorithm, alongside accuracy, for 

effective processing.  

3.1. SPT classification model construction 265 

In this section, surveillance video-based SPT identification is approached as a video classification task. To balance accuracy, 

computational speed, and computational load in designing the SPT classification algorithm, a deep learning model that 

integrates MobileNetV2 and GRU is proposed. First, a pre-trained MobileNetV2 model based on ImageNet is adapted for 

spatial feature extraction using a transfer learning strategy, enabling it to capture differences between surveillance images 

from various SPT events. These features are then fed into a GRU network to model the long-term dynamics of the 270 

surveillance video sequence. The structure of the surveillance camera-based SPT identification system is illustrated in Fig. 4. 

The surveillance video is divided into 5-second segments. Within each segment, sequences of 5, 10, and 15 frames are 

selected and fed into the spatial feature extraction module (the effect of sequence length on the classification results is 

discussed in Section 4.4). The extracted feature vectors are then input into the temporal model for precipitation type 

classification. 275 
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Figure 4: The structure of the surveillance camera-based SPT identification system. Frames are selected from the 

surveillance video and fed into the spatial feature extraction module. The extracted spatial feature vectors are then 

aggregated and input into a temporal feature extraction module composed of GRUs, enabling the differentiation of SPT. 

3.1.1 Spatial feature extraction model 280 

As analyzed previously, the primary distinctions between rain, snow, and graupel in surveillance images are reflected in their 

brightness, shape, and number concentration. The role of the spatial feature extractor is to identify and capture these 

differences from surveillance images captured during both daytime and nighttime conditions. MobileNetV2, a lightweight 

framework, is widely used for visual object classification, recognition, and tracking tasks, offering an effective trade-off 

between accuracy and model efficiency in terms of size and computational speed. These advantages align well with the 285 

requirements for spatial feature modelling of various SPT particles, making MobileNetV2 the chosen backbone for the 

spatial feature extraction model. MobileNetV2 builds upon MobileNetV1 and is based on two primary components: the 

inverted separable convolution (ISC) block and the inverted residual (IR) block. 

ISC block: This block utilizes a 1 × 1 convolution with batch normalization and a ReLU6 activation function (1 × 1 R-Conv) 

to expand the number of channels in the input feature map. It then calculates the feature maps through depth-wise 290 

convolution (DW), after which the number of channels is reduced using a linear 1 × 1 convolution. 

IR block: Built upon the ISC block, this block reduces the stride of the DW convolution to 1, maintaining the feature map 

size before and after processing. It also incorporates a shortcut connection between each residual block, similar to the 

residual network structure (He et al., 2016). This setup allows the feature maps following the 1 × 1 linear convolution (1 × 1 

L-Conv) to be added to the input feature maps, completing the calculation of the residual feature maps. The structures of the 295 

ISC and IR blocks are shown below. 
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Figure 5: The structure of the inverted separable convolution (ISC) block and inverted residual (IR) block. 

Figure 6 presents the architecture of the existing MobileNet V2 backbone model. Here, we set the input size of the 

MobileNet V2 to 512x512x3, and output seven groups of feature maps of different sizes, from 112×112×32 to 7×7×160, to 300 

the temporal feature extraction model for feature fusion processing. 

 
Figure 6: The structure of MobileNet V2 backbone network. The spatial feature extraction module, based on MobileNet 

V2, is initially trained on the ImageNet dataset to leverage its large, diverse image data for general feature extraction. 

Subsequently, transfer learning is applied, and the model is fine-tuned on our constructed PPSV dataset, allowing it to adapt 305 

to the specific characteristics of precipitation-related images in our study. 
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Transfer learning involves leveraging knowledge from one task to inform another, eliminating the need for feature extractors 

to be trained from scratch. This approach accelerates training, reduces the risk of overfitting, and enables the construction of 

accurate models more efficiently. Previous research has shown that pre-trained models, developed using extensive datasets 

like ImageNet, offer an excellent foundation for new tasks where dataset size is limited. Consequently, the final two layers of 310 

MobileNetV2 were removed and replaced with global average pooling (GAP), batch normalization (BN), and temporal 

feature extraction layers (detailed in Section 3), including GRU layers. Finally, the pre-trained MobileNetV2, fine-tuned on 

the ImageNet dataset, was adapted through transfer learning to extract spatial features of SPT from surveillance images. 

3.1.2 Temporal feature extraction model 

Another critical indicator for differentiating between rain, snow, and graupel particles is their varying falling velocities, as 315 

illustrated in Fig.7 (Zhang, 2016). While such differences are challenging to detect in single images, they become much 

more pronounced in video sequences. Consequently, the temporal feature extractor builds upon the spatial feature extractor 

by capturing the temporal dependencies between adjacent frames, thereby enabling the modeling of falling velocities for rain, 

snow, and graupel particles. Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and Gated Recurrent 

Units (GRU) are widely recognized networks for learning temporal dependencies, effectively leveraging contextual 320 

information. This capability is particularly valuable in tasks such as natural language processing, video classification, and 

speech recognition. RNNs apply recurrent operations to each element in a sequence, where the current computation is 

influenced by both the current input and previous states. However, traditional RNNs are prone to the vanishing and 

exploding gradient problems, which limit their effectiveness in capturing long-term dependencies, confining them mostly to 

short-term dependencies. To address these limitations, variants such as LSTM and GRU were introduced. These networks 325 

are specifically designed to capture long-term dependencies. The GRU, a streamlined version of LSTM, features fewer 

parameters, making it more efficient in terms of memory usage and computational speed. A GRU consists of three primary 

components: the update gate, the reset gate, and the current memory gate. 

• Update gate: Controls the extent to which previous information is retained and carried forward to future states (Eq. 

(1)). 330 

• Reset gate: Determines the amount of past information that should be discarded (Eq. (2)). 

• Current memory gate: Computes the current state by integrating the previous hidden state with the current input 

(Eq. (3)). The final memory is determined as described in Eq. (4). 

t 1z ( [ , ] )z t t zW h x b −=  +                                                                                                                                                              (1) 

t 1( [ , ] )r t t rr W h x b −=  +                                                                                                                                                                (2) 335 

1tanh( [ , ] )t t t th W r h x b−=   +                                                                                                                                                        (3) 

1(1 ) *t t t t th z h z h−= −  +                                                                                                                                                              (4) 
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where, zW , rW , and W are learnable weight matrices, 1th −  is the previous hidden state, tx  is the input vector,   and tanh 

are the sigmoid and tanh activation function, represents the Hadamard product, and zb , rb and b are biases. 

After extracting spatial features, they are input into a GRU layer with 93 hidden units to capture temporal dependencies. The 340 

outputs from the GRU layer are concatenated and passed through a dense layer. Following the dense layer, a batch 

normalization layer is applied, which is subsequently connected to a fully connected output layer. This final layer uses a 

SoftMax activation function to classify the SPT event from the surveillance video sequence. The spatial feature map has an 

input shape of 1280 × N, where N represents the length of the video sequence utilized for temporal dependency modeling. 

The impact of different values of  N on the accuracy of SPT classification is analyzed in Section 4.4. 345 

 
Figure 7: Comparison of terminal velocities of different particles. The differences in fall velocities among different 

precipitation particles (rain (Atlas et al., 1973), snow (Brandes et al., 2007), graupel (Kajikawa, 1975; Magono and Lee, 

1966)) serve as an important basis for constructing our temporal feature extraction module. It is important to note that this 

study primarily focuses on solid graupel particles. 350 

3.2. Dataset building 

For training and testing the deep-learning model, a new SPTV dataset was constructed. As illustrated in Fig. 8, 20 

surveillance cameras were deployed at the National Benchmark Climate Station in Nanjing, Jiangsu, China. Of these, videos 

from 17 cameras (IDs 4 to 20) were utilized to build the dataset, while the remaining 3 cameras (IDs 1 to 3) were reserved 

for real-world precipitation observation experiments, as discussed in Section 4.5. 355 

Considering the broad range of potential applications, the deployed urban surveillance cameras exhibit substantial variation 

in parameters, including resolution (960×720, 1280×960, 1920×1080, 2592×1944), focal length (4mm, 6mm, 8mm, 12mm), 

and frame rate (15fps, 20fps, 25fps). This diversity ensures that the collected video data reflects real-world surveillance 
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conditions, thereby minimizing the gap between the performance of the deep-learning model on the SPTV dataset and its 

applicability in real-world scenarios. 360 

 
Figure 8: Overview of the study area. Due to space limitations, we only present the scenes captured by three surveillance 

cameras. The use of a variety of 20 surveillance cameras deployed in different places ensures the dataset's diversity and 

generalizability, enhancing the model's applicability and reliability in real-world scenarios. 

After a long period of observation (starting from March 2023 and ending in July 2024), we captured a huge amount of 365 

surveillance video data for different SPTs. During this period, we captured extreme precipitation surveillance videos such as 

snowstorms with intensities of 27 mm/h and heavy rainfalls of 195 mm/h. These rare and precious precipitation scenarios 

play an important role in improving the generalization and diversity of our dataset. Finally, about 94 hours of surveillance 

videos from day to night were selected and categorized into four categories: rainfall, snowfall, graupel, and no precipitation. 

The videos were divided into segments, each of which was 5 seconds in length, with a frame rate ranging from 15-25 fps, 370 

and were saved in .mp4 format. More details can be found in Table 2. 

In addition, the Two-Dimensional Video Disdrometer (2-DVD), a professional precipitation measurement instrument, works 

in synchronization with the surveillance cameras to provide the true value/label of the SPT for the surveillance videos. 

Simultaneous observations by researchers are also conducted, and their observed data are used to refine the 2DVD 

measurements, ensuring the accuracy of the true value/label of SPT. The precipitation intensity values are calculated every 375 

minute. Therefore, the values in Table 2 refers to the precipitation intensity during a 1-minute period, not an hourly intensity. 
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The maximum distance between the 2DVD and the camera is 1 km, which ensures that the SPT observed by the two is the 

same.  

 

Table 2: Description of the SPTV dataset. Each video clip with length of 5s.  380 

 

 

4. Experiment and discussion 

4.1. Experimental environment 

Our experiments were performed on a workstation with Ubuntu 11.2.0 (Linux 5.15.0-25-generic) for the operating system. 385 

More specifications are as follows: 

⚫ 4× Intel Xeon Silver 4216 CPU@2.10 GHz (32 cores);  

⚫ 8×NVIDIA GEFORCE GTX2080Ti graphics cards equipped with 11 GB GDDR6 memory； 

⚫ 188 GB RAM； 

⚫ Python 3.9.16； 390 

⚫ TensorFlow 2.4.1, Scikit-learn 1.2.1, and Keras 2.4.3 libraries； 

⚫ CUDA 11.8 and CUDNN 8； 

4.2. Evaluation metrics 

To evaluate the SPT classifiers, we selected 3 different established metrics: the balance accuracy, weighted precision, and 

weighted recall. The balance accuracy metric ( Accuracy ) is described as: 395 

 
1

1 n
i

i i

TP
Accuracy

n S=

=                                                                                                                                                                     (5) 

where iTP  and iS  stand for the number of True Positive and sample size of class i , respectively.  

 

 
Day-time 

(video clips) 

Night-time 

(video clips) 

Precipitation intensity 

(mm/h) for video clips  

No precipitation 6903 7378  

Rain 11183 11249 from 0 mm/h to 195 mm/h 

Snow 8086 7938 from 0 mm/h to 27 mm/h 

Graupel 7272 7692 from 0 mm/h to 23 mm/h 
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The weighted precision metric ( Precision ) can be calculated as follows: 

( )1

n
i

i

i i i

TP
Precision r

TP FP=

= 
+

                                                                                                                                                       (6) 

where iFP  is the number of False Positive of class i  and ir  is the ratio between the number of samples of class i  and the 400 

total number of samples. 

The weighted recall ( Recall ) is calculated as follows: 

( )1

n
i

i

i i i

TP
Recall r

TP FN=

= 
+

                                                                                                                                                          (7) 

4.3. Model training details 

The SPTV dataset was split into training, validation, and test datasets according to the ratio of 7:2:1. Training and validation 405 

sets were employed to construct the deep learning model. To analyze the performance of the proposed method, some 

classical CNN models with ImageNet pre-trained weights such as: DenseNet 121 (Huang et al., 2017), EfficientNet B0 (Tan 

and Le, 2019), Inception V3 (Szegedy et al., 2016), and ResNet 50 (He et al., 2016) are used to extract the spatial features of 

precipitation images, while some commonly used neural networks for temporal signal analysis like RNN, LSTM, 1D-CNN 

(Kiranyaz et al., 2021), and Bi-LSTM (Huang et al., 2015) are employed to extract the temporal features of precipitation 410 

surveillance videos, respectively. In terms of realization, transfer learning is exploited, and the last layer of each spatial 

extraction architecture (i.e., the fully connected (FC) and Softmax layers) was deleted and replaced with two layers: GAP 

and BN, to extract the deep spatial features based on transfer learning. Second, the spatial features were sent to temporal 

feature extraction networks listed above. The Softmax function was used as a classifier to identify SPT. Thus, a total of 25 

deep-learning algorithms are constructed and compared. The hyper-parameters deep-learning models were set as listed in 415 

Table 3. 

Table 3: Hyper-parameters for deep-learning models. 

 

Spatial feature extractor Temporal feature extractor 

Hyper-parameters Value Hyper-parameters Value 

Learning Rate 0.001 Learning Rate 0.001 

Batch Size 32 Batch Size 32 

Number of Epoches 100 Number of Epoches 100 

Dropout Rate 0.5 Dropout Rate 0.5 

Filters [64, 128, 256, 512] Activation Functions Sigmoid 

Activation Functions ReLU Weight Initialization Glorot Initialization 

Weight Initialization He Initialization Loss Function Mean Squared Error 

 



18 

 

4.4. Experiments on the SPTV dataset 

Given the length of the input frames on the temporal feature extraction, we evaluated the performance of different algorithms 420 

when screening 5, 10, and 15 frames per second from the video clips for comparison. The results of different numbers of 

frames per second (NFS) as input to temporal feature extraction are shown in Tables 4, 5, and 6, the bold black entries 

indicate relatively better performance.  

Table 4: Comparison of SPT recognition by different deep-learning algorithms (NFS = 5). 

 425 

Table 5: Comparison of SPT recognition by different deep-learning algorithms (NFS = 10). 

 

 

  RNN LSTM GRU 1D-CNN Bi-LSTM 

DenseNet  

121 

Accuracy  0.9479 0.8856 0.9656 0.9295 0.9334 

Precision  0.9428 0.8874 0.9639 0.9278 0.9335 

Recall  0.9415 0.8903 0.9617 0.9322 0.9341 

EfficientNet  

B0 

Accuracy  0.9051 0.9508 0.9253 0.9550 0.9558 

Precision  0.8993 0.9522 0.9245 0.9408 0.9574 

Recall  0.9072 0.9498 0.9208 0.9558 0.9497 

Inception  

V3 

Accuracy  0.8887 0.9448 0.9237 0.9418 0.9442 

Precision  0.8693 0.9414 0.9201 0.9373 0.9485 

Recall  0.8921 0.9431 0.9199 0.9487 0.9471 

ResNet  

50 

Accuracy  0.9390 0.9660 0.9581 0.9287 0.9558 

Precision  0.9302 0.9599 0.9517 0.9189 0.9576 

Recall  0.9323 0.9674 0.9585 0.9207 0.9511 

MobileNet  

V2 

Accuracy  0.9576 0.9496 0.9671 0.9610 0.9440 

Precision  0.9526 0.9469 0.9597 0.9624 0.9487 

Recall  0.9513 0.9502 0.9634 0.9626 0.9398 

 

  RNN LSTM GRU 1D-CNN Bi-LSTM 

DenseNet  

121 

Accuracy  0.9104 0.9376 0.9507 0.9483 0.9620 

Precision  0.9115 0.9336 0.9487 0.9402 0.9643 

Recall  0.9127 0.9258 0.9512 0.9477 0.9601 

EfficientNet  

B0 

Accuracy  0.9247 0.9274 0.9368 0.9516 0.9335 

Precision  0.9202 0.9243 0.9402 0.9475 0.9278 

Recall  0.9253 0.9148 0.9335 0.9514 0.9238 

Inception  

V3 

Accuracy  0.8962 0.9336 0.9498 0.9476 0.9641 

Precision  0.9012 0.9345 0.9464 0.9427 0.9578 

Recall  0.8913 0.9402 0.9352 0.9453 0.9622 

ResNet  

50 

Accuracy  0.9152 0.9306 0.9651 0.9526 0.9521 

Precision  0.9158 0.9267 0.9645 0.9516 0.9502 

Recall  0.9127 0.9317 0.9661 0.9548 0.9544 

MobileNet  

V2 

Accuracy  0.9108 0.9211 0.9677 0.9433 0.9546 

Precision  0.9121 0.9217 0.9644 0.9423 0.9549 

Recall  0.9098 0.9159 0.9758 0.9409 0.9601 
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Table 6: Comparison of SPT recognition by different deep-learning algorithms (NFS = 15). 

 

 430 

The results indicate that when the number of frames (NFS) is set to 5, the accuracy of our proposed method closely aligns 

with those of the DenseNet 121+GRU, ResNet 50+LSTM, and MobileNet V2+1D-CNN models. When the NFS is increased 

to 10, the performance of our proposed method, DenseNet 121+Bi-LSTM, Inception V3+Bi-LSTM, and ResNet 50+GRU 

converges, showing minimal differences in classification accuracy, which ranges from 0.960 to 0.967. However, with NFS at 

15, the accuracy of our proposed method surpasses that of DenseNet 121+GRU and ResNet 50+1D-CNN models, though it 435 

slightly declines to approximately 0.949 to 0.957. 

The observed improvement in deep learning model performance when increasing NFS from 5 to 10 frames can be attributed 

to the enriched temporal features provided by the additional frames. These features enhance the models’ ability to 

differentiate between various SPTs. Nonetheless, when the NFS reaches 15 (equivalent to 75 frames per video clip), the 

lengthier temporal sequences challenge the RNN and 1D-CNN architectures, resulting in reduced classification accuracy. In 440 

contrast, the GRU architecture, with its more compact structure and computational efficiency, facilitates faster aggregation 

during training on the SPTV dataset, allowing it to sustain high accuracy even with longer NFS. Our proposed algorithm 

demonstrates classification accuracies of 0.9671, 0.9677, and 0.9577 across the three experimental settings, thereby 

exhibiting consistently superior stability compared to other methods. 

To further assess model performance, confusion matrices are utilized as visual tools, elucidating the relationship between 445 

actual and predicted classifications. Figure 9 presents the confusion matrices for our proposed deep learning models on the 

SPTV dataset, detailing SPT discrimination capabilities (confusion matrices for comparison models are provided in 

Appendix A). In these matrices, columns denote true labels, while rows represent predicted classifications by different 

 

  RNN LSTM GRU 1D-CNN Bi-LSTM 

DenseNet  

121 

Accuracy  0.9291 0.8821 0.9490 0.9067 0.9265 

Precision  0.9322 0.8689 0.9347 0.8874 0.9202 

Recall  0.9107 0.8778 0.9426 0.8955 0.9178 

EfficientNet  

B0 

Accuracy  0.8857 0.9105 0.9320 0.9012 0.9272 

Precision  0.8656 0.9047 0.9189 0.9036 0.9178 

Recall  0.8645 0.8993 0.9275 0.8998 0.9302 

Inception  

V3 

Accuracy  0.9124 0.9271 0.9225 0.9254 0.9404 

Precision  0.9111 0.9215 0.9057 0.9114 0.9287 

Recall  0.9074 0.9303 0.9154 0.9233 0.9444 

ResNet  

50 

Accuracy  0.9087 0.8952 0.9385 0.9554 0.9248 

Precision  0.8954 0.9012 0.9346 0.9547 0.9301 

Recall  0.9111 0.8872 0.9245 0.9504 0.9287 

MobileNet  

V2 

Accuracy  0.8938 0.9275 0.9577 0.9189 0.9350 

Precision  0.8952 0.9245 0.9542 0.9105 0.9374 

Recall  0.8911 0.9147 0.9553 0.9233 0.9326 
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algorithms. Additionally, violin plots in Fig.10 quantify the SPT classification performance across models, providing further 

insight into the comparative strengths of each approach. 450 

   

(a) NFS=5                                             (b) NFS=10                                         (c) NFS=15  

Figure 9: Confusion matrix of proposed algorithm. No_P means No precipitation. The three subplots share the same 

legend on the far right. 

 455 

 

(a) NFS=5                                                (b) NFS=10                                              (c) NFS=15  

Figure 10: Violin plots quantify the deep-learning algorithms’ performance for SPT classification. 

Overall, the classification accuracy of above listed algorithms is slightly higher for “no precipitation” and “snow” conditions 

compared to “rain” and “graupel.” The confusion matrices indicate that the primary source of misclassification among the 460 

algorithms lies in differentiating between “rain” and “graupel” events. This issue arises due to the distinct shape, color, and 

falling velocity of snow particles, which starkly contrasts with rain and graupel, thereby making snowy conditions easier to 

classify. As discussed in Section 3, both “rain” and “graupel” share similar visual and temporal characteristics in both 

daytime visible and nighttime near-infrared videos, posing significant challenges for the classification algorithms. 

Furthermore, Fig.9 illustrates occasional misclassification between “no precipitation” and other SPTs. Upon analysing the 465 

SPTV dataset, it was observed that these errors typically occurred during low-intensity precipitation events, where only a 

minimal number of rain, snow, or graupel particles were present. While the 2-DVD device—known for its high sensitivity—

can detect such subtle precipitation events, capturing these minute particles in surveillance videos remains challenging, 

particularly when affected by lighting conditions and external environmental factors within the camera’s field of view. 
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Our proposed method effectively balances temporal and spatial features in precipitation surveillance videos, achieving 470 

classification accuracies for “no precipitation,” “rain,” “snow,” and “graupel” of 0.9454, 0.9652, 0.9657, and 0.9439, 

respectively, at NFS = 5. The accuracies improve to 0.9713, 0.9795, 0.9775, and 0.9438 at NFS = 10, and 0.9811, 0.9519, 

0.9532, and 0.9445 at NFS = 15. These results demonstrate our algorithm’s consistently high and balanced accuracy across 

all SPTs, with NFS = 10 being the optimal setting. This configuration has been adopted for real-world precipitation 

observation experiments, as detailed in Section 4.5. 475 

4.5. Real-world experiments 

Next, we evaluate the performance of the proposed method in real precipitation scenarios. The 2-DVD measurements, 

calibrated through simultaneous observations by researchers, are used as the true value to validate the effectiveness of the 

verification method. Here, six precipitation events are selected, including three types of precipitation scenarios: rain, snow, 

and shrapnel from day-time to night-time, and the duration of each precipitation event is 2 hours. More details about each 480 

precipitation event are presented in Table 7. Considering the impact of wind on the trajectory and falling speed of 

precipitation particles, we have taken further measures to enhance the robustness and accuracy of the model. Specifically, we 

installed an anemometer next to the surveillance camera to capture real-time changes in wind speed and direction. This 

measure provides the model with relevant wind field data to better account for wind interference when predicting SPT. Since 

the orientation of the surveillance camera is generally fixed, the wind direction data collected by the anemometer can be 485 

combined with the camera's viewpoint to calculate the relative orientation of the wind to the camera lens. 

Table 7: Precipitation duration of real-world experiments. 

 

Three surveillance cameras (ID: 1, 2, and 3, as shown in Fig.8) are used for real-world precipitation observation experiments. 

The key parameters of these three EZVIZ C5 series cameras are as following:  490 

⚫ image resolution: 2592×1944, 1920×1080, 1280×960;  

⚫ focal lengths: 4 mm, 6 mm, and 8 mm; 

⚫ frame rate: 15fps, 20fps, 25fps; 

  Date (UTC+8) 

Rain 
Day-time July 12, 2024, 8.00-10.00 a.m. 

Night-time July 19, 2023, 1.30-3.30 a.m. 

Snow 
Day-time December 18, 2023, 9.00-11.00 a.m. 

Night-time December 18, 2023, 9.30-11.30 p.m. 

Graupel 
Day-time February 22, 2024, 12.30-3.30 p.m. 

Night-time December 15, 2023, 10.00-12.00 p.m. 
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The three selected surveillance cameras simultaneously recorded the same precipitation event, although each camera 

captured a different scene. This arrangement supports the stability analysis of the deep learning algorithm. The field of view 495 

of the three cameras is shown in Fig.11. 

   

(a) Camera_1                                          (b) Camera_2                                            (c) Camera_3 

Figure 11: The field of view of the three cameras.  

In line with the findings presented in Section 4.4, surveillance videos were processed by the model with a 5-second interval 500 

between frames, capturing 10 frames per second (NFS=10) for temporal feature extraction. The classification performance 

for various SPTs from Camera_1 is illustrated in Fig.12, while the results from Camera_2 and Camera_3 are provided in 

Appendix B. In practical applications, the occurrence of false alarms significantly reduces the effectiveness of SPT 

recognition system. Therefore, the "no precipitation" label was also included in the evaluation. More detailed experimental 

results can be found in Table 8. 505 

     

(a) Day-time rain                                                                  (b) Night-time rain 

    

(c) Day-time snow                                                                  (d) Night-time snow 
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    510 

(e) Day-time graupel                                                                (f) Night-time graupel 

Figure 12: Real-world SPT classification in camera_1. The black curve represents the precipitation intensity readings 

from the 2-DVD. The meanings of the lines represented by different colors are as follows:  : rain;  : snow;  

:graupel;  : no precipitation. 

 515 

Table 8: Identification accuracy of the proposed method for real-world SPT. 

 

 

In real-world precipitation observation experiments, the proposed method achieves an average classification accuracy of 

0.9301. Specifically, under daytime conditions, the method achieves classification accuracies of 0.9171, 0.9670, 0.8785, and 520 

0.9744 for "no precipitation," "rain," "snow," and "graupel," respectively. Under nighttime conditions, the corresponding 

classification accuracies are 0.9112, 0.9225, 0.8667, and 0.9705. Overall, the classification accuracies for "rain" and 

"graupel" are comparatively lower, which aligns with the results observed in the SPTV dataset. Upon further analysis, many 

misclassifications occur when precipitation intensity is low, often being misidentified as "no precipitation". This is likely due 

 

  Camera_1 Camera_2 Camera_3 Average 

Rain 
Day-time 0.9252 0.9174 0.9086 0.9171 

Night-time 0.9151 0.9134 0.9052 0.9112 

Snow 
Day-time 0.9673 0.9657 0.9581 0.9637 

Night-time 0.9534 0.9606 0.9625 0.9588 

Graupel 
Day-time 0.8756 0.8675 0.8923 0.8785 

Night-time 0.8581 0.8583 0.8836 0.8667 

No 

Precipitation 

Day-time 0.9874 0.9781 0.9578 0.9744 

Night-time 0.9785 0.9672 0.9657 0.9705 

Average 0.9326 0.9285 0.9292 0.9301 
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to the fact that under low precipitation intensity, the number concentration of the precipitation particles is small, making 525 

them difficult to detect in both daytime and nighttime videos. This issue is also supported by the data shown in Fig.12 and 

Appendix B, where low-intensity precipitation events are hard to identify. As analysed in Section 4.4, the validation data 

used in this study mainly comes from the 2-DVD, which captures falling precipitation particles using a linear array scanning 

method, offering a high sensitivity to precipitation particles (Kruger and Krajewski, 2002). This allows the 2-DVD to detect 

precipitation events even at low particle concentrations, while such events may be missed in the surveillance video due to 530 

frame rate limitations or lighting conditions. This discrepancy leads to misclassification of some precipitation events as "no 

precipitation". Moreover, as our method employs frame skipping when feeding video frames into the deep learning network 

(NFS=10), the probability of missing precipitation particles is further increased. Using more video frames as inputs to the 

deep learning model is a feasible approach. This would increase the temporal capture of precipitation particles, thereby 

reducing the likelihood of misclassification. However, this approach would also lead to an increase in model complexity and 535 

computational delay. Therefore, while optimizing the input data strategy, a balance needs to be found between model 

accuracy and computational efficiency to ensure real-time performance and stability in practical applications.  

As analysed in Section 3, it is evident that the visual characteristics of rain, snow, and graupel differ between daytime and 

nighttime surveillance videos. Especially, during nighttime, present additional challenges due to varying light sources such 

as streetlights, vehicle headlights, and other ambient lighting interferences, which can significantly impact image features of 540 

SPT. Despite these variations, the results indicate that the proposed algorithm performs consistently well under both day and 

night conditions. This robustness underscores the algorithm’s ability to effectively capture and distinguish the spatiotemporal 

features of various SPTs across complex illumination scenarios, making it highly suitable for SPT recognition tasks 

throughout the entire day. Furthermore, these findings suggest that exploring the distinctions between different SPTs from 

both spatial and temporal dimensions provides a reliable benchmark for future model enhancements. This also lays a solid 545 

foundation for refining deep learning models to improve their generalization ability across diverse real-world surveillance 

conditions. 

Based on the previous introduction to camera parameters, the three surveillance cameras used in this study have different 

fields of view, image resolutions, and frame rates. In particular, differences in frame rates often imply variations in exposure 

time, leading to discrepancies in the captured images of the same precipitation particle, such as rainstreak length and width. 550 

This increases the challenge of distinguishing GPH. Despite the significant differences in camera parameters, our algorithm 

demonstrates consistent performance across all devices, exhibiting remarkable stability. This robustness can be attributed to 

two key factors. First, the self-constructed SPTV dataset is derived from a large number of real-world urban surveillance 

scenarios captured by cameras with varying parameters. Second, the results indicate strong generalization capability, thereby 

enhancing stability in cross-camera observations. Our method effectively integrates the temporal and spatial (image) 555 

characteristics of different SPTs, combining spatiotemporal-based features in a unified framework. This resilience to 

variations in camera parameters makes our approach particularly suitable for large-scale practical applications, as urban 

surveillance cameras typically exhibit substantial configuration differences. The demonstrated robustness ensures reliable 
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performance across diverse surveillance environments, enhancing the applicability of our proposed algorithm in real-world 

scenarios. 560 

The influence of wind on precipitation particles mainly lies in altering their movement direction and falling speed, which, in 

turn, affects their representation in the camera’s field of view. To investigate this, we examined the impact of wind speed 

and direction on the performance of the SPT recognition method. As shown in Fig.12, surveillance cameras capture 2D 

images to represent a 3D space, meaning that wind causes particles to enter the camera’s field of view from the front, rear, 

left, or right. The left and right directions are symmetrical, so particles entering from these two directions exhibit similar 565 

characteristics in the image or video. This is because wind from the left or right does not significantly affect the projected 

shape of the particles. Furthermore, since the directions are symmetrical, the paths, speeds, and variations of particles 

entering from these directions present similar features in the image. In contrast, particles entering from the front and rear 

exhibit different visual effects when projected onto the image plane. This difference is due to variations in the camera's focal 

length, field depth, and distance. Particles entering from the front appear to grow larger in the video, whereas those from the 570 

rear appear smaller. This phenomenon arises from the pinhole imaging principle followed by the monitoring camera, where 

objects closer to the camera appear larger in the field of view, and those farther away appear smaller. Thus, particles from 

the front and rear present distinct characteristics in the image, following the "near large, far small" imaging rule. As shown in 

Fig.13, we categorized particle’s relative direction to surveillance cameras (orientation of the surveillance camera as 0°) 

into four classes: 575 

⚫ Normal: Particles fall vertically and enter the camera’s field of view, showing typical image/video features.  

⚫ Side direction: Particles enter from the left or right, presenting similar characteristics due to symmetry. 

⚫ Front direction: Particles enter from the front, with their size changing according to the distance from the camera. 

⚫ Rear direction: Particles enter from the rear, with their size decreasing as they move farther away. 

 580 

Figure 13: The definition of particle’s relative direction to surveillance cameras. 
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Since the orientations of the three surveillance cameras are known, the relative wind direction of camera can be calculated by:  

( ) mod360w c   = −                                                                                                                                                                

(8) 

where, 
w  represents the wind direction provided by the anemometer, 

c  represents the orientation of the surveillance 585 

camera.  

As shown in Fig.13, the particle’s relative direction to the camera can be determined based on the value of  , as follows: 

Side direction: [45, 135) [225 325)  ， ; Front direction: [325,45)  ; Rear direction: [135,225)  . Next, we have 

statistically analyzed the recognition accuracy of SPTs under different wind speeds and directions. The data in the figure 

represent the average values from the three surveillance cameras. Considering that wind speeds ranging from 0 to 1 m/s 590 

cause minimal tilting of the precipitation particles, these cases are classified as "Normal" and are not separately reported.  

 

Figure 14: The influence of wind speed and direction on the accuracy of SPT classification.  

Overall, wind negatively impacts the classification accuracy of SPT, with its influence becoming more pronounced as wind 

speed increases. In particular, distinguishing between rain and graupel presents greater challenges under windy conditions, as 595 

the model's classification accuracy deteriorates significantly with increasing wind speed. Nevertheless, when wind speed is 

below 5 m/s, the proposed method still achieves an accuracy of approximately 0.8 for rain-graupel classification, indicating 

that the method remains effective within this wind speed range. In comparison, when wind speed is below 6 m/s, the 

proposed model maintains a classification accuracy above 0.9 for snow under different wind directions, demonstrating high 

reliability. Furthermore, the influence of particle direction (i.e., wind direction) is also significant and follows certain 600 

patterns. For instance, the classification accuracy for particles arriving from the side direction is higher than for those coming 

from that of front or rear directions. This may be because side-entering particles produce clearer projections in the images, 

providing the model with more distinguishable features and thereby improving classification accuracy. In contrast, particles 

arriving from the front or rear exhibit greater variability in their image representation due to differences in viewing angles 
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and distances (as shown in Fig. 13), leading to a reduction in classification accuracy. In summary, the proposed method 605 

demonstrates a certain degree of robustness against wind, particularly when wind speed is below 5 m/s, where it continues to 

perform reliably and effectively mitigates the impact of wind on precipitation particle classification. 

In addition to the discussion on algorithm accuracy, computational complexity is also a critical factor in practical 

applications. Specifically, when scaling from a single camera to a large-scale surveillance network, the overall computational 

complexity may increase exponentially, significantly impacting system efficiency and resource consumption. Therefore, 610 

evaluating and optimizing the algorithm’s computational cost while maintaining identification accuracy is essential for 

ensuring feasibility in real-world deployments. Here, two crucial metrics for evaluating the complexity and practicality of 

deep learning models for SPT identification are Floating Point Operations (FLOPs) and Parameters(Rump et al., 2008; Carr 

and Kennedy, 1994). FLOPs denote the total number of floating-point operations required to execute a network model once, 

reflecting the computational demand during a single forward propagation. This metric is widely used to assess a model's 615 

computational efficiency and processing speed. Meanwhile, Parameters encompass the total number of parameters within a 

model, as well as those that require training, which indicates the GPU memory resources needed for model training. A 

detailed comparison of FLOPs and Parameters across various deep-learning models is presented below, models with 

relatively lower Parameters and FLOPs are highlighted in bold black and underlined. 

Table 9: The Parameters of deep-learning models. 620 

 

 

Table 10: The FLOPs of deep-learning models. 

  RNN LSTM GRU 1D-CNN Bi-LSTM 

DenseNet 

121 

Total 7048781 7048811 7048801 7048785 7048803 

Trainable 6965133 6965163 6965153 6965137 6965155 

EfficientNet 

B0 

Total 4063657 4036387 4063677 4063661 4063679 

Trainable 4021641 4021671 4021661 4021645 4021663 

Inception 

V3 

Total 21825325 21825355 21825345 21825329 21825347 

Trainable 21790893 21790923 21790913 21790897 21790915 

ResNet 50 Total 23610253 23610283 23610273 23610257 23610275 

Trainable 23557133 23557163 23557153 23557137 23557155 

MobileNet 

V2 

Total 2272077 2272107 2272097 2272081 2272099 

Trainable 2237965 2237995 2237985 2237969 2237987 
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As shown in Tables 9 and 10, our proposed method exhibits significantly lower Parameters and FLOPs values compared to 625 

deep learning models based on alternative spatial feature extraction frameworks. While the GRU, which is used as our 

temporal feature extraction framework, presents a slightly higher complexity than RNN, LSTM, and 1D-CNN, it offers a 

clear advantage in terms of accuracy. This increased complexity is offset by the improved performance, demonstrating the 

ability of GRU to better capture the temporal dependencies inherent in SPT observation tasks. In summary, the proposed 

method represents an optimal choice for large-scale deployment and SPT observation applications. It not only achieves 630 

superior accuracy but also ensures efficiency in both the SPTV dataset and real-world experiments, outperforming other 

algorithms in terms of both computational resource usage and recognition performance. This makes it highly suitable for 

practical, large-scale applications where both accuracy and efficiency are paramount. 

4.6. Discussion 

In our years of video data collection and real-world experiments, we have found that under certain conditions, our method 635 

may fail. For example,  

⚫ when raindrops adhere to the camera lens, the image becomes blurred, which affects the image quality and leads to 

inaccurate SPT identification. Since surveillance cameras are typically exposed to the external environment, this 

issue occurs not only during the day but also at night, as shown in Fig.15 (a) and (b). In particular, under windy 

conditions, raindrops are more likely to attach to the lens, increasing the blurriness and unclear nature of the image. 640 

This not only affects the resolution of precipitation particles but also makes it difficult to accurately classify SPTs. 

⚫ Strong winds may also cause camera shake, blurring precipitation images in the surveillance field of view. Under 

strong wind conditions, the movement trajectories of precipitation particles become unstable, and rain droplets, 

snowflakes, and other particles may be scattered by the wind, as shown in Fig.15 (c). This not only alters their fall 

paths but may also cause the precipitation patterns to become unclear, increasing the complexity of algorithmic 645 

interpretation. 

⚫ High air humidity during precipitation events is also a contributing factor. When humidity increases, particularly 

during continuous rainfall or wet weather, water droplets or mist tend to condense on the camera lens, leading to 

blurred images, as shown in Fig.15 (d). This phenomenon is commonly observed during early mornings or at night 

 RNN LSTM GRU 1D-CNN Bi-LSTM 

DenseNet 121 30213894 30213918 30213910 30213877 30213927 

EfficientNet B0 17203088 17203112 17203104 17203071 17203121 

Inception V3 88144876 88144900 88144892 88144859 88144909 

ResNet 50 95565102 95565126 95565118 95565085 95565135 

MobileNet V2 9880644 9880668 9880660 9880627 9880677 
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when humidity levels are higher, and it may also occur during sudden precipitation events. The accumulation of 650 

moisture prevents the lens from clearly presenting the shape and movement trajectories of precipitation particles, 

further complicating the identification process. 

⚫ Lightning can also affect the performance of surveillance cameras. As shown in Fig.15 (e), the intense light from 

lightning and the rapidly changing environmental conditions can interfere with the camera's automatic exposure 

system, leading to overexposure or underexposure, or even uneven exposure in the image. This strong light and the 655 

rapid changes in the scene can disturb the normal functioning of the algorithm, resulting in misjudgment or loss of 

precipitation images, especially in thunderstorms with frequent lightning. 

⚫ Additionally, dust on the lens can also affect image quality, though this impact is smaller compared to raindrops or 

humidity. When dust accumulates on the lens, the image may become slightly blurry, but it won't cause significant 

distortion like raindrops or fog, as shown in Fig.15 (f). However, in cases of severe dust accumulation, it may affect 660 

the separation of SPT from the background, thus impacting the accurate recognition of SPT. 

 

In practical applications, manually cleaning each camera lens is resource-intensive and difficult to implement on a large 

scale, particularly in large-scale surveillance networks. Currently, advanced image denoising and deblurring techniques have 

been developed in the field of computer vision, which can improve image quality to some extent by removing blur and 665 

enhancing the clarity of surveillance footage(Wang et al., 2020; Li et al., 2021). However, these techniques are primarily 

designed for conventional monitoring tasks, especially for object detection, such as monitoring people, vehicles, and other 

targets. In these applications, precipitation particle images are often considered "noise," causing details and shapes of the 

precipitation particles to become blurred or even completely lost. This loss of information is critical for particle type 

classification, which negatively impacts SPT recognition tasks. To address this issue, two feasible solutions are proposed: 670 

Develop a dedicated video/image quality recognition model: This model could evaluate image clarity and identify abnormal 

images caused by raindrop attachment, lens blur, high humidity, and other factors leading to degraded image quality. When 

the system detects that the image quality is insufficient, it can discard low-quality images. The main function of this model 

would be to preprocess the input videos or images, determining whether their quality is clear enough to meet the 

requirements of SPT identification tasks. 675 

Incorporate low-quality images as a new class in the training dataset: By adding low-quality images as a new category, the 

model can learn how to recognize quality issues in precipitation images and make corresponding judgments. Specifically, 

this new class could be labelled as "low-quality image" or a similar label, representing images that are affected by raindrops, 

mist, lens stains, or other factors that degrade their quality. In this way, the model can not only recognize normal SPTs but 

also effectively differentiate which images cannot be accurately classified due to quality issues, thereby improving the 680 

accuracy and reliability of the results. 
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(a) Drop attachment on lens at night        (b) Daytime drop attachment on lens         (c) Wind caused image blurred 

   
(d) Mist caused lens blurred                    (e) Lightning-induced exposure anomalies  (f) Dust caused image blurred 685 

Figure 15: Different types of surveillance image quality degradation. These special cases can be regarded as scenarios 

where our proposed method fails to work. 

Mixed-phase precipitation holds significant importance in meteorology, particularly prominent during the winter season 

(Jennings et al., 2023). Surveillance videos capture precipitation particle groups, and under mixed precipitation conditions, 

variations in the proportions of solid and liquid particles lead to significant differences in image and video features. Firstly, 690 

the image features of mixed precipitation are not merely a simple superposition of single-particle images; optical effects such 

as refraction and reflection between particles further alter the visual characteristics(Mishchenko et al., 2002), increasing the 

complexity of visual feature modeling. Additionally, in mixed precipitation, the considerable fluctuations in the overall fall 

velocity of the precipitation particle group captured in the videos pose challenges to the temporal feature modeling based on 

existing single-phase particle fall theoretical formulas (e.g., Fig.7). While this study establishes a basis for mixed-phase 695 

precipitation recognition, the present algorithm, which is largely constructed around the microphysical characteristics of 

single-phase precipitation (e.g., color, particle size, fall velocity), still exhibits notable uncertainty in accurately identifying 

mixed-phase events. In future work, we plan to introduce a “mixed precipitation” category or further subdivide it into 

multiple types such as “rain-snow mixture” and “snow-graupel mixture” to more accurately reflect the complexity of SPTs. 

Meanwhile, considering the scarcity of mixed precipitation surveillance video samples, we plan to expand the dataset and 700 

optimize the algorithm to improve the model’s accuracy and stability in recognizing various precipitation types in practical 

applications, thereby enhancing its practical value and potential for broader deployment. 



31 

 

5. Conclusion 

In this study, we focus on identifying three SPTs—rain, snow, and graupel—using surveillance cameras. We analyse their 

distinguishing characteristics in both daytime and nighttime videos to inform our classification approach. To balance 705 

precision, latency, and efficiency requirements in real-world applications, we employ a MobileNet V2 network with transfer 

learning to extract image and spatial features, followed by a GRU network to capture temporal information, enabling high-

accuracy SPT discrimination. For training and testing, we constructed the SPTV dataset, a SPT video dataset totalling 

approximately 94 hours. To evaluate the performance of our proposed deep learning model, we compared it against 24 

alternative deep-learning models. Experiments on the SPTV dataset show that the proposed algorithm achieves an optimal 710 

accuracy of 0.9677 when NFS = 10. Although some comparative algorithms demonstrate slightly lower accuracy, our 

method exhibits significantly reduced computational and time complexity, making it highly suitable for practical deployment. 

Furthermore, six real-world experiments yielded an average accuracy of 0.9301, with comparable performance during both 

daytime and nighttime, demonstrating the algorithm’s stability even when faced with varying camera parameters. Moreover, 

our method demonstrates a certain degree of wind resistance, achieving satisfactory performance when wind speed is below 715 

5 m/s. This robustness makes our method a viable solution for large-scale, all-day, high-accuracy SPT observation tasks. 

Currently, the method faces limitations in distinguishing between rain and graupel, with the recognition accuracy for graupel 

reaching only 0.8726 in real-world applications. Enhancing graupel discrimination accuracy is a key area for future 

improvement. Additionally, addressing challenges such as reducing misclassifications in “no precipitation” conditions and 

improving the system’s ability to detect failure cases in special scenarios will be essential for increasing reliability and 720 

applicability in diverse real-world environments. To further improve the recognition of various SPTs, the SPTV dataset will 

be expanded to include hail and mixed precipitation surveillance videos, thereby enhancing the model’s accuracy and 

robustness in practical applications. 
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Due to the sensitivity of urban surveillance data, partially processed (masking of people and cars in the video) experimental 735 

surveillance videos are available at: https://pan.baidu.com/s/102PeNAcsi1NdA1Bd9AW70A  (code: CPPD). Examples of 

rain, snow, and graupel in visible and near-infrared videos (in GIF format) can be obtained from the: 

https://pan.baidu.com/s/1yLnDzD3Vmd4x6iHdVizP0A?pwd=cppd (code: cppd). 
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Appendix. A 745 

The Confusion matrixs of different deep learning algorithms are presented as follows: 

Table A1: Confusion matrix of different deep learning algorithms (NFS = 15). 

RNN LSTM GRU 1D-CNN Bi-LSTM 

     

     

     

https://pan.baidu.com/s/102PeNAcsi1NdA1Bd9AW70A
https://pan.baidu.com/s/1yLnDzD3Vmd4x6iHdVizP0A?pwd=cppd
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Note: First row: DenseNet 121; Second row: EfficientNet B0; Third row: Inception V3; Forth row: ResNet 50; Fifth Row: 

MobileNet V2. 

 750 

Table A2: Confusion matrix of different deep learning algorithms (NFS = 10). 

RNN LSTM GRU 1D-CNN Bi-LSTM 
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Note: First row: DenseNet 121; Second row: EfficientNet B0; Third row: Inception V3; Forth row: ResNet 50; Fifth Row: 

MobileNet V2. 

 

Table A3: Confusion matrix of different deep learning algorithms (NFS = 5). 755 

RNN LSTM GRU 1D-CNN Bi-LSTM 
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Note: First row: DenseNet 121; Second row: EfficientNet B0; Third row: Inception V3; Forth row: ResNet 50; Fifth Row: 

MobileNet V2. 

 

Appendix. B 

Real-world SPT identification by surveillance camera_2 and camera_3 is shown as below: 760 

    

 (a) Day-time Rain of camera_2                           (b) Day-time Rain of camera_3  

    

(c) Night-time Rain of camera_2                        (d) Night-time Rain of camera_3 

    765 

(e) Day-time snow of camera_2                              (f) Day-time snow of camera_3 
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(g) Night-time snow of camera_2                        (h) Night-time snow of camera_3 

     

(i) Day-time graupel of camera_2                         (j) Day-time graupel of camera_3 770 

      

(k) Night-time graupel of camera_2                     (l) Night-time graupel of camera_3 

Figure B1: Real-world SPT identification by surveillance camera_2 and camera_3. 

( : rain; : snow; :graupel; : no precipitation; The black curve represents the 

precipitation intensity readings from the 2-DVD) 775 

References 

Aloufi, N., Alnori, A., and Basuhail, A. J. E.: Enhancing Autonomous Vehicle Perception in Adverse Weather: A Multi 

Objectives Model for Integrated Weather Classification and Object Detection, Electronics, 13, 3063, 

https://doi.org/10.3390/electronics13153063, 2024. 

Arienzo, M. M., Collins, M., and Jennings, K. S.: Enhancing engagement of citizen scientists to monitor precipitation phase, 780 

Frontiers in Earth Science, 9, 617594, https://doi.org/10.3389/feart.2021.617594, 2021. 

Askbom, L.: Road condition classification from CCTV images using machine learning, 2023. 

Atlas, D., Srivastava, R., and Sekhon, R. S.: Doppler radar characteristics of precipitation at vertical incidence, Reviews of 

Geophysics, 11, 1-35, https://doi.org/10.1029/rg011i001p00001, 1973. 

https://doi.org/10.3390/electronics13153063
https://doi.org/10.3389/feart.2021.617594
https://doi.org/10.1029/rg011i001p00001


37 

 

Bharadwaj, H. S., Biswas, S., and Ramakrishnan, K.: A large scale dataset for classification of vehicles in urban traffic 785 

scenes, Proceedings of the Tenth Indian Conference on Computer Vision, Graphics and Image Processing, 2016, 1-8,  

https://doi.org/10.1145/3009977.3010040, 2016. 

Brandes, E. A., Ikeda, K., Zhang, G., Schönhuber, M., and Rasmussen, R. M.: A statistical and physical description of 

hydrometeor distributions in Colorado snowstorms using a video disdrometer, Journal of applied meteorology and 

climatology, 46, 634-650, https://doi.org/10.1175/JAM2489.1, 2007. 790 

Carr, S. and Kennedy, K.: Improving the ratio of memory operations to floating-point operations in loops, ACM 

Transactions on Programming Languages and Systems (TOPLAS), 16, 1768-1810, https://doi.org/10.1145/197320.197366, 

1994. 

Carrillo, J. and Crowley, M.: Integration of roadside camera images and weather data for monitoring winter road surface 

conditions, arXiv preprint arXiv:2009.12165, https://doi.org/10.48550/arXiv.2009.12165, 2020. 795 

Casellas, E., Bech, J., Veciana, R., Pineda, N., Rigo, T., Miró, J. R., and Sairouni, A.: Surface precipitation phase 

discrimination in complex terrain, Journal of Hydrology, 592, 125780, https://doi.org/10.1016/j.jhydrol.2020.125780, 2021a. 

Casellas, E., Bech, J., Veciana, R., Pineda, N., Miró, J. R., Moré, J., Rigo, T., and Sairouni, A.: Nowcasting the precipitation 

phase combining weather radar data, surface observations, and NWP model forecasts, Quarterly Journal of the Royal 

Meteorological Society, 147, 3135-3153, https://doi.org/10.1002/qj.4121, 2021b. 800 

Chen, S., Shu, T., Zhao, H., and Tang, Y. Y.: MASK-CNN-Transformer for real-time multi-label weather recognition, 

Knowledge-Based Systems, 278, 110881, https://doi.org/10.2139/ssrn.4431880, 2023. 

Chu, W.-T., Zheng, X.-Y., and Ding, D.-S.: Camera as weather sensor: Estimating weather information from single images, 

Journal of Visual Communication and Image Representation, 46, 233-249, https://doi.org/10.1016/j.jvcir.2017.04.002, 2017. 

Crimmins, T. and Posthumus, E.: Do Carefully Timed Email Messages Increase Accuracy and Precision in Citizen Scientists’ 805 

Reports of Events?, Citizen Science: Theory and Practice, 7, https://doi.org/10.5334/cstp.464, 2022. 

Dahmane, K., Duthon, P., Bernardin, F., Colomb, M., Blanc, C., and Chausse, F.: Weather classification with traffic 

surveillance cameras, Proceedings of the 25th ITS World Congress, 2018. 

Dahmane, K., Duthon, P., Bernardin, F., Colomb, M., Chausse, F., and Blanc, C.: Weathereye-proposal of an algorithm able 

to classify weather conditions from traffic camera images, Atmosphere, 12, 717, https://doi.org/10.3390/atmos12060717, 810 

2021. 

Dhananjaya, M. M., Kumar, V. R., and Yogamani, S.: Weather and light level classification for autonomous driving: Dataset, 

baseline and active learning, 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), 2816-2821,  

https://doi.org/10.1109/itsc48978.2021.956468, 2021. 

Guerra, J. C. V., Khanam, Z., Ehsan, S., Stolkin, R., and McDonald-Maier, K.: Weather Classification: A new multi-class 815 

dataset, data augmentation approach and comprehensive evaluations of Convolutional Neural Networks, 2018 NASA/ESA 

Conference on Adaptive Hardware and Systems (AHS), 305-310,  https://doi.org/10.1109/ahs.2018.8541482, 2018. 

Haberlie, A. M., Ashley, W. S., and Pingel, T. J.: The effect of urbanisation on the climatology of thunderstorm initiation, 

Quarterly Journal of the Royal Meteorological Society, 141, 663-675, https://doi.org/10.1002/qj.2499, 2015. 

He, K., Zhang, X., Ren, S., and Sun, J.: Deep residual learning for image recognition, Proceedings of the IEEE conference 820 

on computer vision and pattern recognition, 2016, 770-778,  https://doi.org/10.1109/CVPR.2016.90, 2016. 

Heymsfield, A. and Wright, R.: Graupel and hail terminal velocities: Does a “supercritical” Reynolds number apply?, 

Journal of the Atmospheric Sciences, 71, 3392-3403, https://doi.org/10.1175/jas-d-14-0034.1, 2014. 

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q.: Densely connected convolutional networks, Proceedings of 

the IEEE conference on computer vision and pattern recognition, 4700-4708,  https://doi.org/10.1109/CVPR.2017.243, 2017. 825 

Huang, Z., Xu, W., and Yu, K.: Bidirectional LSTM-CRF models for sequence tagging, arXiv preprint arXiv:1508.01991, 

https://doi.org/10.48550/arXiv.1508.01991, 2015. 

Ibrahim, M. R., Haworth, J., and Cheng, T. J. I. I. J. o. G.-I.: WeatherNet: Recognising weather and visual conditions from 

street-level images using deep residual learning, ISPRS International Journal of Geo-Information, 8, 549, 

https://doi.org/10.3390/ijgi8120549, 2019. 830 

Jennings, K. S., Arienzo, M. M., Collins, M., Hatchett, B. J., Nolin, A. W., and Aggett, G.: Crowdsourced Data Highlight 

Precipitation Phase Partitioning Variability in Rain‐Snow Transition Zone, Earth and Space Science, 10, e2022EA002714, 

https://doi.org/10.1029/2022ea002714, 2023. 

https://doi.org/10.1145/3009977.3010040
https://doi.org/10.1175/JAM2489.1
https://doi.org/10.1145/197320.197366
https://doi.org/10.48550/arXiv.2009.12165
https://doi.org/10.1016/j.jhydrol.2020.125780
https://doi.org/10.1002/qj.4121
https://doi.org/10.2139/ssrn.4431880
https://doi.org/10.1016/j.jvcir.2017.04.002
https://doi.org/10.5334/cstp.464
https://doi.org/10.3390/atmos12060717
https://doi.org/10.1109/itsc48978.2021.956468
https://doi.org/10.1109/ahs.2018.8541482
https://doi.org/10.1002/qj.2499
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1175/jas-d-14-0034.1
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.48550/arXiv.1508.01991
https://doi.org/10.3390/ijgi8120549
https://doi.org/10.1029/2022ea002714


38 

 

Kajikawa, M.: Measurement of falling velocity of individual graupel particles, Journal of the Meteorological Society of 

Japan. Ser. II, 53, 476-481, https://doi.org/10.2151/jmsj1965.53.6_476, 1975. 835 

Karaa, M., Ghazzai, H., and Sboui, L.: A dataset annotation system for snowy weather road surface classification, IEEE 

Open Journal of Systems Engineering, https://doi.org/10.1109/ojse.2024.3391326, 2024. 

Khan, M. N. and Ahmed, M. M.: Weather and surface condition detection based on road-side webcams: Application of pre-

trained convolutional neural network, International journal of transportation science technology, 11, 468-483, 

https://doi.org/10.1016/j.ijtst.2021.06.003, 2022. 840 

Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., and Inman, D. J.: 1D convolutional neural networks and 

applications: A survey, Mechanical systems and signal processing, 151, 107398, 

https://doi.org/10.1109/access.2024.3433513, 2021. 

Kondapally, M., Kumar, K. N., Vishnu, C., and Mohan, C. K.: Towards a transitional weather scene recognition approach 

for autonomous vehicles, IEEE Transactions on Intelligent Transportation Systems, 25, 5201-5210, 845 

https://doi.org/10.1109/TITS.2023.3331882, 2023. 

Kruger, A. and Krajewski, W. F.: Two-dimensional video disdrometer: A description, Journal of Atmospheric and Oceanic 

Technology, 19, 602-617, https://doi.org/10.1175/1520-0426(2002)019<0602:TDVDAD>2.0.CO;2, 2002. 

Kurihata, H., Takahashi, T., Ide, I., Mekada, Y., Murase, H., Tamatsu, Y., and Miyahara, T.: Rainy weather recognition from 

in-vehicle camera images for driver assistance, IEEE Proceedings. Intelligent Vehicles Symposium, 2005., 205-210,  850 

https://doi.org/10.1109/IVS.2005.1505103, 2005. 

Landry, F.-G. and Akhloufi, M. A.: Deep learning and computer vision techniques for estimating snow coverage on roads 

using surveillance cameras, 2022 18th IEEE International Conference on Advanced Video and Signal Based Surveillance 

(AVSS), 1-8,  https://doi.org/10.1109/avss56176.2022.9959452, 2022. 

Lee, I. J.: Big data processing framework of learning weather information and road traffic collision using distributed CEP 855 

from CCTV video: Cognitive image processing, 2017 IEEE 16th International Conference on Cognitive Informatics & 

Cognitive Computing (ICCI* CC), 400-406,  https://doi.org/10.1109/ICCI-CC.2017.8109780, 2017. 

Leroux, N. R., Vionnet, V., and Thériault, J. M.: Performance of precipitation phase partitioning methods and their impact 

on snowpack evolution in a humid continental climate, Hydrological Processes, 37, e15028, 

https://doi.org/10.1002/hyp.15028, 2023. 860 

Li, Q., Kong, Y., and Xia, S.-m.: A method of weather recognition based on outdoor images, 2014 International Conference 

on Computer Vision Theory and Applications, 510-516,  https://doi.org/10.5220/0004724005100516, 2014. 

Li, S., Ren, W., Wang, F., Araujo, I. B., Tokuda, E. K., Junior, R. H., Cesar-Jr, R. M., Wang, Z., and Cao, X.: A 

comprehensive benchmark analysis of single image deraining: Current challenges and future perspectives, International 

Journal of Computer Vision, 129, 1301-1322, https://doi.org/10.1007/s11263-020-01416-w, 2021. 865 

Lu, C., Lin, D., Jia, J., and Tang, C.-K.: Two-class weather classification, Proceedings of the IEEE Conference on Computer 

Vision and Pattern Recognition, 3718-3725,  https://doi.org/10.1109/cvpr.2014.475, 2014. 

Lü, M.-c., Liu, D., and Zhang, X.-j.: Study on Road Weather Recognition Method Based on Road Segmentation, Journal of 

Highway and Transportation Research and Development (English Edition), 17, 26-35, 

https://doi.org/10.1061/jhtrcq.0000871, 2023. 870 

Magono, C. and Lee, C. W.: Meteorological classification of natural snow crystals, Journal of the Faculty of Science, 

Hokkaido University. Series 7, Geophysics, 2, 321-335, https://doi.org/10.4159/harvard.9780674182769.c12, 1966. 

Mishchenko, M. I., Travis, L. D., and Lacis, A. A.: Scattering, absorption, and emission of light by small particles, 

Cambridge university press, https://doi.org/10.1016/0960-1686(93)90104-7, 2002. 

Mittal, S. and Sangwan, O. P.: Classifying weather images using deep neural networks for large scale datasets, International 875 

Journal of Advanced Computer Science and Applications, 14, https://doi.org/10.14569/ijacsa.2023.0140136, 2023. 

Montero‐Martínez, G., Kostinski, A. B., Shaw, R. A., and García‐García, F.: Do all raindrops fall at terminal speed?, 

Geophysical Research Letters, 36, https://doi.org/10.1029/2008gl037111 2009. 

Morris, C. and Yang, J. J.: A machine learning model pipeline for detecting wet pavement condition from live scenes of 

traffic cameras, Machine Learning with Applications, 5, 100070, https://doi.org/10.1016/j.mlwa.2021.100070, 2021. 880 

Pavlic, M., Rigoll, G., and Ilic, S.: Classification of images in fog and fog-free scenes for use in vehicles, 2013 IEEE 

Intelligent Vehicles Symposium (IV), 481-486,  https://doi.org/10.1109/ivs.2013.6629514, 2013. 

https://doi.org/10.2151/jmsj1965.53.6_476
https://doi.org/10.1109/ojse.2024.3391326
https://doi.org/10.1016/j.ijtst.2021.06.003
https://doi.org/10.1109/access.2024.3433513
https://doi.org/10.1109/TITS.2023.3331882
https://doi.org/10.1175/1520-0426(2002)019
https://doi.org/10.1109/IVS.2005.1505103
https://doi.org/10.1109/avss56176.2022.9959452
https://doi.org/10.1109/ICCI-CC.2017.8109780
https://doi.org/10.1002/hyp.15028
https://doi.org/10.5220/0004724005100516
https://doi.org/10.1007/s11263-020-01416-w
https://doi.org/10.1109/cvpr.2014.475
https://doi.org/10.1061/jhtrcq.0000871
https://doi.org/10.4159/harvard.9780674182769.c12
https://doi.org/10.1016/0960-1686(93)90104-7
https://doi.org/10.14569/ijacsa.2023.0140136
https://doi.org/10.1029/2008gl037111
https://doi.org/10.1016/j.mlwa.2021.100070
https://doi.org/10.1109/ivs.2013.6629514


39 

 

Pruppacher, H. R. and Klett, J. D.: Microphysics of Clouds and Precipitation, Nature, 284, 88-88, 

https://doi.org/10.1038/284088b0, 1980. 

Ramanna, S., Sengoz, C., Kehler, S., and Pham, D.: Near real-time map building with multi-class image set labeling and 885 

classification of road conditions using convolutional neural networks, Applied Artificial Intelligence, 35, 803-833, 

https://doi.org/10.1080/08839514.2021.1935590, 2021. 

Roser, M. and Moosmann, F.: Classification of weather situations on single color images, 2008 IEEE intelligent vehicles 

symposium, 798-803,  https://doi.org/10.1109/ivs.2008.4621205, 2008. 

Rump, S. M., Ogita, T., and Oishi, S. i.: Accurate floating-point summation part I: Faithful rounding, SIAM Journal on 890 

Scientific Computing, 31, 189-224, https://doi.org/10.1137/050645671, 2008. 

Samo, M., Mafeni Mase, J. M., and Figueredo, G.: Deep Learning with Attention Mechanisms for Road Weather Detection, 

Sensors, 23, 798, https://doi.org/10.3390/s23020798, 2023. 

Schirmacher, I., Schnitt, S., Klingebiel, M., Maherndl, N., Kirbus, B., Ehrlich, A., Mech, M., and Crewell, S.: Clouds and 

precipitation in the initial phase of marine cold air outbreaks as observed by airborne remote sensing, EGUsphere, 2024, 1-895 

34, https://doi.org/10.5194/egusphere-egu24-5220, 2024. 

Shibata, K., Takeuch, K., Kawai, S., and Horita, Y.: Detection of road surface conditions in winter using road surveillance 

cameras at daytime, night-time and twilight, International Journal of Computer Science and Network Security (IJCSNS), 14, 

21, 2014. 

Speirs, P., Gabella, M., and Berne, A.: A comparison between the GPM dual-frequency precipitation radar and ground-based 900 

radar precipitation rate estimates in the Swiss Alps and Plateau, Journal of Hydrometeorology, 18, 1247-1269, 

https://doi.org/10.1175/jhm-d-16-0085.1, 2017. 

Sun, Z., Wang, P., Jin, Y., Wang, J., and Wang, L.: A practical weather detection method built in the surveillance system 

currently used to monitor the large-scale freeway in China, IEEE Access, 8, 112357-112367, 

https://doi.org/10.1109/access.2020.3002959, 2020. 905 

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z.: Rethinking the inception architecture for computer vision, 

Proceedings of the IEEE conference on computer vision and pattern recognition, 2818-2826, 2016. 

Tan, M. and Le, Q.: Efficientnet: Rethinking model scaling for convolutional neural networks, International conference on 

machine learning, 6105-6114,  https://doi.org/10.48550/arXiv.1905.11946, 2019. 

Toğaçar, M., Ergen, B., and Cömert, Z.: Detection of weather images by using spiking neural networks of deep learning 910 

models, Neural Computing and Applications, 33, 6147-6159, https://doi.org/10.1007/s00521-020-05388-3, 2021. 

Triva, J., Grbić, R., Vranješ, M., and Teslić, N.: Weather Condition Classification in Vehicle Environment Based on Front-

View Camera Images, 2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH), 1-4,  

https://doi.org/10.1109/infoteh53737.2022.9751279, 2022. 

Vázquez-Martín, S., Kuhn, T., and Eliasson, S.: Shape dependence of snow crystal fall speed, Atmospheric Chemistry and 915 

Physics, 21, 7545-7565, https://doi.org/10.5194/acp-21-7545-2021, 2021. 

Wang, H., Xie, Q., Wu, Y., Zhao, Q., and Meng, D.: Single image rain streaks removal: a review and an exploration, 

International Journal of Machine Learning and Cybernetics, 11, 853-872, https://doi.org/10.1007/s13042-020-01061-2, 2020. 

Wang, S., Li, Y., and Liu, W.: Multi-class weather classification fusing weather dataset and image features, Big Data: 6th 

CCF Conference, Big Data 2018, Xi'an, China, October 11-13, 2018, Proceedings 6, 149-159,  https://doi.org/10.1007/978-920 

981-13-2922-7_10 2018. 

Wang, X., Shi, S., Zhu, L., Nie, Y., and Lai, G.: Traditional and Novel Methods of Rainfall Observation and Measurement: 

A Review, Journal of Hydrometeorology, 24, 2153-2176, https://doi.org/10.1175/jhm-d-22-0122.1, 2023a. 

Wang, X., Yang, Z., Feng, H., Zhao, J., Shi, S., and Cheng, L.: A Multi-Stream Attention-Aware Convolutional Neural 

Network: Monitoring of Sand and Dust Storms from Ordinary Urban Surveillance Cameras, Remote Sensing, 15, 5227, 925 

https://doi.org/10.3390/rs15215227, 2023b. 

International Cloud Atlas Glossary. Graupel: https://cloudatlas.wmo.int/en/glossary.html#G, last access: 12, August, 2025. 

Xia, J., Xuan, D., Tan, L., and Xing, L.: ResNet15: weather recognition on traffic road with deep convolutional neural 

network, Advances in Meteorology, 2020, 6972826, https://doi.org/10.1155/2020/6972826, 2020. 

Xiao, H., Zhang, F., Shen, Z., Wu, K., and Zhang, J.: Classification of weather phenomenon from images by using deep 930 

convolutional neural network, Earth and Space Science, 8, e2020EA001604, https://doi.org/10.1029/2020ea001604, 2021. 

https://doi.org/10.1038/284088b0
https://doi.org/10.1080/08839514.2021.1935590
https://doi.org/10.1109/ivs.2008.4621205
https://doi.org/10.1137/050645671
https://doi.org/10.3390/s23020798
https://doi.org/10.5194/egusphere-egu24-5220
https://doi.org/10.1175/jhm-d-16-0085.1
https://doi.org/10.1109/access.2020.3002959
https://doi.org/10.48550/arXiv.1905.11946
https://doi.org/10.1007/s00521-020-05388-3
https://doi.org/10.1109/infoteh53737.2022.9751279
https://doi.org/10.5194/acp-21-7545-2021
https://doi.org/10.1007/s13042-020-01061-2
https://doi.org/10.1007/978-981-13-2922-7_10
https://doi.org/10.1007/978-981-13-2922-7_10
https://doi.org/10.1175/jhm-d-22-0122.1
https://doi.org/10.3390/rs15215227
https://cloudatlas.wmo.int/en/glossary.html#G
https://doi.org/10.1155/2020/6972826
https://doi.org/10.1029/2020ea001604


40 

 

Zhang, C., Nateghinia, E., Miranda-Moreno, L. F., and Sun, L.: Winter road surface condition classification using 

convolutional neural network (CNN): visible light and thermal image fusion, Canadian Journal of Civil Engineering, 49, 

569-578, https://doi.org/10.1139/cjce-2020-0613, 2022. 

Zhang, G.: Weather radar polarimetry, Crc Press2016. 935 

Zhao, B., Li, X., Lu, X., and Wang, Z.: A CNN–RNN architecture for multi-label weather recognition, Neurocomputing, 322, 

47-57, https://doi.org/10.1016/j.neucom.2018.09.048, 2018. 

Zhao, X., Liu, P., Liu, J., and Tang, X.: Feature extraction for classification of different weather conditions, Frontiers of 

Electrical and Electronic Engineering in China, 6, 339-346, https://doi.org/10.1007/s11460-011-0151-1, 2011. 

Zhou, A., Zhao, K., Lee, W.-C., Huang, H., Hu, D., and Fu, P.: VDRAS and Polarimetric Radar Investigation of a Bow Echo 940 

Formation After a Squall Line Merged With a Preline Convective Cell, Journal of Geophysical Research: Atmospheres, 125, 

e2019JD031719, https://doi.org/10.1029/2019JD031719, 2020. 

 

https://doi.org/10.1139/cjce-2020-0613
https://doi.org/10.1016/j.neucom.2018.09.048
https://doi.org/10.1007/s11460-011-0151-1
https://doi.org/10.1029/2019JD031719

