S1 Revised fragmentation table development

The revised CV-UMR-ToF-ACSM fragmentation table development is based on catalogued and newly collected CV-HR-ToF-AMS and CV-UMR-ToF-ACSM mass spectra. The CV-HR-ToF-AMS mass spectra are retrieved from the AMS spectral database [\(http://cires1.colorado.edu/jimenez-group/AMSsd_CV,](http://cires1.colorado.edu/jimenez-group/AMSsd_CV) last access: 6 November 2024), where a variety of nitrate-5 containing and non-nitrate organic aerosol (OA) were measured (see Tables [S1](#page-0-0) and [S2\)](#page-1-0).

Table S1. Summary of CV-HR-ToF-AMS mass spectra (both V-mode and W-mode) from the AMS spectral database used to obtain correlations between Org fragment mass. The organic aerosol (OA) spectra originated from chamber experiments, ambient, and laboratory measurements from different studies. The vaporizer temperature (T_{CV}) is also specified.

Type	ID	Description	Citation	$T_{\rm CV}$ (°C)	Campaign/location/time
Chamber experiment	001	SOA from α -pinene + Ω_3 in dark chamber chemistry (pinene+ O_3)	Hu et al. (2018a)	600	
	002	SOA from 100 ppb δ -carene + NO ₃ $(carene+NO3)$	Hu et al. (2018a)	600	CU chambers, CU campus (Boulder, CO, US)
	003	SOA from 100 ppb α -pinene + NO ₃ + $(NH_4)_2SO_4$ seed (pinene+ NO_3 + SO_4)	Hu et al. (2018a)	600	
	001	Cooking OA (COA)	Hu et al. (2017)	525	Boulder study, CU campus
	002	Hydrocarbon-like OA (HOA)	Hu et al. (2017)	525	(Boulder, CO, US, April)
Ambient	003	Oxygenated OA (OOA)	Hu et al. (2017)	525	2013)
positive matrix factorization (PMF) factor	008	Isoprene epoxydiols-derived SOA (IEPOX-SOA)	Hu et al. (2018b)	550	SOAS campaign (Centreville, AL, US, June- July 2013)
	012	More-oxidized oxygenated OA (MO-OOA)	Hu et al. (2018b)	600	KORUS-AQ study (RF05)
	013	Less-oxidized oxygenated OA (LO-OOA)	Hu et al. (2018b)	600	flight (Seoul, South Korea,
	014	Hydrocarbon-like OA (HOA)	Hu et al. (2018b)	600	May 2016)
	001	Acetyl salicylic acid (AcSal-H, C ₉ H ₈ O ₄)	Hu et al. (2018b)	600	
	002	Folic acid (folic-H, $C_{19}H_{19}N_7O_6$)	Hu et al. (2018b)	600	
	006	Caffeine $(C_8H_{10}N_4O_2)$	Hu et al. (2018b)	600	
Laboratory OA/SOA	007	Histidine (His, $C_6H_9N_3O_2$)	Hu et al. (2018b)	600	
	008	Tryptophan (Try, $C_{11}H_{12}N_2O_2$)	Hu et al. (2018b)	600	
	010	Nicotinic acid (nicotinic-H, $C_6H_5NO_2$)	Hu et al. (2018b)	600	
	011	Sucrose (sucrose $1, C_{12}H_{22}O_{11}$)	Hu et al. (2018b)	600	
	015	Oleic acid (oleic-H_1, $C_{18}H_{34}O_2$)	Hu et al. (2018b)	600	CU laboratory, CU campus
	016	Squalene (squalene_1, $C_{30}H_{50}$)	Hu et al. (2018b)	600	(Boulder, CO, US)
	018	Bis-(2-ethylhexyl)-ester $(bis(2-EtHex)ester, C_{26}H_{50}O_4)$	Hu et al. (2018a)	600	
	020	Oleic acid (oleic-H_2, $C_{18}H_{34}O_2$)	Hu et al. (2018a)	600	
	021	Squalene (squalene_2, $C_{30}H_{50}$)	Hu et al. (2018a)	600	
	023	Glutaric acid (glutaric-H, $C_5H_8O_4$)	Hu et al. (2018a)	600	
	024	Octacosane $(C_{28}H_{58})$	Hu et al. (2018a)	550	
	026	Sucrose (sucrose $2, C_{12}H_{22}O_{11}$)	Hu et al. (2018a)	600	

The chamber experiment spectra were obtained from CU Atmospheric Chamber facility (Boulder, Colorado, United States, see [Hu et al.](#page-7-0) [\(2018a\)](#page-7-0)). The ambient PMF factors were measured at different locations: three spectra at the University of Colorado during spring (Boulder, Colorado, United States, [\(Hu et al., 2017\)](#page-7-1)), one spectrum from SOAS campaign at a pollution-influenced forest site during summer (Centreville, Alabama, United States, [\(Carlton et al., 2018;](#page-7-3) [Hu et al., 2018b\)](#page-7-2)), 10 and three spectra from an aircraft-based field campaign as part of KORean-United States Air Quality mission (KORUS-AQ, [https://espo.nasa.gov/home/korus-aq,](https://espo.nasa.gov/home/korus-aq) last access: 6 November 2024). The laboratory standard measurements account for 15

mass spectra, ranging from carboxylic acids, hydrocarbons, nitrogen-containing compounds, and amino acids. Table [S1](#page-0-0) lists all of the OA datasets used, including both experiments containing and not containing nitrate.

The CV-UMR-ToF-ACSM mass spectra measured in chamber experiments when there is no or negligible nitrate present are 15 summarized in Table [S2.](#page-1-0) Because these are UMR spectra, we cannot use any experiments that contained nitrate. Therefore, the investigated nominal masses are assumed to contain only Org fragments $(m/z 29, m/z 30, m/z 42, m/z 43, m/z 45,$ m/z 46). The chamber experiments were conducted in Aerosol Interaction and Dynamics in the Atmosphere (AIDA) chamber, a facility maintained by Institute of Meteorology and Climate Research (IMK) in Karlsruhe Institute of Technology (KIT), Germany. The experiments were part of the Cloud-Aerosol Interactions in a Nitrogen-dominated Atmosphere (CAINA) project 20 [\(https://sites.google.com/view/cainaproject/,](https://sites.google.com/view/cainaproject/) last access: 6 November 2024).

Table S2. Summary of CV-UMR-ToF-ACSM mass spectra from nitrate-free chamber experiments used to obtain correlations between Org fragment mass. The mass spectra are measured using ACSM-RUG with vaporizer temperature (T_{CV}) of 525 °C.

The slope of the orthogonal distance regression (ODR) fits to determine the multiplier $a_{\text{Org[30],[i]}}$ and $a_{\text{Org[46],[i]}}$ using the simulated UMR spectra (of the HR dataset) and UMR dataset are summarized in Table [S3.](#page-1-1) The uncertainty of the value from the fit slope is also included. To confirm the best fit of the multipliers, the predicted UMR mass (calculated using the multiplier) is compared to the measured UMR mass (sum of mass measured in original spectra) which is resumed in Table [S4.](#page-2-0)

Table S3. Summary of the ODR fit parameters with intercept at zero between different UMR nominal mass to predict (frag_Org[x]) and related UMR nominal mass (frag_Org[i]) from the full dataset (frag_Org[x] = $a_{\text{Org}}[x]$, i] · frag_Org[i]). The slope is defined as the multiplier $a_{\text{Org}[x],[i]}$ which defines the fractional relation between the two UMR masses investigated.

UMR mass to predict (x)	frag_Org[30] = $a_{Org[30],[i]}$ · frag_Org[i]			frag_Org[46] = $a_{Org[46],[i]}$ · frag_Org[i]			
UMR daughter mass (i)	$a_{\text{Org}[\text{CH}_2\text{O}^+], [i]} \pm s_a$	m.		$a_{\text{Org}[\text{CH}_4\text{NO}^+], [i]} \pm s_a$			
frag_ $Org[29]$	$0.311 + 0.016$	0.88	1.57E-3	$(3.17 \pm 2.49)E-3$	0.11	4.27E-5	
frag $Org[42]$	0.963 ± 0.230	0.05	0.01	0.024 ± 0.006	0.01	3.06E-5	
frag $Org[43]$	$0.367 + 0.108$	0.01	0.02	$0.012 + 0.004$	1.70E-3	3.54E-5	
frag_Org $[45]$	14.002 ± 3.559	0.02	2.33E-4	$0.305 + 0.037$	0.43	1.35E-5	

i represent masses related to frag_Org[30] (i.e., C¹⁸O⁺, ¹³CHO⁺, CH₂O⁺, CH₄N⁺, ¹³CCH₃N⁺, ¹³CCH₅⁺, C₂H₆⁺) and frag_Org[46] (i.e., $\rm C^{18}OO^+,~^{13}CHO_2^+,~^{13}CH_3NO^+,~CH_4NO^+,~^{13}CCH_5O^+,~C_2H_6O^+)$ tested in this study. It includes frag_Org[29] (i.e., ${}^{13}\text{CO}^+, \text{CH}_3\text{N}^+, \text{C}_2\text{H}_5^+, \text{frag_Org[42] (i.e.,} \text{ } {}^{13}\text{CCHO}^+, \text{C}_2\text{H}_2\text{O}^+, \text{C}_2\text{H}_4\text{N}^+, \text{C}_2\text{H}_3^+ \text{N}^+, \text{ } {}^{13}\text{CCH}_3\text{N}^+, \text{C}_2\text{H}_4^+, \text{ } {}^{13}\text{CC}_2\text{H}_5^+, \text{C}_2\text{H}_5^+, \text{C}_2\text{H}_5^-, \text{C}_$ $\rm{C_3H_6^+}$), frag_Org[43] (i.e., CHNO⁺, ¹³CCH₂O⁺, C₂H₃O⁺, C₂H₄⁵N⁺, ¹³CCH₄N⁺, C₂H₅N⁺, ¹³CC₂H₆⁺, C₃H₇⁺), and frag_Org[45] $(i.e., 13⁻¹ ³C⁻¹, 13⁻¹C^{H₂} ^{NO} +¹³C² ¹C^{H₂} ¹C⁻¹ ¹³C⁻¹C^{H₆} ^N +¹³C⁻¹C^{H₇} ^{13⁻¹C⁻¹C¹ ^{13⁻¹C⁻¹C¹}}$ based on the list studied in [Fry et al.](#page-7-4) [\(2018\)](#page-7-4).

 a_{Order} is the coefficient for frag_Org[x] component, obtained from the slope of linear regression fit between frag_Org[x] and frag_Org[i]. Values printed in **bold** represent the best correlation for frag_Org[x].

Table S4. The multipliers $a_{\text{Oper}[\text{I}][i]}$ · frag_Org[i] for frag_Org[30] and frag_Org[46] from this study and other studies, re-applied to the simulated UMR spectra from the HR and UMR datasets.

Work	$a_{\text{Org[30],[29]}}$	Predicted/ measured ^(a)	r^2	χ^2	$a_{\text{Org}[46],[45]}$	Predicted/ measured ^(a)	r^2	χ^2
	frag_Org[30] = a_{0} _{rg[30]} , [29] · frag_Org[29]				frag_Org[46] = $a_{0rg[46],[45]}$ · frag_Org[45]			
this study $(CV-ToF)^{(b)}$	0.311 ± 0.016	$(96.9 \pm 4.9)\%$	0.88	8.48E-4	$0.305 + 0.037$	$(82.5 \pm 9.5)\%$	0.43	6.79E-6
Allan et al. (2004) (default)	0.022	$(6.6 \pm 3.4)\%$	0.88	$8.03E-6$	$\overline{}$			
Fry et al. (2018) $(SV-TOF)$	0.215	$(66.0 \pm 3.3)\%$	0.88	5.40E-4	0.127	$(30.3 \pm 3.7)\%$	0.43	1.71 _E -6
Hu et al. (2017) (biogenic, SV-ToF)	0.31	$(96.4 \pm 4.8)\%$	0.88	8.44E-4	0.42	$(121.7 \pm 14.0)\%$	0.43	9.34E-6
Hu et al. (2017) (biogenic, CV-ToF)	0.31	$(99.7 \pm 5.0)\%$	0.88	8.71E-4	0.68	$(214.4 \pm 25.5)\%$	0.43	$1.22E - 5$

(a) data from CV-ToF-AMS spectral database and experiments in AIDA chamber described in Table [S1](#page-0-0) and [S2,](#page-1-0) fit for typical ambient dataset. Values printed in **bold** represent the best correlation for frag $Org[x]$.

(b) predicted UMR frag_Org[x] (calculated from dataset spectra, frag_Org[x] = $a_{\text{Org}[x][i]}$ *frag_Org[x]) vs measured frag_Org[x] (sum of all Org fragments in the nominal m/z x of the original dataset spectra).

25 We also explore different multipliers that are compatible for different composition profile. We perform the ODR fit of frag $Org[30]$ against frag $Org[29]$, and frag $Org[46]$ against frag $Org[45]$ to chamber experiment spectra that use glyoxal and terpenes (e.g., isoprene, limonene) as precursor to obtain composition-specific fragmentation table for each (see Fig. [S1\)](#page-2-1).

Figure S1. The ODR fits (set to zero intercept) to determine the multipliers $a_{\text{Org}[x],[i]}$ for composition-specific fragmentation table of (a,b) glyoxal and (c,d) terpene. The ODR fits show the correlation between the concentrations of (a,c) frag_Org[30] vs frag_Org[29], and (b,d) frag_Org[46] vs frag_Org[45].

Higher uncertainty shows more variability of organic fragment composition that leads to uncertainties for frag $NO_3[30]$ and frag_NO₃[46], which later affect the calculation of observed NO_x⁺ ratio (R_{obs}) and mass fraction of NO₃ existing as particulate 30 organic nitrate (f_{pON}) .

S2 Summary of experimental R_{pAmN} of CV-UMR-ToF-ACSM

The measurements of R_{pAnn} from two CV-UMR-ToF-ACSM instruments used in the main article are summarized in Table [S5.](#page-3-0)

Table S5. Summary of measured NO_x^+ ratio of particulate ammonium nitrate (R_{pAmN}) from two CV-UMR-ToF-ACSM in the Netherlands, as part of routine calibration measurements. The uncertainty on each measurement is included. The value is obtained by performing ODR fits to zero intercept of the concentration of m/z 46 against m/z 30 (no fragmentation table applied). The instruments are part of the Ruisdael Observatory monitoring site network in the Netherlands managed by different institutions: ACSM-UU by Utrecht University (UU) and ACSM-RUG by University of Groningen (RUG).

S3 "Excess NH₄" method to determine lower limit of R_{DON} from chamber experiment

The values of NO_x⁺ ratio of particulate organic nitrate (R_{pON}) in this study are determined from an AIDA chamber experiment 35 at IMK KIT, Karlsruhe, Germany. The experiment, described in Section [4.2](#page-5-0) of the main text, used glyoxal as an SOA precursor, reacted with NO_3 (from NO_2 and O_3), and used NaCl seed. The average NO_x^+ ratio observed during particulate organic nitrate (pON) formation is taken as R_{pON} if we assume all nitrate aerosol formed is pON from the reaction of NO₃ with glyoxal.

However, chamber experiments can contain impurities, for example, inorganic nitrate can also be formed from $HNO₃$ uptake or repartitioning of semi-volatile $NH₄NO₃$ from the chamber walls during pON formation. Therefore, it may not produce pure 40 pON and the NO_x ratio observed cannot necessarily be assumed to be R_{pON} . By removing the inorganic nitrate impurities

through "excess NH₄" method [\(Takeuchi and Ng, 2019\)](#page-7-6), we define R_{pON} as the lower limit of R_{pON} because it represents the lowest possible NO_{x}^{+} ratio. The "excess $NH₄$ " method is a way to estimate the inorganic nitrate contribution to the total $NO₃$ based on the increase in

 NH_4 . It assumes that any increase in NH₄ during aerosol growth is entirely due to NH_4NO_3 formation (molar concentration of

45 excess NH_4 = molar concentration of inorganic nitrate). From there, we can subtract this maximum inorganic nitrate mass from the total NO₃ to determine f_{pON} . By having information on f_{pON} , NO_x⁺ ratio of particulate ammonium nitrate (R_{pAnnN}), and observed NO_x ratio (R_{obs}), we are able to determine the value of R_{pON} of any purity level of pON formation by rearranging Eq. [S1](#page-3-1) [\(Farmer et al., 2010\)](#page-7-7) into Eq. [S2.](#page-3-2)

$$
f_{\rm pON} = \frac{(R_{\rm amb} - R_{\rm pA mN})(1 + R_{\rm pON})}{(R_{\rm pON} - R_{\rm pA mN})(1 + R_{\rm amb})}
$$
(S1)
50
$$
R_{\rm pON} = \frac{(R_{\rm obs} \cdot R_{\rm pA mN} \cdot f_{\rm pON}) + R_{\rm obs} + (R_{\rm pA mN} \cdot f_{\rm pON}) - R_{\rm pA mN}}{(R_{\rm obs} \cdot f_{\rm pON}) - R_{\rm obs} + R_{\rm pA mN} + f_{\rm pON}}
$$
(S2)

We consider this to be the highest estimate of the potential inorganic nitrate interference, because all $NH₄$ is not necessarily $NH₄NO₃$. For example, there can be $NH₄Cl$ formed since in this experiment we have NaCl seed aerosol.

S4 Propagation of uncertainty

The value of f_{DON} is calculated from measurements that contain uncertainties as part of its measurement (see Eq. [S1\)](#page-3-1). In 55 this section, we describe in detail how the uncertainty is propagated from different measurements acquired using the UMR instrument and fragmentation table, or HR instrument and peak fitting, into f_{pON} . Overall, the uncertainties for f_{pON} are sourced from 3 main parameters, which are the NO_x⁺ ratio of the observed air (R_{obs}), pure ammonium nitrate (R_{pAmN}), and pure organic nitrate (R_{pON}) . Each ratio itself is calculated from values containing uncertainties. In this work, the uncertainty is propagated from the standard error $(s_{\overline{x}})$ of the sample (Eq. [S3\)](#page-4-0).

60
$$
s_{\overline{x}} = \frac{s}{\sqrt{N}} = \frac{1}{\sqrt{N}} \cdot \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2}
$$
 (S3)

 x_i : data point *i* of variable x

 \bar{x} : mean of data points

N : number of data points.

S4.1 R_{obs}

65 For UMR measurements, R_{obs} is calculated using observed ion concentrations ($C_{\text{NO+}}$ and $C_{\text{NO++}}$) measured while sampling ambient or chamber generated particles, as described in the revised fragmentation table (see Table [4\)](#page-0-1), rewritten in Eq. [S4](#page-4-1) below,

$$
R_{\rm obs} = \frac{(C_{\rm NO_2^+})_{\rm obs}}{(C_{\rm NO^+})_{\rm obs}} = \frac{C_{[46]} - a_{\rm Org[46],[45]} \cdot C_{[45]}}{C_{[30]} - a_{\rm Org[30],[29]} \cdot C_{[29]}}.
$$
\n(S4)

Therefore, R_{obs} contains in total of six uncertainty terms. Four uncertainty sources originated from the measured concentrations of $m/z x (C_{[x]}, x = [29,30,45,46])$. The uncertainty is generated by Tofware v3.3, which is described as being calculated 70 based on ion counting statistics and an estimated electronic noise of the instrument.

The other two uncertainties come from the multipliers $a_{\text{Org}[30],[29]}$ and $a_{\text{Org}[46],[45]}$ represented by the uncertainty of ODR fits described in Table [S3.](#page-1-1) While the uncertainty from concentrations varies over the course of time, the uncertainty from the multipliers remains constant. The propagated uncertainty of R_{obs} ($s_{\overline{R}_{obs}}$), see Eq. [S7\)](#page-4-2) is calculated from the uncertainty of NO₂⁺ concentration ($s_{\overline{C}_{\text{NO}_2^+}}$), see Eq. [S5\)](#page-4-3) and NO⁺ concentration ($s_{\overline{C}_{\text{NO}^+}}$)), see Eq. [S6\)](#page-4-4), 2

$$
75 \quad s_{\overline{C}_{\text{NO}_2^+}} = \sqrt{(s_{\overline{C}_{[46]}})^2 + \left(a_{\text{Org}[46],[45]} \cdot C_{[45]} \cdot \sqrt{\left(\frac{s_{\overline{a}_{\text{Org}[46],[45]}}}{a_{\text{Org}[46],[45]}}\right)^2 + \left(\frac{s_{(\overline{C}_{[45]})}}{C_{[45]}}\right)^2}\right)^2}
$$
(S5)

$$
s_{\overline{C}_{\text{NO}^+}} = \sqrt{(s_{(\overline{C}_{[30]})})^2 + \left(a_{\text{Org}[30],[29]} \cdot C_{[29]} \cdot \sqrt{\left(\frac{s_{\overline{a}_{\text{Org}[30],[29]}}}{a_{\text{Org}[30],[29]}}\right)^2 + \left(\frac{s_{\overline{C}_{[29]}}}{C_{[29]}}\right)^2}\right)^2}
$$
(S6)

$$
s_{\overline{R}_{\text{obs}}} = R_{\text{obs}} \cdot \sqrt{\left(\frac{s_{\overline{C}_{\text{NO}^+}}}{C_{\text{NO}^+}}\right)^2 + \left(\frac{s_{\overline{C}_{\text{NO}^+}}}{C_{\text{NO}^+}}\right)^2}.
$$
\n
$$
(S7)
$$

For HR measurements, the NO^+ and NO_2^+ concentrations are obtained through HR peak fitting using PIKA module of ToF-AMS HR Analysis 1.26E. Therefore, $s_{(\overline{C}_{NO^+})_{amb}}$ and $s_{(\overline{C}_{NO^+_2})_{amb}}$ is simply the peak fitting uncertainty output by PIKA.

80 S4.2 R_{pAmN} and R_{pON}

As it is typical to measure particulate ammonium nitrate (pAmN) as part of the AMS/ACSM instrument calibration, we propagate the uncertainty of R_{pAmN} from repeated NH₄NO₃ calibration ($s_{\overline{R}_{\text{pAmN}}}$, see Eq. [S8\)](#page-5-1). It thus represents how much the instrument's response to pAmN diverges over the course of time. Therefore, R_{pAMN} contributes in total to one uncertainty term and is constant for each time point.

85
$$
s_{\overline{R}_{\text{pAmN}}} = \frac{1}{\sqrt{N}} \cdot \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (R_{\text{pAmN}_i} - \overline{R}_{\text{pAmN}})^2}
$$
 (S8)

 R_{pAmN_i} : calculated R_{pAmN} value from measurement *i*

 \overline{R}_{nAmN} : average R_{nAmN} value

N : number of repeated pAmN measurements.

In this study, we omit the uncertainty of R_{pON} ($s_{\overline{R}_{\text{pON}}}$) from the propagation. Instead, the uncertainty of R_{pON} is obtained 90 through the calculation of f_{pON} using the lower and upper limit of R_{pON} described in Section [4.2.](#page-5-0) By combining the propagation of uncertainty and the range of R_{pON} , the final uncertainty will include R_{obs} , R_{pAnnN} , and R_{pON} .

S4.3 Propagation of uncertainty to the final function

The uncertainty is propagated as standard error from each variable, calculated using a simplified approach described in Eqs. [S9](#page-5-2) and [S10.](#page-5-3) This approach is used because $R_{\rm obs}$ and $R_{\rm pAmn}$ appear several times in Eq. [S1](#page-3-1) to calculate $f_{\rm pON}$. If we use the standard 95 rule of uncertainty propagation, it will result in multiple representations of the same uncertainty in the calculation, which will lead to a higher propagated uncertainty. Simplified uncertainty propagation assumes independent, uncorrelated variables to yield a common function formula. The propagated uncertainty in the form of standard error of the function (s_f) is derived from the standard error (s_{x_i}) and the partially derived function ($\frac{\partial f}{\partial x_i}$) for each variable or uncertainty source, as defined by Eq. [S9.](#page-5-2) The formula is applied to f_{pON} and gives the final uncertainty propagation equation as shown in Eq. [S10,](#page-5-3) [S11,](#page-5-4) [S12,](#page-5-5) and [S13.](#page-5-6)

100
$$
s_{f(x_i, x_{i+1}, \dots)} = \sqrt{\sum_{i=1}^{N} \left(\frac{\partial f(x_i, x_{i+1}, \dots)}{\partial x_i} \right)^2 \cdot s_{\overline{x}_i}^2}
$$
(S9)

$$
s_{f_{\text{pON}}} = \sqrt{\left(\frac{\partial f_{\text{pON}}}{\partial R_{\text{obs}}}\right)^2 \cdot s_{\overline{R}_{\text{obs}}}^2 + \left(\frac{\partial f_{\text{pON}}}{\partial R_{\text{pAmn}}}\right)^2 \cdot s_{\overline{R}_{\text{pAmn}}}^2 + \left(\frac{\partial f_{\text{pON}}}{\partial R_{\text{pON}}}\right)^2 \cdot s_{\overline{R}_{\text{pON}}}^2}
$$
(S10)

By taking f_{pON} from Eq. [S1,](#page-3-1) the partial derivatives are as follows:

$$
\frac{\partial f_{\text{pON}}}{\partial R_{\text{obs}}} = \frac{(R_{\text{pAmN}} + 1) \cdot (R_{\text{pON}} + 1)}{(R_{\text{obs}} + 1)^2 \cdot (R_{\text{pON}} - R_{\text{pAmN}})}
$$
(S11)

$$
\frac{\partial f_{\text{pON}}}{\partial P_{\text{pON}}} = \frac{(R_{\text{obs}} - R_{\text{pON}}) \cdot (R_{\text{pON}} + 1)}{(R_{\text{pON}} + 1)}
$$
(S12)

$$
\frac{\partial R_{\text{pA}}}{\partial R_{\text{pON}}} = \frac{(R_{\text{obs}} + 1) \cdot (R_{\text{pON}} - R_{\text{pA}})}{(R_{\text{obs}} + 1) \cdot (R_{\text{obs}} - R_{\text{pA}})} \tag{S13}
$$
\n
$$
\frac{\partial f_{\text{pON}}}{\partial R_{\text{pON}}} = \frac{(-R_{\text{pA}} - 1) \cdot (R_{\text{obs}} - R_{\text{pA}})}{(R_{\text{obs}} + 1) \cdot (R_{\text{pON}} - R_{\text{pA}})} \tag{S13}
$$

To propagate the uncertainty further into concentration, we combine the final uncertainty of f_{pON} and the total concentration of nitrate ($C_{pNO_3,tot}$) generated from Tofware v3.3 ($s_{\overline{C}_{pNO_3,tot}}$), using Eqs. [S14](#page-6-0) and [S15.](#page-6-1) The uncertainty of f_{pAmN} can be assumed to be equal to that of f_{pON} due to their relationship $(f_{\text{pON}} + f_{\text{pAnn}} = 1)$.

$$
s_{\overline{C}_{\text{pON}}} = C_{\text{pNO}_3,\text{tot}} \cdot f_{\text{pON}} \cdot \sqrt{\left(\frac{s_{\overline{C}_{\text{pNO}_3,\text{tot}}}}{C_{\text{pNO}_3,\text{tot}}}\right)^2 + \left(\frac{s_{\overline{f}_{\text{pON}}}}{f_{\text{pON}}}\right)^2}
$$
(S14)

$$
110 \t S_{\overline{C}_{\text{pAmN}}} = C_{\text{pNO}_3,\text{tot}} \cdot f_{\text{pAmN}} \cdot \sqrt{\left(\frac{s_{\overline{C}_{\text{pNO}_3,\text{tot}}}}{C_{\text{pNO}_3,\text{tot}}}\right)^2 + \left(\frac{s_{\overline{f}_{\text{pAmN}}}}{f_{\text{pAmN}}}\right)^2}.
$$
\n
$$
(S15)
$$

Note that the reported uncertainties are related to precision uncertainty only. Additional uncertainties associated with $C_{pNO₃}$ concentration quantification (e.g. ionization efficiency, flow rate correction) are not included here to highlight values and trends in the apportionment. These uncertainties were estimated to be $\pm 34\%$ for 2σ using an SV-AMS by [Bahreini et al.](#page-7-8) [\(2009\)](#page-7-8). We might expect the uncertainty to be even smaller when using a CV inlet due reduced uncertainties from collection efficiency 115 effects.

References

- Allan, J. D., Delia, A. E., Coe, H., Bower, K. N., Alfarra, M., Jimenez, J. L., Middlebrook, A. M., Drewnick, F., Onasch, T. B., Canagaratna, M. R., Jayne, J. T., and Worsnop, D. R.: A generalised method for the extraction of chemically resolved mass spectra from Aerodyne aerosol mass spectrometer data, Journal of Aerosol Science, 35, 909–922, https://doi.org[/10.1016/j.jaerosci.2004.02.007,](https://doi.org/10.1016/j.jaerosci.2004.02.007) 2004.
- 120 Bahreini, R., Ervens, B., Middlebrook, A. M., Warneke, C., De Gouw, J. A., DeCarlo, P. F., Jimenez, J. L., Brock, C. A., Neuman, J. A., Ryerson, T. B., Stark, H., Atlas, E., Brioude, J., Fried, A., Holloway, J. S., Peischl, J., Richter, D., Walega, J., Weibring, P., Wollny, A. G., and Fehsenfeld, F. C.: Organic aerosol formation in urban and industrial plumes near Houston and Dallas, Texas, Journal of Geophysical Research: Atmospheres, 114, 2008JD011 493, https://doi.org[/10.1029/2008JD011493,](https://doi.org/10.1029/2008JD011493) 2009.
- Carlton, A. G., De Gouw, J., Jimenez, J. L., Ambrose, J. L., Attwood, A. R., Brown, S., Baker, K. R., Brock, C., Cohen, R. C., Edgerton, 125 S., Farkas, C. M., Farmer, D., Goldstein, A. H., Gratz, L., Guenther, A., Hunt, S., Jaeglé, L., Jaffe, D. A., Mak, J., McClure, C., Nenes, A., Nguyen, T. K., Pierce, J. R., De Sa, S., Selin, N. E., Shah, V., Shaw, S., Shepson, P. B., Song, S., Stutz, J., Surratt, J. D., Turpin, B. J., Warneke, C., Washenfelder, R. A., Wennberg, P. O., and Zhou, X.: Synthesis of the Southeast Atmosphere Studies: Investigating Fundamental Atmospheric Chemistry Questions, Bulletin of the American Meteorological Society, 99, 547–567, https://doi.org[/10.1175/BAMS-](https://doi.org/10.1175/BAMS-D-16-0048.1)[D-16-0048.1,](https://doi.org/10.1175/BAMS-D-16-0048.1) 2018.
- 130 Farmer, D. K., Matsunaga, A., Docherty, K. S., Surratt, J. D., Seinfeld, J. H., Ziemann, P. J., and Jimenez, J. L.: Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry, Proceedings of the National Academy of Sciences, 107, 6670–6675, https://doi.org[/10.1073/pnas.0912340107,](https://doi.org/10.1073/pnas.0912340107) 2010.
	- Fry, J. L., Brown, S. S., Middlebrook, A. M., Edwards, P. M., Campuzano-Jost, P., Day, D. A., Jimenez, J. L., Allen, H. M., Ryerson, T. B., Pollack, I., Graus, M., Warneke, C., de Gouw, J. A., Brock, C. A., Gilman, J., Lerner, B. M., Dubé, W. P., Liao, J., and Welti, A.: Secondary
- 135 organic aerosol (SOA) yields from NO₃ radical + isoprene based on nighttime aircraft power plant plume transects, Atmospheric Chemistry and Physics, 18, 11 663–11 682, https://doi.org[/10.5194/acp-18-11663-2018,](https://doi.org/10.5194/acp-18-11663-2018) 2018.
	- Hu, W., Campuzano-Jost, P., Day, D. A., Croteau, P., Canagaratna, M. R., Jayne, J. T., Worsnop, D. R., and Jimenez, J. L.: Evaluation of the new capture vaporizer for aerosol mass spectrometers (AMS) through field studies of inorganic species, Aerosol Science and Technology, 51, 735–754, https://doi.org[/10.1080/02786826.2017.1296104,](https://doi.org/10.1080/02786826.2017.1296104) 2017.
- 140 Hu, W., Day, D. A., Campuzano-Jost, P., Nault, B. A., Park, T., Lee, T., Croteau, P., Canagaratna, M. R., Jayne, J. T., Worsnop, D. R., and Jimenez, J. L.: Evaluation of the new capture vaporizer for aerosol mass spectrometers: Characterization of organic aerosol mass spectra, Aerosol Science and Technology, 52, 725–739, https://doi.org[/10.1080/02786826.2018.1454584,](https://doi.org/10.1080/02786826.2018.1454584) 2018a.
	- Hu, W., Day, D. A., Campuzano-Jost, P., Nault, B. A., Park, T., Lee, T., Croteau, P., Canagaratna, M. R., Jayne, J. T., Worsnop, D. R., and Jimenez, J. L.: Evaluation of the New Capture Vaporizer for Aerosol Mass Spectrometers (AMS): El-
- 145 emental Composition and Source Apportionment of Organic Aerosols (OA), ACS Earth and Space Chemistry, 2, 410–421, https://doi.org[/10.1021/acsearthspacechem.8b00002,](https://doi.org/10.1021/acsearthspacechem.8b00002) 2018b.
	- Takeuchi, M. and Ng, N. L.: Chemical composition and hydrolysis of organic nitrate aerosol formed from hydroxyl and nitrate radical oxidation of α-pinene and β-pinene, Atmospheric Chemistry and Physics, 19, 12 749–12 766, https://doi.org[/10.5194/acp-19-12749-2019,](https://doi.org/10.5194/acp-19-12749-2019) 2019.