
Response to reviewer: 

We greatly appreciate the reviewer’s recognition of the value and significance of 

the present study, as well as the very valuable comments on the paper. We have 

addressed the comments carefully as detailed below. The original comments are in 

black italic and our replies in black normal font, we also put the revised paragraph in 

blue after each reply to show the changes. 

 

The manuscript entitled "A Correction Algorithm for Rotor-Induced Airflow and Flight 

Attitude Changes during Three-Dimensional Wind Speed Measurements Made from a 

Rotary Unmanned Aerial Vehicle" presents a novel algorithm designed to improve 

UAV-based wind measurements obtained through direct techniques using flow sensors. 

This topic is of high scientific relevance, as drone-based wind measurements can help 

address observational gaps within the planetary boundary layer. Furthermore, the 

manuscript aligns well with the scope of Atmospheric Measurement Techniques. 

However, I believe the manuscript requires further revisions before it is suitable for 

publication. Below, I have outlined my specific comments and suggestions for 

improvement.  

Reviewer Comments:   

1. In line 57, the manuscript states that indirect wind velocity estimates do not reflect 

flight conditions. Given extensive research on improving these methods, clarifying their 

specific drawbacks compared to direct measurements with airflow sensors would 

benefit readers.  

Response: Thank you for your valuable suggestions. We have further clarified the 

drawbacks of indirect wind speed measurements on UAVs in Lines 54-65 of the revised 

manuscript, as detailed below:  

“While these methods offer advantages of operational simplicity and cost-

effectiveness, their core principle relies on inversely estimating wind speed through 

dynamic parameters such as thrust, attitude angles, and flight velocity (Crowe et al., 

2020; Donnell et al., 2018; Sikkel et al., 2016; Simma et al., 2020). However, their 

accuracy is critically dependent on both the measurement precision of inertial 

measurement unit (IMU) and the computational reliability of inversion algorithms. 

Specifically, inherent noise interference in IMU sensors (e.g., gyroscope drift and 

accelerometer vibration noise) (Neumann and Bartholmai, 2015), combined with 

uncertainties in parameter configuration within inversion algorithms (Bonin et al., 

2013), can lead to significant deviations in wind speed estimations. Furthermore, these 

methods typically assume constant aerodynamic parameters for UAVs, an assumption 

that often fails to hold in practical complex wind field environments (Bonin et al., 

2013).” 

 

2. In line 85, the manuscript notes that wind tunnel tests can improve the accuracy of 

airspeed-UAV motion relationships but are limited by high costs and errors from 

airflow reflections. However, it lacks references supporting evidence of these errors. 

Please include any relevant references.  

Response: Thank you very much for your reminder. We have added the following 



supporting references in Line 100 (corresponding to Line 85 in the original manuscript) 

of the revised manuscript. 

“While effective in determining numerical relationships, the method is limited by 

the high cost of wind tunnel experiments (Dao et al., 2023), and more importantly, by 

the additional errors introduced by reflected airflows from the wind tunnel walls and 

ground (Haleem, 2021; Pettersson and Rizzi, 2008), as well as the same issues of full 

simulations of real UAV rotor speed and attitude changes during flight.” 

 

3. In line 169, the manuscript mentions simulation parameters but does not specify the 

CFD framework beyond stating it is a built-in SolidWorks simulation. Clarifying the 

CFD framework and comparing its advantages and disadvantages in performance 

when compared to alternatives like Ansys Fluent would benefit the reader.  

Response: We sincerely appreciate the reviewer’s valuable feedback regarding the 

clarification of the CFD framework. We have provided a detailed specification of the 

simulation methodology in the revised manuscript (Section 2.1.2, Lines 144-165):  

“2.1.2 Simulation Tool 

The CFD simulations were conducted using SolidWorks Flow Simulation 2022, a 

pressure-based finite volume solver employing a fully coupled turbulence modeling 

approach. It employs an adaptive Cartesian mesh approach for three-dimensional solid 

meshing, with the governing equations being the Navier-Stokes equations for 

simulating the interaction of fluids, and the turbulence model utilizing the standard k-ε 

two-equation model (Jonuskaite, 2017). 

The selection of SolidWorks Flow Simulation was driven by its seamless 

integration with CAD geometries, which eliminated potential errors associated with 

STL file conversions for our complex multi-rotor UAV design. Additionally, its wall 

functions for boundary layers effectively resolve gradient variations in boundary layers 

around rotating blades, reducing trial and error related to near-wall settings. The built-

in solver convergence adopts a phased approach to multiple variant scenarios, 

decreasing the need for re-runs caused by insufficient convergence and thereby 

conserving computational costs. Its unique turbulence model automatically determines 

flow regimes (laminar, transitional, and turbulent), ensuring shorter turbulence model 

setup times while maintaining enhanced model accuracy (Azmi et al., 2017; Ramya et 

al., 2015). 

While ANSYS Fluent offers advanced transient turbulence models (e.g., 

DES/LES), its computational cost for equivalent spatial resolution was typically higher 

than SolidWorks (Afaq and Ahmad, 2023). Given our need to simulate over 100 

operational scenarios, SolidWorks’ balance of engineering accuracy and computational 

tractability was deemed optimal for deriving empirical correction algorithm.” 

 

4. In line 181, the manuscript models the fluid as air with both turbulent and laminar 

flow, assuming a turbulence intensity of 0.1% and a length scale of 0.012 m. Given that 

atmospheric turbulence intensity ranges from 1% to 20% and length scales vary from 

sub-centimeter to kilometers, clarifying these assumptions would help the reader 

understand the limitations of the simulation results.  



Response: We sincerely appreciate the reviewer’s insightful comment regarding 

the turbulence parameters used in our CFD simulations. Below, we clarify the rationale 

behind our choices and explicitly address the limitations introduced by these 

assumptions: 

1) Rationale for turbulence intensity (0.1%): 

The selected turbulence intensity (0.1%) aims to isolate the rotor-induced flow 

dynamics from background atmospheric turbulence. Since the primary focus of this 

study is to characterize the systematic bias caused by the UAV rotor itself (rather than 

external atmospheric fluctuations), a low turbulence intensity was adopted to minimize 

confounding effects.  

2) Turbulence length scale (0.012 m): 

The turbulence length scale was chosen based on the characteristic geometry of 

the miniature three-dimensional ultrasonic anemometer (frame width ~0.01 m). This 

ensures that local vortices around the sensor are adequately captured. 

We have explained the rationale for setting these parameters in Lines 223-228 of 

Section 2.4 in the revised manuscript, as shown below: 

“The fluid was modeled as air with characteristics of turbulent and laminar flow. 

To isolate the rotor-induced flow dynamics from background atmospheric turbulence, 

a turbulence intensity of 0.1% and a turbulence length scale of 0.012 m were set. This 

low turbulence intensity minimizes confounding effects from ambient atmospheric 

fluctuations, while the length scale corresponds to the anemometer frame width (~0.01 

m) to resolve rotor-generated eddies. These assumptions prioritize the systematic bias 

correction for rotor-induced airflow.” 

Additionally, we fully acknowledge that the selected parameters do not represent 

the full spectrum of atmospheric turbulence. Our current results are most applicable to 

low-turbulence environments (e.g., open fields at dawn). Therefore, we have further 

supplemented the limitations of the parameter settings in this study in Section 3.6 (Lines 

504-530) of the revised manuscript, as shown below:  

“3.6 Discussion on the Limitations of the Algorithm 

The current development of algorithms based on idealized steady-state CFD 

simulations relies on two key assumptions: low environmental turbulence intensity 

(0.1%) and turbulence length scales dominated by anemometer geometric parameters 

(0.012 meters). While this idealized setup effectively isolates rotor-induced flow 

distortion, its turbulence characteristics fundamentally differ from natural atmospheric 

conditions. However, it is crucial to emphasize that the algorithm's applicability under 

turbulent conditions remains valid. This is because rotor-induced wind speed deviations 

exhibit systemic long-time-scale characteristics, whereas atmospheric turbulence 

primarily affects measurement accuracy through random fluctuations in wind speed and 

direction with instantaneous nature. This temporal-scale distinction enables our 

correction algorithm to effectively eliminate systemic biases while minimizing the 

impact of transient turbulence effects. Nevertheless, it should be noted that under stable 

atmospheric conditions (low wind speeds) as discussed in Sec. 3.5 or extreme weather 

scenarios, such airflow environments may disrupt the stable manoeuvrability of UAV 

rotors or obscure the systemic drainage effects of rotors, potentially leading to a 



nonlinear degradation in algorithm accuracy. 

In addition, another limitation of our study is the assumption of a smooth surface 

in CFD simulations, which does not fully capture the impact of surface roughness on 

wind speed variations near the ground. In reality, surface roughness elements (e.g., 

vegetation, buildings, or terrain irregularities) alter the wind profile, increasing 

turbulence and wind shear in the atmospheric surface layer. This effect is particularly 

relevant for UAV-based wind measurements at low altitudes.  

To further enhance the correction algorithm’s applicability under diverse 

environmental conditions, future research will focus on the following aspects: 

conducting sensitivity studies under different turbulence intensity conditions, 

implementing supplementary correction modules specifically targeting atmospheric 

turbulence, and incorporating surface roughness length parameters in future CFD 

simulations. Although atmospheric turbulence presents significant challenges for UAV-

based wind measurements, the correction framework established in this study has 

demonstrated its effectiveness in improving measurement accuracy across diverse 

meteorological conditions, thereby laying a critical foundation for developing reliable 

UAV-based wind measurement systems.” 

 

5. In line 236, the manuscript states that the wind speed at the anemometer location is 

minimally influenced by the UAV rotos. However, the results in Figure 9 show a 

significant change in measurements of wind speed and direction when the correction 

derived from simulation results is applied to field measurements. In fact, this change is 

greater than the change observed when correcting aircraft motion alone. The 

manuscript should address this discrepancy in results.  

Response: We sincerely appreciate the reviewer’s thoughtful observation 

regarding the apparent discrepancy between the statement in Line 236 (referring to 

Figure 5 (corresponding to Figure 3 in the original manuscript)) and the results 

presented in Figure 11 (corresponding to Figure 9 in the original manuscript). Below, 

we provide detailed clarification to address this concern: 

1) Fundamental differences in context between Figure 5 and Figure 11 

The CFD simulations in Figure 5 focus on a specific tailwind scenario to illustrate 

the spatial distribution of rotor-induced airflow under idealized conditions. In this static 

simulation, the anemometer is positioned outside the core downwash region (directly 

beneath and laterally above the rotors), resulting in minimal direct interference from 

rotor-induced airflow. This supports the claim that, in this controlled scenario, the 

measured wind speed at the anemometer location approximates the true airspeed. 

In contrast, the field observations in Figure 11 involve dynamic and complex real-

world conditions, including UAV motion and attitude variations, real-time adjustments 

in rotor thrust, and atmospheric turbulence. These factors amplify the interaction 

between rotor-induced airflow and ambient wind, even when the anemometer is not 

within the primary downwash zone. For instance, during UAV maneuvers, transient 

rotor thrust fluctuations (e.g., due to stabilization or turbulence response) can perturb 

the local airflow field dynamically, indirectly affecting the anemometer’s 

measurements. 



2) Significance of the correction algorithm in field observations 

In Figure 11, the corrected wind speed exhibits significant fluctuation amplitudes, 

reflecting the algorithm’s simultaneous resolution of three coupled issues: errors 

introduced by the UAV’s own motion and attitude changes (e.g., anemometer alignment 

deviations caused by attitude tilt) and the dynamic effects of rotor airflow on the local 

flow field. Although CFD simulations (Figure 5) indicate minimal direct influence of 

the rotors on the anemometer in static downwind scenarios, during actual flight, rotor 

thrust continuously varies due to attitude adjustments or turbulence responses. This 

indirectly alters the flow field structure around the anemometer, leading to persistent 

low-frequency deviations. For example, during UAV roll maneuvers, differences in 

thrust between the rotors on both sides may induce asymmetric distribution of local 

airflow, thereby affecting anemometer measurements. 

3) Simulation and field results 

The CFD results (Figure 5) establish a foundational understanding of rotor-

induced airflow patterns under controlled conditions. However, the field results (Figure 

11) reflect the algorithm’s necessity in addressing cumulative errors arising from the 

interplay of UAV motion, attitude changes and rotor-induced airflow. The larger 

correction magnitude in field data highlights that even subtle rotor-induced 

perturbations, when combined with UAV attitude changes, can lead to significant 

measurement biases. This underscores the algorithm’s practical value in real-world 

applications, where isolated CFD scenarios do not fully capture the complexity of 

airborne wind measurements. 

In response to the reviewer’s valuable feedback, we have already updated the 

manuscript to clarify the relationship between the CFD simulations (Figure 5) and field 

observations (Figure 11). Specifically, we added the following description in Lines 303-

308 of Section 3.1. 

“These simulation results show that the flow field around the UAV varies 

significantly depending on both the presence/absence of wind and its directional 

characteristics, and the anemometer experiences different levels of interference 

accordingly. Thus, accurately quantifying the interference of the UAV rotors on the 

anemometer is essential. However, in practical application scenarios, it is also necessary 

to comprehensively consider additional airflow disturbances induced by the UAV's own 

motion and attitude fluctuations, and to develop corresponding dynamic compensation 

algorithms.” 

 

6. In line 236, the manuscript asserts that the wind speed at the anemometer location 

is minimally affected by the UAV rotors. However, the results presented in Figure 9 

show a noticeable alteration in both wind speed and direction when the correction 

derived from simulation results is applied to the field measurements. Notably, this 

change is more pronounced than the adjustment observed when only correcting for 

aircraft motion. The manuscript should thoroughly address this discrepancy and 

provide a clearer explanation for the observed differences in the results.  

Response: We appreciate the reviewers’ insightful feedback. This comment aligns 

with the issue raised in Comment 5, for which we have already provided a detailed 



explanation in response to Comment 5. Additionally, further clarifications have been 

incorporated into the revised manuscript in Section 3.1, Lines 303-308. The specific 

details are as follows. 

“These simulation results show that the flow field around the UAV varies 

significantly depending on both the presence/absence of wind and its directional 

characteristics, and the anemometer experiences different levels of interference 

accordingly. Thus, accurately quantifying the interference of the UAV rotors on the 

anemometer is essential. However, in practical application scenarios, it is also necessary 

to comprehensively consider additional airflow disturbances induced by the UAV's own 

motion and attitude fluctuations, and to develop corresponding dynamic compensation 

algorithms.” 

 

7. In the caption of Figure 9, it is mentioned that UAV measurements were first averaged 

using a 10-second sliding window before calculating 5-second averages. However, the 

rationale for applying a 10-second sliding average prior to computing the 5-second 

average is unclear. Given that moving averages can smooth out real wind fluctuations, 

further clarification on the necessity and impact of this approach would be beneficial 

to the reader.  

Response: We sincerely appreciate the reviewer’s insightful question regarding 

the rationale behind applying a 10 s sliding window prior to computing 5 s averages in 

Figure 11 (corresponding to Figure 9 in the original manuscript). This approach was 

carefully designed to address two key challenges in the UAV-based wind measurement 

system, and we provide the following clarifications: 

The raw wind measurements from the UAV (before correction) inherently contain 

high-frequency fluctuations caused by rotor-induced turbulence and rapid attitude 

changes. These perturbations occur at sub-second timescales, which are unrelated to 

atmospheric wind variability. A 10 s sliding window was selected based on spectral 

analysis of the raw data, as it effectively suppresses noise about 0.1 Hz while preserving 

the signal trends relevant to atmospheric motions. This step ensures comparability with 

the meteorological tower’s 5 s data, which inherently lacks such high-frequency 

artifacts due to its stable mounting and calibrated anemometers. 

After noise reduction via the 10 s sliding average, we calculated non-overlapping 

5 s averages to exactly match the temporal resolution of the meteorological tower 

measurements (5 s discrete outputs). This two-step averaging ensures both datasets 

share identical timestamps and statistical representativeness, enabling a fair comparison 

between the VT and VR. 

Furthermore, we have made the following modifications to the title of Figure 11 

in the revised manuscript:  

“Figure 11: Comparison of wind speed and wind direction time series for VR, VO, 

and VT. (a) Comparison of wind speed time series for VR, VO, and VT. (b) Comparison 

of wind direction time series for VR, VO, and VT. (Note: The meteorological tower 

measured wind data at 5 s intervals, while the UAV-based measured and corrected wind 

data were processed with a 10 s sliding average to suppress rotor-induced high-

frequency noise, followed by 5 s non-overlapping averaging to align temporally with 



the tower’s 5 s output interval.)” 

 

8. In line 393, it is mentioned that a UAV was flown around a meteorological tower in 

a box pattern. However, the manuscript does not provide any information on the 

commanded flight speed during these experiments. Including this detail would be highly 

valuable for the reader, as the UAV’s operating speed is a crucial parameter for 

understanding the validation results.  

Response: We sincerely appreciate the reviewer’s perceptive suggestion. In the 

revised manuscript, we have supplemented the commanded flight speed information in 

Section 3.5, Lines 457-461, as shown below. 

“The UAV flew around the tower in a box flight path at a horizontal distance of 

about 10 m away from the tower, at all three heights. During these flights, the UAV 

maintained a commanded horizontal speed of approximately 5 m/s, a value selected as 

a compromise between achieving sufficient spatial sampling resolution and maintaining 

stable flight attitude control.” 

 

9.The validation results presented in Figure 9 show large errors in wind speed and wind 

direction estimates while operating in low wind conditions. A more thorough discussion 

of these errors would strengthen the contribution of this manuscript. Moreover, 

understanding the limitations of the presented algorithms would help the growing 

community of scientists using UAV-based algorithms for wind sensing assess the impact 

of this algorithm.  

Response: We sincerely thank the reviewers for their constructive feedback 

regarding the observation errors under low wind speed conditions. In the revised 

manuscript, we have expanded the discussion in Section 3.5 (Lines 484-486) as follows 

to further clarify the reasons for the algorithm’s mediocre performance under low wind 

speeds: 

“The mediocre performance of VR under low wind speeds may originate from the 

disruption of stable maneuverability in drone rotors caused by low wind speeds, which 

in turn leads to the failure of the correction algorithm based on CFD steady-state 

simulations.” 

In addition, we have also pointed out the corresponding limitations of this 

algorithm in Section 3.6, Lines 506-532: 

“3.6 Discussion on the Limitations of the Algorithm 

The current development of algorithms based on idealized steady-state CFD 

simulations relies on two key assumptions: low environmental turbulence intensity 

(0.1%) and turbulence length scales dominated by anemometer geometric parameters 

(0.012 meters). While this idealized setup effectively isolates rotor-induced flow 

distortion, its turbulence characteristics fundamentally differ from natural atmospheric 

conditions. However, it is crucial to emphasize that the algorithm's applicability under 

turbulent conditions remains valid. This is because rotor-induced wind speed deviations 

exhibit systemic long-time-scale characteristics, whereas atmospheric turbulence 

primarily affects measurement accuracy through random fluctuations in wind speed and 

direction with instantaneous nature. This temporal-scale distinction enables our 



correction algorithm to effectively eliminate systemic biases while minimizing the 

impact of transient turbulence effects. Nevertheless, it should be noted that under stable 

atmospheric conditions (low wind speeds) as discussed in Sec. 3.5 or extreme weather 

scenarios, such airflow environments may disrupt the stable manoeuvrability of UAV 

rotors or obscure the systemic drainage effects of rotors, potentially leading to a 

nonlinear degradation in algorithm accuracy. 

In addition, another limitation of our study is the assumption of a smooth surface 

in CFD simulations, which does not fully capture the impact of surface roughness on 

wind speed variations near the ground. In reality, surface roughness elements (e.g., 

vegetation, buildings, or terrain irregularities) alter the wind profile, increasing 

turbulence and wind shear in the atmospheric surface layer. This effect is particularly 

relevant for UAV-based wind measurements at low altitudes.  

To further enhance the correction algorithm’s applicability under diverse 

environmental conditions, future research will focus on the following aspects: 

conducting sensitivity studies under different turbulence intensity conditions, 

implementing supplementary correction modules specifically targeting atmospheric 

turbulence, and incorporating surface roughness length parameters in future CFD 

simulations. Although atmospheric turbulence presents significant challenges for UAV-

based wind measurements, the correction framework established in this study has 

demonstrated its effectiveness in improving measurement accuracy across diverse 

meteorological conditions, thereby laying a critical foundation for developing reliable 

UAV-based wind measurement systems.” 

 

10. The validation results presented in Figure 9 reveal significant errors in wind speed 

and direction estimates, particularly under low wind conditions. A more comprehensive 

discussion of these errors would strengthen the manuscript by offering deeper insights 

into the algorithm’s performance. For instance, exploring the correlation between VO , 

VR, and VT could provide valuable context, especially given the critical role of accurate 

wind fluctuation estimates in turbulence measurements. Furthermore, a clearer 

examination of the algorithm’s limitations would greatly benefit the growing community 

of scientists employing UAV-based wind sensing algorithms, helping them better 

evaluate its potential impact and applicability.  

Response: We thank the reviewer for their careful comment. This comment is 

similar to Comment 9, and we have revised the manuscript accordingly based on the 

previous feedback. These revisions are also applicable to the current comment. 

 


