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Abstract. With the rapid development of active-phased arrays and solid-state transmitters, pulse compression technology has 

become increasingly important. Currently, pulse compression waveforms with peak sidelobe levels better than -50 dB have 10 

been developed, enabling the broader application of pulse compression technology in weather radar systems. However, 

existing sidelobe suppression levels are still insufficient to ensure that radar data quality is unaffected by range sidelobes for 

ship clutter, which have a high echo intensity and cannot be removed by conventional quality control methods. In this study, 

we introduce a Hybrid Ship Clutter Identification (HSCI) algorithm to address this issue in pulse compression polarimetric 

radar observations. The HSCI algorithm comprises two parts: mainlobe and sidelobe identification (including the range and 15 

antenna sidelobes). Mainlobe identification uses a random forest model that integrates multiple features to identify the 

mainlobe of ship clutter. Sidelobe identification uses a series of heuristic criteria derived from the statistical characteristics of 

ship clutter to distinguish them from precipitation echoes. The analysis results of two typical cases indicate that after 

implementing the HSCI algorithm, the impact of ship clutter on radar data is visually imperceptible. The statistical results 

show that the HSCI algorithm achieves a ship clutter mainlobe identification rate of 97.25% with a misidentification rate of 20 

only 0.08% in the precipitation data. Application of this algorithm to the University of Helsinki C-band dual-polarization 

Doppler weather radar data successfully reproduced ship tracks in the Gulf of Finland. 

1 Introduction 

As a sophisticated observation instrument, weather radar has significantly advanced research in disaster weather warning 

(Sandmæl et al., 2023; Chen et al., 2024), precipitation microphysics (Ho et al., 2023; Li et al., 2024), and quantitative 25 

precipitation estimation (Li et al., 2023; Hanft et al., 2023). Evolving demands for meteorological applications continue to 

drive improvements in radar performance and data quality, thereby stimulating the development of innovative radar 

technologies. Pulse compression, which modulates radar signals to increase bandwidth and thus achieve a better range 

resolution, is a typical example (Cook and Bernfeld, 1967; Rihaczek, 1969). However, the pulse compression technique was 
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initially not widely adopted in the meteorological field because its associated range of sidelobes could obscure weak targets 30 

near strong ones. 

The recent growing popularity of solid-state transmitters and phased array radars (Weber et al., 2021; Palmer et al., 2022; 

Kollias et al., 2022), has seen rapid advances in pulse compression technology. Bharadwaj and Chandrasekar (2012) 

proposed a combination of a continuous nonlinear frequency modulation (NLFM) waveform with a minimum integrated 

sidelobe level filter, and its performance was validated for reflectivity steps up to 40 dB through simulation experiments. 35 

Kurdzo et al. (2014) introduced an NLFM waveform designed using a genetic algorithm. Specifically, this approach 

optimized the frequency function represented by a Bezier curve to generate an NLFM waveform with low sidelobes and high 

range resolution. Compared with traditional windowed methods, this technique offered a sensitivity gain of approximately 3 

dB. Torres et al. (2017) also used a genetic algorithm to design an NLFM waveform tailored to operational requirements, 

focusing on minimizing the transmission bandwidth as the primary optimization goal. Other optimization techniques used in 40 

this field include simulated annealing (Pang et al., 2015) and quadratic optimization (Argenti and Facheris, 2020). Owing to 

these advanced technologies, range sidelobes have been effectively suppressed, enabling the broader adoption of pulse 

compression technology in weather radar systems. 

Like conventional short-pulse radar, pulse compression radar data can also be contaminated by non-meteorological echoes. 

Therefore, quality control is crucial for the effective use of radar data. Ground clutter, a common type of non-meteorological 45 

echo, is caused by scattering from stationary targets, such as buildings or mountains (Billingsley, 2002). Typically, ground 

clutter exhibits a near-zero Doppler velocity and narrow Doppler spectrum width (Hubbert et al., 2009a). Numerous ground 

clutter identification and filtering algorithms have been developed based on this characteristic (Hubbert et al., 2009b; Torres 

and Warde, 2014; Golbon-Haghighi et al., 2018; Hubbert et al., 2021), and have achieved substantial success (Fig. 1). 

Biological echoes, caused by scattering from airborne biological entities, such as insects and birds, represent another 50 

frequent source of non-meteorological echoes (Stepanian et al., 2016). Given that the shape, orientation, and other attributes 

of biological targets differ significantly from precipitation particles, simple metrics such as correlation coefficients or 

depolarization ratio thresholds can effectively distinguish between these two types of targets (as demonstrated in Fig. 2; 

Kilambi et al., 2018; Pérez Hortal and Michelson, 2023). 

 55 
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Figure 1: 0.5° elevation of Kumpula radar using linear frequency-modulation (LFM) waveform at 1800 UTC 3 May 2020. The 
Gaussian model adaptive processing (GMAP) algorithm built into the RVP900 signal processor was adopted to achieve this 
performance. (a) Raw reflectivity; (b) Reflectivity after ground clutter filtering. 

 60 

 
Figure 2: 0.5° elevation of Kumpula radar using LFM waveform at 0845 UTC 4 June 2020. Precipitation echoes are concentrated 
within azimuthal intervals of approximately 60–180° with high correlation coefficient, while other sectors are mainly affected by 
biological echoes with low correlation coefficient. (a) Filtered reflectivity; (b) Correlation coefficient. 

 65 

In addition to the commonly-observed ground clutter and biological echoes, weather radars deployed along coastlines 

usually detect echoes scattered from ships, referred to as ship clutter, in meteorological contexts (Overeem et al., 2020). 

Unlike other forms of clutter, ship clutter exhibits non-zero Doppler velocities and high correlation coefficients, making it 

challenging for existing quality control methods to suppress it effectively (as depicted in Fig. 3). Typically, a ship spans one 

or more range gates. However, in pulse compression radar systems, the impact of ship clutter is not confined to these gates 70 

but also extends radially and tangentially because of the range and antenna sidelobes. As illustrated in Fig. 3, this results in 

numerous cross-shaped patterns that can extend over ten kilometers on the plan position indicator (PPI), significantly 

compromising the quality of the radar data. 
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 75 
Figure 3: 0.5° elevation of Kumpula radar using LFM waveform at 1210 UTC 5 May 2020. Several ships present cross-shaped 
radar variable fields, as well as non-zero Doppler velocity and high correlation coefficients. (a) Filtered reflectivity; (b) Doppler 
velocity; (c) Correlation coefficient. 

 

In this study, we propose a Hybrid Ship Clutter Identification (HSCI) algorithm to enhance the data quality and 80 

meteorological application performance of pulse compression radars. The instruments and related datasets used in this study 

are described in Sect. 2. Section 3 provides an in-depth description of the HSCI algorithm, while Sect. 4 presents the 

algorithm performance evaluation results. Discussion and summary are presented in Sects. 5 and 6, respectively. 

2 Instrument and data 

At the Kumpula campus of the University of Helsinki, a C-band dual-polarization Doppler weather radar (hereinafter 85 

referred to as the Kumpula radar) was installed on the rooftop of the Department of Physics building (60.204°N, 24.269°E, 

60 m above mean sea level). In 2019, the klystron transmitter of the Kumpula radar was upgraded to two solid-state 

transmitters supported by Vaisala Oyj. The radar currently serves as a prototype for evaluating the performance of solid-state 

transmitters and pulse compression technology. Observational data collected between May and June 2020 were used in this 

study. 90 

The archived data from the Kumpula radar include the reflectivity factor at horizontal polarization (𝑍!), Doppler velocity 

(𝜐" ), Doppler spectrum width (𝜎# ), differential reflectivity (𝑍$% ), differential phase (𝜙$& ), and co-polar correlation 

coefficient (𝜌!'). The scanning strategy used by the Kumpula radar diverges from that used in operational radars, such as the 

volume coverage pattern 21 used by the Weather Surveillance Radar-1988 Doppler (Crum and Alberty, 1993). Specifically, 

the Kumpula radar conducts three PPI scans at an elevation of 0.5°, using diverse transmitting waveforms: 1) unmodulated 95 

short pulse (SP), LFM, and NLFM. For the LFM and NLFM waveforms, a frequency diversity technique was applied to 

address the blind-zone issue (Bharadwaj and Chandrasekar, 2012). This involves transmitting an additional unmodulated 

short pulse (ASP) at a slightly shifted frequency to cover the blind zones created by the modulated pulses. The detailed 

system characteristics of the Kumpula radar and settings for different waveforms are listed in Table 1. 

 100 
Table 1: System characteristics and waveform settings of the Kumpula radar. 
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 SP LFM NLFM ASP 

Pulse width (µs) 4.5 90 90 1 

Swept bandwidth (MHz) / 2 3.8 / 

Pulse repetition frequency (Hz) 600 800 800 800 

Transmitter type Dual solid-state amplifiers 

Polarization Dual linear 

Frequency (GHz) 5.6 ∼ 5.65 

Peak power (kW) 4.5 

Maximum duty cycle 30% 

3-dB beam width (◦) 1 

Antenna diameter (m) 4.2 

Antenna gain (dB) 45 

Sample number 40 

Range gate spacing (m) 150 

 

The Kumpula radar, situated on the north coast of the Gulf of Finland, which is a crucial waterway in Northern Europe, 

frequently detects ship clutter at low elevation angles. We compiled a radar dataset for ship clutter by manually identifying 

the distinct strong point echoes and cross-shaped signatures. When these static signatures were insufficient to confirm the 105 

presence of ship clutter, the movement of echoes across consecutive scans was used as supplementary evidence. Given that 

ships typically take several hours to traverse the effective field of view of the radar, we extracted only one scan per hour to 

maintain a high level of diversity and independence among the different instances of ship clutter. Ultimately, this method 

yielded a dataset comprising nearly 1600 ship clutter events across 110 scans. 

The precipitation dataset was manually extracted from four precipitation events that occurred on May 10, May 15, June 4, 110 

and June 5, 2020. Despite the Kumpula radar using pulse compression technology, which inherently produces range 

sidelobes, its peak sidelobe level was maintained below -50 dB (as shown in Sect. 3.2.1 below). Furthermore, the range 

sidelobes from strong precipitation echoes are typically overshadowed by the surrounding medium-intensity precipitation 

echoes. Consequently, for most precipitation echoes, the impact of range sidelobes was not significant. It is important to note 

that both datasets—ship clutter and precipitation—were derived from observational results obtained using the LFM 115 

waveform. 

3 Method 

Figure 4 shows a flowchart outlining the HSCI algorithm, which uses a straightforward sequential structure. The process 

begins with the identification of the mainlobe of the ship clutter in the radar data. If the identification results indicate the 
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presence of ship clutter, the procedure continues with the identification of ship clutter sidelobes, followed by the removal of 120 

the entire ship clutter (i.e., both the mainlobe and sidelobes). The range gate exhibiting the highest reflectivity within the 

ship clutter is regarded as the mainlobe, whereas the remaining range gates are considered sidelobes. 

 

 
Figure 4: Flowchart of the HSCI algorithm. 125 

 

3.1 Mainlobe identification 

3.1.1 Region limitation 

A single scan from weather radar typically yields hundreds of thousands of range gate observations. If the algorithm 

processes each gate individually, its efficiency is exceedingly low. Moreover, because precipitation echoes occur more 130 

frequently and cover larger areas than ship clutter, there is a heightened risk of misidentifying these echoes as ship clutter. 

Therefore, narrowing the identification area is crucial. 

The HSCI algorithm incorporates three specific constraints to enhance efficiency and accuracy: 

1) Identification is conducted only over sea areas, as this is naturally the most likely location for ship clutter. 
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2) Identification of range gates with local maximum reflectivity is based on the definition used in this study, in which the 135 

mainlobe is the range gate with the highest reflectivity within the ship clutter. 

3) A reflectivity threshold is set (defaulting to 20 dBZ) because ship clutter with lower reflectivity typically does not 

compromise data quality significantly. 

3.1.2 Feature calculation 

Extracting features from radar variable fields that can differentiate between ship clutter and precipitation echoes is a crucial 140 

step in the implementation of machine learning algorithms. Upon analyzing these fields, six distinct features were identified: 

Reflectivity Difference (RD), Reflectivity Gradient Flag (RGF), 𝜎#, Spectrum Width Ratio (SWR), 𝑍$%, and Correlation 

Coefficient Difference (CCD). 

(1) RD 

The ship is a typical point target. As depicted in Fig. 3a, there was a sharp decrease in the reflectivity when the ship moved 145 

from being directly in the beam’s mainlobe to being slightly off-center. This pattern was also observed in the pulse 

compression radar along the radial direction. Within the HSCI algorithm, RD was developed to quantify this phenomenon, 

which is defined as: 

𝑅𝐷 = 𝑚𝑎𝑥	[𝑍!(𝑥, 𝑦) − 𝑍!(𝑥 − 1, 𝑦), 𝑍!(𝑥, 𝑦) − 𝑍!(𝑥 + 1, 𝑦), 𝑍!(𝑥, 𝑦) − 𝑍!(𝑥, 𝑦 − 1), 𝑍!(𝑥, 𝑦) − 𝑍!(𝑥, 𝑦 + 1)] ,        (1) 

where x and y represent the tangential and radial indices of the mainlobe in the radar variable field, respectively, and max 150 

denotes the maximum-value function. 

(2) RGF 

The principle of the RGF is like that of the RD, indicating that the reflectivity decreases as the distance from the mainlobe 

increases. RGF is defined as follows: 

𝑅𝐺𝐹 = [𝑍!(𝑥 − 1, 𝑦) > 𝑍!(𝑥 − 2, 𝑦)]&[𝑍!(𝑥 + 1, 𝑦) > 𝑍!(𝑥 + 2, 𝑦)]&[𝑍!(𝑥, 𝑦 − 1) > 𝑍!(𝑥, 𝑦 − 2)]&[𝑍!(𝑥, 𝑦 + 1) >155 

𝑍!(𝑥, 𝑦 + 2)] ,                   (2) 

where & represents the AND operation. It is important to note that, unlike RD and the other features, RGF yields a Boolean 

value. 

(3) 𝜎# 

As a rigid target, a ship exhibits extremely high velocity consistency. In contrast to the precipitation echo, which is formed 160 

by a multitude of precipitation particles within the sampling volume, the mainlobe of ship clutter displays a significantly 

lower 𝜎#, comparable even to ground clutter. Consequently, 𝜎# was chosen as one of the features in the HSCI algorithm. 

(4) SWR 

When analyzing the 𝜎# of ship clutter, a sudden change in the 𝜎# values at the position of the mainlobe and its adjacent 

antenna sidelobes was observed such that 𝜎#(𝑥 ± 1, 𝑦) ≫ 𝜎#(𝑥, 𝑦). This phenomenon was observed by Feng and Fabry 165 
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(2016). It was explained by the sharp change in the antenna phase pattern near the mainlobe and highlights a distinct 

characteristic of ship clutter. 

Although 𝜎#(𝑥 ± 1, 𝑦) > 𝜎#(𝑥, 𝑦), the difference is relatively minor when compared to the 𝜎# of precipitation echoes. To 

better illustrate the relative relationship between 𝜎#(𝑥 ± 1, 𝑦) and 𝜎#(𝑥, 𝑦), we propose using the SWR, defined as follows: 

𝑆𝑊𝑅 = max	[(!(*+,,.)
(!(*,.)

, (!(*0,,.)
(!(*,.)

] .                  (3) 170 

(5) 𝑍$% 

𝑍$%, the ratio of reflectivity from horizontal to vertical polarization, can to some extent indicate the shape of precipitation 

particles (Seliga and Bringi, 1976). During descent, raindrops encounter air resistance that causes large raindrops to split into 

smaller droplets. On the other hand, hail tumbles as it falls, leading to 𝑍$% values close to 0 dB. Consequently, 𝑍$% values 

for most precipitation echoes typically fall within the specific range of (-1 to 6 dB; Kumjian, 2013). However, in our analysis 175 

of ship clutter, we observed that 𝑍$% values varied almost randomly across the entire range (-8 to 8 dB in Kumpula radar). 

Thus, 𝑍$% was incorporated as a feature into the HSCI algorithm. 

(6) CCD 

As depicted in Figs. 2b and 3c, the mainlobe of ship clutter typically exhibits a high 𝜌!', like that of precipitation echoes, 

while that in the antenna sidelobes of ship clutter sharply decreases. This phenomenon can be attributed to the antenna 180 

pattern, where the horizontal and vertical polarization channels align well in the mainlobe but mismatch in the sidelobes. 

Consequently, this study introduces the CCD to quantify the disparity between the antenna mainlobe and the sidelobes of 

ship clutter. The CCD is defined as follows: 

𝐶𝐶𝐷 = max	[𝜌!'(𝑥, 𝑦) − 𝜌!'(𝑥 − 2, 𝑦), 𝜌!'(𝑥, 𝑦) − 𝜌!'(𝑥 + 2, 𝑦)] .              (4) 

 185 

Figure 5 shows the normalized histograms for the six features of ship clutter and precipitation echoes using the datasets 

specified in Sect. 2. The overlapping areas of the probability distribution densities of the two echo types are listed in Table 2. 

This overlap quantitatively reflects the discriminatory ability of each feature, with smaller values indicating better 

differentiation capability. Although the statistical analysis revealed that RD offers the most effective discrimination among 

all the features, neither ship clutter nor precipitation echoes can be accurately distinguished by relying solely on a single 190 

feature. Thus, it is essential to integrate multiple features to further enhance the identification accuracy. 
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Figure 5: Normalized histograms of six features across selected datasets. (a) RD; (b) RGF; (c) 𝝈𝝊; (d) SWR; (e) 𝒁𝑫𝑹; and (f) CCD. 
Blue and orange denote ship clutter and precipitation echoes, respectively. 195 

 
Table 2: Overlapping area between normalized histograms for ship clutter and precipitation echoes of six features. 

Feature Overlapping area 

RD 14.34% 

RGF 25.93% 

𝜎# 26.56% 

SWR 34.13% 

𝑍$% 33.35% 

CCD 20.19% 

 

3.1.3 Identification model 

In this study, a random forest model was used to integrate multiple features to identify ship clutter. Random forest is a 200 

classic machine learning algorithm that primarily constructs multiple decision trees and combines their prediction results to 

enhance overall prediction accuracy and stability. Owing to the advantages of random forest, such as high execution 

efficiency, no need to scale input features, and the ability to handle missing data, it has been widely used in the field of 

weather radar, including tornado identification (Sandmæl et al., 2023), precipitation forecasting (Mao and Sorteberg, 2020), 
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and raindrop size distribution retrievals (Conrick et al., 2020). This study does not provide an in-depth introduction to the 205 

principle of the random forest algorithm; details can be found in Ho (1998) and Breiman (2001). 

Like other supervised learning methods, the development of the random forest model involves two steps: training and testing. 

The ship clutter and precipitation datasets mentioned in Sect. 2 were split into training and test sets at a ratio of 3:1. 

Although the selected precipitation dataset is extensive, approximately 10,000 range gates only remain after applying the 

region limitation described in Sect. 3.1.1 (7,500 for training and 2,500 for testing). In this study, the Python Scikit-learn 210 

machine learning library was used for training, testing, and subsequent prediction tasks (Pedregosa et al., 2011). The input 

for the random forest model comprises the six features of the target range gate, and the output is a Boolean identification 

result, where 1 and 0 represent ship clutter and precipitation echoes, respectively. The hyperparameter configurations of the 

random forest model in the HSCI algorithm are listed in Table 3. The "GridSearchCV" method from Scikit-learn was used to 

determine the optimal hyperparameters (listed in the third column of Table 3) by tuning the model through iterations over the 215 

hyperparameter value ranges (shown in the second column of Table 3). A detailed description of these hyperparameters can 

be found in Pedregosa et al., (2011). 

 
Table 3: List of hyperparameter values used in random forest model for HSCI algorithm. 

Hyperparameter Value range Selected value 

n_estimators 10, 20, 50, 100, 200 100 

criterion entropy, gini entropy 

max_depth None, 5, 10 5 

min_samples_split 1, 2, 4 4 

min_samples_leaf 1, 2, 4 1 

min_weight_fraction_leaf 0 0 

max_features None, auto auto 

max_leaf_nodes None 

min_impurity_decrease 0 

bootstrap True 

oob_score False 

random_state None 

warm_start False 

class_weight balanced_subsample 

 220 
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3.2 Sidelobe identification 

3.2.1 Adaptively determine the potential sidelobe distribution (PSD) 

Although the scattered energy of the ship clutter is predominantly concentrated in the mainlobe, the extensive distribution of 

weaker sidelobes can significantly interfere with radar data applications. Therefore, once the mainlobe is identified, the next 

step involves identifying the sidelobes. Unlike mainlobe identification, which is performed gate by gate, sidelobe 225 

identification leverages mainlobe identification results to determine the PSD. 

Sidelobes in ship clutter typically appear in a cross-shape but vary in size. The signal-to-noise ratio (SNR) of a sidelobe at 

different positions (𝑆𝑁𝑅1234(∆𝑥, ∆𝑦)) is influenced by the SNR of the mainlobe (𝑆𝑁𝑅5627), the ambiguity function, and the 

antenna pattern, where ∆𝑥 and ∆𝑦 represent the distance from the mainlobe in tangential and radial directions, respectively. 

If 𝑆𝑁𝑅1234(∆𝑥, ∆𝑦) at a range gate falls below a set SNR threshold, that gate will be masked, and no radar variables will be 230 

output. Therefore, a static PSD setting may be insufficient when 𝑆𝑁𝑅5627 is high, and excessive when 𝑆𝑁𝑅5627 is low. 

To determine the sidelobe distribution settings more effectively, it is essential to make adaptive decisions for different ship 

clutter events. Three main factors influence the sidelobe distribution: 𝑆𝑁𝑅5627, the relative power between the mainlobe and 

sidelobe, and the SNR threshold used in the radar variable estimation. Although the Kumpula radar does not directly output 

SNR values, this study proposes a method to obtain the SNR indirectly from reflectivity (details in the Appendix). Moreover, 235 

the SNR threshold is set by the user and is a known value (1.5 dB for the Kumpula radar). The relative power between the 

mainlobe and sidelobe can be calculated theoretically using the ambiguity function of the specified pulse compression 

waveform and antenna pattern. However, discrepancies between theoretical analysis and actual observations may arise 

because of unforeseen factors. Consequently, this study derived the relative power between the mainlobe and sidelobe 

through a statistical analysis of actual data. 240 

To capture as many sidelobe distribution characteristics as possible, only ship clutter with 𝑆𝑁𝑅5627 > 50 dB was selected 

from the dataset. Because statistical results can be skewed by echoes from other sources that overlap with the mainlobe 

and/or sidelobe of the ship clutter, only eight relatively isolated ship clutter events were ultimately selected for the analysis 

of PSD statistics. For these clutter events, range gates where sidelobes were located were manually selected within 13.5 km 

(90 gates on Kumpula radar) in the radial direction and 15 degrees (15 rays) in the tangential direction, centered on the 245 

mainlobe. To facilitate statistical analysis across different ship clutter events, the SNR values of the ship clutter were 

normalized (i.e., the 𝑆𝑁𝑅5627  and 𝑆𝑁𝑅1234(∆𝑥, ∆𝑦)  were subtracted from the 𝑆𝑁𝑅5627  in dB units). Owing to several 

factors in actual observations, the relative relationship between the mainlobe and sidelobes of the eight ship clutter events 

was inconsistent. As previously discussed, to capture as many sidelobe distribution characteristics as possible (thereby 

ensuring the results are applicable across a wide range of scenarios), the maximum value of 𝑆𝑁𝑅1234(∆𝑥, ∆𝑦) from the eight 250 

ship clutter events was selected. Additionally, the maximum values of the antenna sidelobes were obtained on both sides, 

using the antenna mainlobe as the reference axis. 
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The statistical results of the relative power between the mainlobe and sidelobe are shown in Fig. 6. When a range gate was 

identified as the mainlobe of the ship clutter, the SNR differences between it and the surrounding range gates were calculated. 

Range gates with SNR differences exceeding the statistical results shown in Fig. 6 were identified as PSD. 255 

 

 
Figure 6: Statistical result of the relative power between the mainlobe and sidelobe for eight ship clutter events with high SNR. 

 

3.2.2 Velocity and SNR filter 260 

As shown in Fig. 7, the adaptively determined PSD is effective in identifying all affected range gates for isolated ship clutter. 

However, when ship clutter overlaps with other types of echoes, such as the precipitation echoes shown in Fig. 8, eliminating 

the PSD can lead to loss of important information. In other words, the PSD is a sufficient but unnecessary condition for the 

sidelobe distribution of the ship clutter. Thus, additional constraints are required to refine the PSD screening. 

 265 
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Figure 7: 0.5° elevation of Kumpula radar using LFM waveform at 1155 UTC 5 May 2020. (a) Reflectivity before ship-clutter 
filtering; (b) Reflectivity after filtering all range gates in the PSD; (c) Doppler velocity; (d) Reflectivity after filtering using velocity 
and SNR thresholds. 

 270 
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Figure 8:0.5° elevation of Kumpula radar using LFM waveform at 1955 UTC 4 June 2020. (a) Reflectivity before ship-clutter 
filtering; (b) Reflectivity after filtering all range gates in the PSD; (c) Doppler velocity; (d) Reflectivity after filtering using velocity 
and SNR thresholds. 

 275 

When analyzing the signatures of ship clutter across different radar variables, it was found that the 𝜐"  of the sidelobes 

exhibits consistent patterns. This consistency makes 𝜐" a highly effective indicator for PSD screening. As shown in Fig. 7a, 

among the five identified ship clutter events, Nos. 1 and 4 are particularly notable for their distinct cross-shaped patterns. 

Correspondingly, their 𝜐" (Fig. 7c) also display cross-shaped distributions with small differences within each group (standard 

deviations of 0.48 and 0.37 m/s, respectively). 280 

To quantitatively assess the 𝜐" distribution of ship clutter, we selected datasets based on criteria like those for PSD statistics 

described in Sect. 3.2.1, albeit with less stringent SNR requirements. Consequently, statistics were gathered from 65 ship 

clutter samples. After normalizing the SNR and 𝜐" of the ship clutter sidelobes, the data was categorized into bins based on 

the power difference between the sidelobes and the mainlobe, ranging from -80 to 0 dB in 20 dB increments. The statistical 

outcomes, illustrated in the violin plot in Fig. 9, indicate that while there are outliers, a 𝜐" threshold of 1 m/s is adequate to 285 

encompass most ship clutter sidelobes. 
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Figure 9: Violin plots showing the normalizing 𝝊𝒓 for normalizing SNR of ship clutter sidelobes from -80 to 0 dB in steps of 20 dB. 

 290 

A notable exception, however, is ship clutter No. 1 in Fig. 8, where precipitation and ship clutter overlap and exhibit similar 

𝜐" values. To address this, we introduced an additional SNR threshold, that is, the SNR of the ship clutter sidelobe must 

exceed the lower limit used for PSD determination in Sect. 3.2.1, but not exceed the higher SNR threshold (default to 10 dB). 

Typically, the SNR of ship clutter sidelobes is lower than that of precipitation echoes. 

The identification results, after applying 𝜐" and SNR thresholds, are presented in Figs. 7d and 8d. Compared with Fig. 8a, 295 

Fig. 8d effectively isolates and removes only the regions affected by ship clutter, with minimal loss of precipitation echo 

information. Meanwhile, there is no observable degradation in the identification performance for the isolated ship clutter 

between Figs 7a and 7d. 

4 Performance evaluation 

4.1 Case analysis 300 

Figure 10 presents a typical clear air scenario observed by the Kumpula radar at 1310 UTC on May 5, 2020, where several 

ship clutter events were observed in isolation from the precipitation and sea clutter. The results of the mainlobe identification 

are indicated by red circles. In Fig. 10a, which displays the 𝑍! before the application of ship clutter filtering, both strong 

cross-shaped and weaker point-shaped ship clutter are evident. Following the implementation of ship clutter filtering, as 

shown in Fig. 10b, both strong and weak ship clutter were effectively removed. The influence of ship clutter on 𝑍! was 305 

substantially mitigated, rendering it visually undetectable. 
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Figure 10: Reflectivity on 0.5° elevation of Kumpula radar using LFM waveform at 1310 UTC 5 May 2020. (a) Before ship clutter 
filtering; (b) After ship clutter filtering. The mainlobe identification results are highlighted by red circles. 310 

 

A precipitation event observed by the Kumpula radar at 0040 UTC on June 5, 2020 is shown in Fig. 11, in which several 

ship clutter events were completely mixed with precipitation echoes. The results of the mainlobe identification are indicated 

by the red circles in Figs. 11a and 11b and white circles in Figs. 11c and 11d. The ship clutter mainlobe exhibits distinct 

characteristics from the surrounding precipitation echoes in the 𝜐"  field, which supports the accuracy of the mainlobe 315 

identification results to some extent. In cases where ship clutter sidelobes are involved, the echo intensity of most ship clutter 

sidelobes is generally lower than that of the adjacent precipitation echoes. As a result, the intrinsic characteristics of the ship 

clutter sidelobes, such as the 𝜐" values approaching those of the ship clutter mainlobe, are not prominently displayed in these 

overlapping range gates. Instead, the characteristics of the dominant precipitation echoes prevail. Consequently, it is prudent 

to eliminate only the mainlobe and the sidelobes close to the mainlobe, which possess sufficiently strong echo intensities. 320 

This selective filtering approach is demonstrated in Figs. 11b and 12d following the application of ship clutter filtering. 
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Figure 11: 0.5° elevation of Kumpula radar using LFM waveform at 0040 UTC 5 June 2020. (a) Reflectivity before ship clutter 
filtering; (b) Reflectivity after ship clutter filtering; (c) Doppler velocity before ship clutter filtering; (d) Doppler velocity after ship 325 
clutter filtering. The mainlobe identification results are highlighted by red or white circles. 

 

4.2 Statistical evaluation 

A quarter of the manually curated dataset, consisting of 400 gates for ship clutter and 2500 gates for precipitation echoes, 

was used to objectively assess the mainlobe identification results. The remainder of the dataset (75%) served as the training 330 

set for the random forest identification model. The model achieved identification accuracies of 97.25% and 99.92% for ship 

clutter and precipitation echoes, respectively. The performance of the identification process was further quantified using a 

probability density plot like that shown in Fig. 5, where the overlapping area between the distributions of ship clutter and 

precipitation echoes was only 2.83%. This represents a significant improvement over the results obtained using a single 

feature, as detailed in Table 2, and underscores the benefits of integrating multiple features to enhance the identification 335 

accuracy. 

In addition to using labeled datasets to evaluate the performance of mainlobe identification, this study also incorporated 

observed scanning data from the Kumpula radar. Unlike other studies that typically present identification results from one or 

a few radar scans (Tang et al., 2014; Kurdzo et al., 2020), our analysis encompasses a 24-hour precipitation event on June 4, 

2020. The 𝑍! both before and after the removal of ship clutter, was converted into precipitation rates (R) using the Z-R 340 

relationship 𝑍! = 300𝑅,.9 (Marshall and Palmer, 1948), and the total precipitation rate for the entire event was accumulated. 

The conversion of 𝑍! to the precipitation rate has two important purposes. First, the precipitation rate is a critical parameter 
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in meteorological applications, offering a more direct reflection of identification performance. Secondly, it facilitates the 

accumulation of data, allowing for the analysis of long-term effects. 

The rain accumulations before and after the removal of ship clutter are shown in Figs. 12a and 12b. As illustrated in Fig. 12a, 345 

numerous areas with high precipitation accumulation appear in linear formations over the sea. Following the application of 

ship clutter removal, as shown in Fig. 12b, these anomalous values were effectively eliminated, whereas the precipitation 

echoes in other areas remained unaffected. This confirms the efficacy of the ship clutter identification algorithm and 

demonstrates its capability to enhance the accuracy of precipitation measurements. Figure 12c shows the difference in 

precipitation accumulation before and after ship clutter removal, highlighting the overestimation of precipitation caused by 350 

ship clutter. A comparison with the ship traffic density map of the Gulf of Finland shown in Fig. 12d reveals a strong 

correlation between the two, substantiating the assertion that these echoes originated from ships. 

 

 
Figure 12: 24-hour rain accumulation on 4 June 2020 from Kumpula radar at 0.5° elevation. (a) Before ship clutter filtering; (b) 355 
After ship clutter filtering; (c) Difference between before and after filtering; (d) Ship density map of the Gulf of Finland (© 
MarineTraffic 2024; Image source: www.marinetraffic.com). 

 

5. Discussion 

The evaluation results confirm that the HSCI algorithm effectively identifies both the mainlobe and sidelobes of ship clutter; 360 

the only way to mitigate their negative impact is to mask the radar variables at the range gates where they are detected, 

which is the method used in this study. However, when precipitation echoes overlap with ship clutter, this inevitably results 
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in loss of precipitation data. An effective strategy to address this challenge is to move the stage of ship clutter identification 

and filtering from "data processing" to "signal processing" (Keeler and Passarelli, 1990). This approach involves using 

spectrum processing techniques to suppress the ship clutter component in the radar signal while preserving the precipitation 365 

component like ground clutter filtering methods such as GMAP (Siggia and Passarelli, 2004) and CLEAN-AP (Torres and 

Warde, 2014). The center position of the notch filter needs to be adjusted from zero frequency to match the 𝜐" of the ship 

clutter's mainlobe. Additionally, delayed processing across several azimuth intervals is necessary owing to the cross-radial 

effect of the antenna sidelobes. Although this adjustment may affect the real-time performance of radar signal processing, it 

represents a cost-effective compromise to reduce the influence of ship clutter on radar data. 370 

Phased array technology is becoming increasingly prevalent in weather radar. Since the early 21st century, the United States 

has conducted experiments and developed advanced phased array weather radars such as ATD (Weber et al., 2021) and 

Horus (Palmer et al., 2023)). Similarly, China pioneered the operational application of phased array technology in several 

provinces (Geng and Liu, 2023). Pulse compression technology, a cornerstone of active phased array radars, suggests that 

the HSCI algorithm proposed in this study may have even wider applications in the future. Moreover, phased array radars 375 

often use digital beamforming for rapid scanning. However, this can exacerbate the deterioration of the antenna sidelobes in 

the direction of elevation (Schvartzman et al., 2021). Consequently, it is anticipated that future HSCI algorithms will evolve 

from two-dimensional to three-dimensional. 

6. Summary 

In this study, a Hybrid Ship Clutter Identification (HSCI) algorithm for pulse compression weather radar was introduced. 380 

This algorithm not only identifies the mainlobe of the ship clutter but also detects the range sidelobes resulting from pulse 

compression technology and the antenna sidelobes inherent to all radars. Data observed using the Kumpula radar at the 

University of Helsinki (from May to June 2020), which frequently captures the activities of ships sailing in the Gulf of 

Finland, were used in this study. For algorithm development and performance evaluation, 1,600 ship clutter and 10,000 

range gates of precipitation echoes were manually selected. 385 

The HSCI algorithm is structured into two parts: mainlobe and sidelobe identification. In the mainlobe identification step, 

the identification region is initially limited to minimize false identifications and enhance efficiency. Six features—RD, RGF, 

𝜎#, SWR, 𝑍$%, and CCD—are then calculated and used in a random forest model to distinguish ship clutter mainlobes from 

precipitation echoes. If the model confirms the presence of a ship clutter mainlobe, the process transitions to sidelobe 

identification. 390 

The potential sidelobe distribution (PSD) of ship clutter is dynamic, increasing or decreasing with the SNR of the mainlobe. 

The first step in sidelobe identification uses an adaptive method to accurately determine the PSD, thus avoiding missed 

identifications that leave sidelobe residues or excessive identifications that lead to precipitation data loss. Velocity and SNR 
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filters were then applied within the PSD to further protect against the loss of precipitation information due to overlapping 

ship clutter and precipitation echoes. 395 

Two typical cases (one in clear air and the other during precipitation) were used for the algorithm performance analysis. The 

results demonstrate that isolated ship clutter is accurately identified and filtered out, whereas ship clutter overlapping with 

precipitation is effectively identified and removed while preserving the precipitation data. In addition, the algorithm 

achieved correct identification rates of 97.25% for ship clutter and 99.92% for precipitation echoes on a test dataset 

comprising 400 ship clutter gates and 2,500 range gates of precipitation echoes. This study also assessed the cumulative 400 

precipitation before and after ship clutter filtering during a 24-hour precipitation event, finding that the precipitation 

overestimation caused by ship clutter was effectively eliminated, and the footprint of precipitation overestimation 

corresponded well with the ship density map. 

Appendix 

SNR is commonly used as a threshold parameter to mask regions with noise and weak signals that are significantly 405 

influenced by noise. Although SNR can be included as part of the archived data along with other radar parameters such as 

𝑍!, 𝜐", 𝜎#, 𝑍$%, 𝜙$&, and 𝜌!', in some signal processors, it is not always mandatory. For instance, the Kumpula radar used 

in this study did not output an SNR. Given that the SNR is a crucial factor for adaptively determining the PSD in the HSCI 

algorithm, an estimation technique was developed to accurately obtain the SNR using reflectivity (𝑍). 

In Vaisala RVP signal processors, 𝑍 (expressed in logarithmic units) is estimated from the SNR (expressed in logarithmic 410 

units) and a series of constants (Vaisala, 2016): 

𝑍 = 𝑆𝑁𝑅 + 𝐶 .                 (A1) 

For simplicity, a series of constants is consolidated and denoted by 𝐶. When the SNR reached the preset threshold 𝑆𝑁𝑅:;" 

(1.5 dB for the Kumpula radar), the radar detected the minimum reflectivity 𝑍527: 

𝑍527 = 𝑆𝑁𝑅:;" + 𝐶 .                (A2) 415 

Subtracting Eq. (A2) from Eq. (A1): 

𝑍 − 𝑍527 = 𝑆𝑁𝑅 − 𝑆𝑁𝑅:;" .               (A3) 

The SNR can then be determined by transposing: 

𝑆𝑁𝑅 = 𝑍 − 𝑍527+𝑆𝑁𝑅:;" .               (A4) 

In Eq. (A4), 𝑍 can be sourced from the archived data, and 𝑆𝑁𝑅:;" is a predefined value set by the user. 𝑍527 for each range 420 

can be determined through statistical analysis of a large dataset. 
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