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Abstract. Rain gauge measurements are one of the primary techniques used to estimate a precipitation field, but 9 

they require careful quality control. This paper describes a modified RainGaugeQC system, which is applied to 10 

real-time quality control of rain gauge measurements made every 10-min. This system works operationally at the 11 

national meteorological and hydrological service in Poland. The RainGaugeQC algorithms, which have been 12 

significantly modified, are described in detail. The modifications were made primarily to control data from non-13 

professional measurement networks, which may be of lower quality than professional data, especially in the case 14 

of private stations. Accordingly, the modifications went in the direction of performing more sophisticated data 15 

control, applying weather radar data and taking into account various aspects of data quality, such as consistency 16 

analysis of data time series, bias detection, etc. The effectiveness of the modified system was verified based on 17 

independent measurement data from manual rain gauges, which are considered one of the most accurate 18 

measurement instruments, although they mostly provide daily totals. In addition, an analysis of two case studies 19 

is presented. This highlights various issues involved in using non-professional data to generate multi-source 20 

estimates of the precipitation field. 21 

1 Introduction 22 

1.1 Precipitation measurements 23 

Precipitation is one of the most important meteorological parameters – due to its great practical importance in 24 

water management, flood control and other issues (e.g., Loritz et al., 2021; Sokol et al., 2021). For this reason, 25 

conducting measurements and estimating the precipitation field are very important tasks, though also very 26 

challenging because of the very high temporal and spatial variability of precipitation and its intermittent nature. 27 

The shorter the accumulation time of measurements, the greater the spatial variability of an estimated precipitation 28 

field and the greater its uncertainty (Berndt and Haberlandt, 2018; Bárdossy et al., 2021). This is especially true 29 

when estimating sub-daily totals and, even more the case for sub-hourly precipitation totals. 30 

Until today, the basic measurements of precipitation are in situ measurements carried out by means of rain 31 

gauge networks, and this does not change despite the intensive development of remote sensing techniques, such 32 

as radar and satellite, from which measurements are highly distorted. Rain gauge measurements are still considered 33 

the most accurate, although they are limited to specific, rather sparsely distributed points. Consequently, when 34 

estimating the precipitation field, measurement data provided by different techniques are treated as independent 35 

estimates of the same physical quantity. Thus, the final estimate of a precipitation field, which is often referred to 36 
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as quantitative precipitation estimation (QPE), is determined using various methods of combining data from 37 

different sources (multi-source estimation), taking into account the strengths and weaknesses of each of these 38 

techniques (McKee et al., 2016; Jurczyk et al., 2020b). 39 

Since all measurement techniques are subject to significant errors, which have a different temporal and spatial 40 

structure, all rainfall measurements need advanced quality control (QC) (Szturc et al., 2022). This applies not only 41 

to weather radar measurements (Ośródka et al., 2014; Ośródka and Szturc, 2022; Sokol et al., 2021), but also to 42 

rain gauge measurements. The latter are considered accurate at their locations, however field experiments (Wood 43 

et al., 2000) and experiences with dual-sensor rain gauges (Ośródka et al., 2022) show that trust in rain gauges is 44 

often excessive – errors in their measurements can sometimes be very significant. 45 

Quality control of rain gauge data is carried out using various approaches, most commonly by analysing the 46 

spatial and temporal distribution of measurements. As such information is insufficient for effective QC, especially 47 

in the case of sparse measurement networks, external data from other measurement techniques, most often weather 48 

radar and satellite, are often used (Ośródka et al., 2022; Yan et al., 2024). Increasingly, deep learning techniques 49 

are also being applied for QC (Sha et al., 2021). It should be noted that QC applied to short rainfall totals, such as 50 

the 10-min employed in this work, is considerably more difficult than for longer totals, such as 1-h (Villalobos-51 

Herrera et al., 2022). 52 

Due to the particular importance of rain gauge measurements, especially for the adjustment (calibration) of 53 

radar and satellite measurements, it is crucial when estimating the precipitation field that rain gauge networks are 54 

as dense as possible (Hohmann et al., 2021). This implies a very high financial as well as technical and 55 

organisational effort, so that a great deal of work is currently being done to deliver rain gauge data from other 56 

networks, not only from the national meteorological and hydrological services (NMHSs). A separate issue is the 57 

employment of “opportunistic” measurement techniques, i.e. precipitation data acquired from devices not 58 

dedicated to rainfall measurement, e.g. by analysing the attenuation of signals in commercial microwave links 59 

used in mobile phone networks, see e.g.: Chwala and Kunstmann (2019), Polz et al. (2020), Graf et al. (2021), 60 

Pasierb et al., (2024). 61 

1.2 Non-professional rain gauge networks 62 

Apart from the rain gauge networks of the NMHSs, measurement networks set up and maintained by various 63 

institutions – usually state or local authorities taking measurements for their own purposes –  can also be a source 64 

of rain gauge data. Another possibility is collecting meteorological measurements carried out by individual people 65 

with generally low-cost measuring stations, for whom taking measurements, analysing them and comparing with 66 

data generated by meteorological services is a hobby activity (Muller et al., 2015; Krennert et al., 2018; Zheng et 67 

al., 2018). These are so-called private or citizen weather stations (PWS or CWS). 68 

For the purposes of this paper, all measurements carried out by institutions other than NMHSs are considered 69 

“non-professional” because they do not guarantee compliance with the standards set by the World Meteorological 70 

Organisation (WMO) (WMO-No. 488, 2010) to the same extent as NMHSs measurements. A distinction between 71 

professional and non-professional rain gauges has been proposed by, among others, Garcia-Marti et al. (2023). In 72 

addition, the aforementioned private stations set up by individual hobbyists need to be distinguished, as direct 73 

control of the location, technical conditions or maintenance of such stations is impossible in practice. Such stations 74 

should be treated with much less trust, and the high uncertainty of the data is due to a number of reasons, which 75 
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have been described in detail in the literature (np. Bell et al., 2015; Båserud et al., 2020; Hahn et al., 2022; Urban 76 

et al., 2024). Nevertheless, many studies show that such data can be a valuable source of precipitation information 77 

(de Vos et al., 2017; 2019; Horita et al., 2018; Nipen et al., 2020; Bárdossy et al., 2021), thanks to the relatively 78 

very large number of these stations especially in urban areas, bearing in mind that professional gauges are typically 79 

located outside city centres (Overeem et al., 2024). 80 

The incorporation of non-professional data is associated with some overall increase in uncertainty in 81 

precipitation data. Moreover, dual-sensor rain gauges are rarely used and this reduces the efficiency of the quality 82 

control performed. Consequently, QC algorithms for these data should include not only the filtering out of clearly 83 

erroneous measurements and a decrease of their quality metric in the form of e.g. a quality index (𝑄𝐼), but for less 84 

supervised networks it is also necessary to correct at least the systematic errors associated with the bias of these 85 

measurements. 86 

1.3 Overview of approaches to QC of rain gauge data 87 

The specificity of data from non-professional rain gauges is primarily due to the greater uncertainty of their 88 

measurements. This entails the development of more sophisticated, but also more restrictive quality control 89 

algorithms. These are generally extensions of the QC methods applied to data from NMHSs, but here they analyse 90 

the reliability of individual measurements in more depth. These methods most often rely on verification with 91 

professional rain gauges, but also use other measurement data, especially weather radar data. 92 

Spatial distribution of precipitation measurements – detection of inconsistencies with surroundings. The most 93 

common quality control techniques involve checking whether the deviation from the reference measurements, 94 

which can also be data from nearby rain gauges, are within preset threshold values. If a measurement exceeds the 95 

threshold, then it is treated as an outlier and either its quality index 𝑄𝐼 (or quality flag) is decreased or the 96 

measurement is rejected (de Vos et al., 2017; Båserud et al., 2020). In addition, precipitation data from other 97 

sources, primarily weather radar, can be used to quantify the uncertainty of outlying measurement data (Ośródka 98 

and Szturc, 2022). Spatial consistency tests are very difficult to perform for a sparse rain gauge network, so the 99 

QC in terms of spatial consistency may not be carried out, and in the case of private rain gauges, such data may 100 

simply be rejected (Nipen et al., 2020). Alerskans et al. (2022) used a cost function based on a contingency table, 101 

which optimises the parameters of the spatial QC algorithm used to detect as many actually erroneous data as 102 

possible, while minimising the number of correct data that were found to be erroneous. 103 

Correlation of time series of precipitation measurements with reference data. The temporal consistency check 104 

involves detecting stations from which measurements often have relatively low reliability, but not so much that 105 

individual measurements do not pass a spatial consistency check. Analysis of the temporal consistency of rainfall 106 

data is most often carried out by analysing the correlation of the time series from the controlled rain gauge with 107 

the time series of reference data (Bárdossy et al., 2021; de Vos et al., 2019). Reference data can be either data from 108 

professional rain gauges of relatively high quality or from other measurement techniques, primarily weather radar 109 

(de Vos et al., 2019). However, the use of radar data is associated with difficulties, most often due to errors in 110 

estimation of the precipitation field (Ośródka et al., 2014; Ośródka and Szturc, 2022). Moreover, weather radar 111 

measurements are performed at certain heights above the ground surface – from a few hundred metres to as much 112 

as a few kilometres – and are then spatially averaged. Analysis of the correlation coefficient of a time series 113 

becomes difficult, especially in cases where the rain gauge reports false zero values (no precipitation) due to e.g. 114 
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a sensor being blocked or some object obstructing the path of the rain (e.g. buildings, vegetation). Another 115 

difficulty is caused by non-rainfall periods – time series with predominantly very low rainfall can sometimes 116 

disturb the correlation (Hahn et al., 2022). 117 

Detection and removal of bias in precipitation measurements. The approaches to the issue of quality control 118 

of rain gauge data described above do not correct erroneously measured values, but only reduce their 𝑄𝐼 or remove 119 

them. However, data correction is an important part of data quality control. First of all, it is about bias correction 120 

(unbiasing), which most often results from rainfall underestimation related to rain gauge technology: rain gauge 121 

measurements are underestimated due to wind-induced errors, wetting losses, evaporation losses, trace 122 

precipitation, etc. The magnitude of the underestimation also depends on the construction of the rain gauge; in 123 

particular, tipping-bucket devices are subject to significant bias (Segovia-Cardozo, 2021). This bias can be 124 

eliminated, or at least reduced, by, for example, quantitatively analysing all underestimation factors and 125 

introducing all important corrections (Zhang et al., 2019). Such adjustments, however, are generally conservative 126 

because of the difficulty of considering all relevant factors and the lack of precise data on influencing parameters. 127 

Another way is to compare non-professional measurements with a benchmark as reliable as possible, which could 128 

be manual rain gauges, preferably lysimetric ones that measure at ground level (Haselow et al., 2019; Schnepper 129 

et al., 2023). However, such measurements are not common. Radar observations are more widely available but 130 

using them as a benchmark requires the QC and adjustment to professional rain gauge measurements to have been 131 

previously carried out. Unbiasing is also calculated on the basis of a larger data set collected during precipitation 132 

events typical of the local climate (np. de Vos et al., 2019). The bias factor determined on this basis is treated as a 133 

climatological quantity. 134 

1.4 Structure of the paper 135 

This paper presents the RainGaugeQC system (Ośródka et al., 2022) after its adaptation for quality control of rain 136 

gauge data from non-professional stations. The paper is structured as follows: after Section 1, Section 2 briefly 137 

describes the different kinds of precipitation data on which the RainGaugeQC was developed and verified. Section 138 

3 presents the algorithms of the RainGaugeQC system with the emphasis on solutions that are more advanced 139 

when compared to the earlier version of the system. Results obtained over several months, as well as analysis of 140 

two case studies, were discussed in Section 4. Section 5 summarises the paper with a list of conclusions resulting 141 

from the use of the modified RainGaugeQC system. 142 

2 Precipitation data  143 

2.1 Available networks of rain gauges 144 

IMGW operationally utilises telemetric rain gauge data from the following measurement networks operated by 145 

(Fig. 1): 146 

• IMGW (Institute of Meteorology and Water Management – National Research Institute) – network of 147 

NMHS in Poland (https://hydro.imgw.pl/#/map). 148 

• CHMU (Czech Hydrometeorological Institute) – network of NMHS in the Czech Republic. IMGW uses 149 

data from more than 324 stations near the Polish border 150 

(https://www.chmi.cz/files/portal/docs/meteo/ok/images/srazkomerne_stanice_en.gif). 151 
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• General Directorate of the State Forests (DLP) – network of the meteorological monitoring program of 152 

forest areas consisting of 145 stations (https://www.traxelektronik.pl/pogoda/las/). 153 

The above data are used to generate operationally (in real-time) a multi-source precipitation field with high 154 

spatial resolution, which is the basis for generating nowcasting precipitation forecasts. 155 

Synthetic information about the above networks is summarised in Table 1. 156 

 157 

 158 

Figure 1: Telemetric rain gauge networks: a) IMGW and CHMU, b) State Forests. 159 

 160 
Table 1. Rain gauge networks incorporated into operational processing by RainGaugeQC system and 161 

estimation of precipitation field (as of October 2024). 162 

ID Network operator Number of stations Type of rain gauges Type of network 

1 IMGW 656 Mostly two tipping 

bucket sensors 

Professional 

2 CHMU 324 stations located 

close to Polish territory 

Mostly tipping bucket 

sensors 

Professional 

3 General Directorate of 

the State Forests (DLP) 

145 Heated Non-professional 

 163 

For the domain of Poland data from professional rain gauge networks operated by NMHSs in Poland (IMGW) 164 

and the Czech Republic (CHMU) are available. As the territory of the Czech Republic covers a large part of the 165 

analysed domain and, above all, a significant number of rain gauges are located close to mountainous areas on the 166 

border with Poland (Fig. 1), these data are very important for improving the reliability of the estimation of the 167 

precipitation field in southern Poland. The third network, belonging to the State Forestry Authority, is a non-168 

professional research network so it is uncertain whether all the standards of the WMO recommendations are 169 

followed (WMO-No. 488, 2010). 170 
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The quality of precipitation data is highly dependent on the type of measuring devices being used. Currently, 171 

the IMGW network is still dominated by tipping-bucket type rain gauges, which are considered significantly less 172 

accurate than weighing rain gauges (e.g., Colli et al., 2014; Hoffmann et al., 2016). 173 

 174 

 175 

Figure 2: IMGW’s network of manual rain gauges. 176 

 177 

A network of Hellmann-type manual rain gauges, providing independent reference data, is used in this study 178 

to verify the performance of the developed QC algorithms. As the data from these rain gauges are not available in 179 

real time, they cannot be used for rainfall field estimation or operational QC of telemetric data. The IMGW network 180 

consists of about 641 manual rain gauges, which provide daily rainfall accumulations (Fig. 2). These data are 181 

believed to be much more accurate than measurements from telemetric rain gauges, especially tipping-bucket ones. 182 

They are subjected to manual QC before being used. 183 

2.2 Weather radar precipitation data 184 

Precipitation data from weather radars play a major role in the RainGaugeQC system for quality control of rain 185 

gauge data (Ośródka et al., 2022). The data used in this study are provided by the Polish POLRAD radar network 186 

operated by IMGW. The network consists of ten Doppler polarimetric radars working in C-band, manufactured by 187 

Leonardo Germany (Fig. 3). Three-dimensional raw data and two-dimensional products are generated by the 188 

Rainbow 5 system every 5 min with 1-km spatial resolution and a range of 250 km. 189 

 190 
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 191 

Figure 3: Computational domain of Poland with plotted 215-km ranges of weather radars of the Polish POLRAD radar 192 

network (as of July 2024). 193 

 194 

The raw 3D radar data are quality controlled and corrected by the RADVOL-QC system (Ośródka et al., 2014; 195 

Ośródka and Szturc, 2022). The product used to estimate the rainfall field is PseudoSRI (Pseudo Surface Rainfall 196 

Intensity): cut-off at 1-km altitude above ground and from the lowest elevation out of the SRI range, generated 197 

every 5 min and accumulated into 10-min sums taking into account spatio-temporal interpolation between two 198 

adjacent measurements. As a result of quality control with the RADVOL-QC system, the corresponding 𝑄𝐼 quality 199 

index fields are also assigned to the individual estimated precipitation fields. In addition, some kind of quality 200 

control of radar precipitation takes place at the stage when data from individual radars is combined into composite 201 

maps. This is done by means of an algorithm that takes into account the time-varying spatial distribution of the 202 

quality index (Jurczyk et al., 2020a). 203 

Due to the bias present in the weather radar observations, these data are adjusted with rain gauge data, but only 204 

from the professional networks, derived from the 1-h moving window. However, if a precipitation accumulation 205 

is below a preset threshold, then this period is extended accordingly, up to a maximum of the seasonal 206 

accumulation. 207 

2.3 Multi-source precipitation estimates RainGRS 208 

Multi-source precipitation field estimates are generated by the RainGRS system of IMGW. The system combines 209 

rain gauge, weather radar, and satellite precipitation data in real time (Szturc et al., 2018; Jurczyk et al., 2020b; 210 

2023). The algorithm for combining these data is based on conditional merging according to an algorithm proposed 211 

by Sinclair and Pegram (2005), which attempts to enhance the strengths and reduce weaknesses of individual 212 

measurement techniques. This approach was modified in RainGRS by taking into account the quantitative 213 

information about the spatial distribution of the quality of the individual input data (quantified by 𝑄𝐼). These 214 

estimates are produced every 10 min with a high spatial resolution of 1 km x 1 km. 215 
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In the study, two versions of multi-source RainGRS precipitation estimates are generated in order to examine 216 

the impact of incorporating non-professional data. In the first version, rain gauge data only from the professional 217 

networks of IMGW and CHMU were taken, while in the second version, data from the non-professional network 218 

of the State Forests were added to this set. 219 

3 RainGaugeQC system for QC of rain gauge data 220 

3.1 RainGaugeQC system for QC of rain gauge data from a professional network 221 

The RainGaugeQC system was originally designed to perform real-time quality control of rain gauge data from 222 

measurement networks maintained by IMGW. This system was described in detail in work by Ośródka et al. 223 

(2022), so in this study, after a very concise presentation of the algorithms, the following sections will describe 224 

only modifications made to adapt it to data from non-professional networks. 225 

In the standard version of RainGaugeQC (Ośródka et al., 2022) (see column “Before modification” in Table 226 

2), firstly the simple plausibility tests – the gross error check (GEC) and range check (RC) – were performed on 227 

individual measurements. Then the more complex checks were conducted using a larger amount of rain gauge data 228 

from either a specific time range or a specific area, as well as using external data provided by weather radars. 229 

Firstly, the Radar Conformity Check (RCC) was applied to identify false precipitation on the basis of the radar 230 

measurements. Obstruction or blocking of the sensors was also checked for. Next, the Temporal Consistency 231 

Check (TCC) was performed, but this version was designed only for dual-sensor stations: data from the pairs of 232 

rain gauge sensors were tested for the existence of significant differences between them. The most advanced 233 

algorithm was the Spatial Consistency Check (SCC) which identified outliers by comparing observed values with 234 

data from neighbouring stations. 235 

An important outcome of the system was the determination of the quality index (𝑄𝐼) of analysed data, which 236 

is a unitless value with a range [0.0, 1.0], where “0.0” means extremally bad data and “1.0” means perfect data. 237 

This 𝑄𝐼 metric was determined by the RainGaugeQC for each sensor and then the sensor with higher quality is 238 

taken for further processing. 239 

 240 

Table 2. A summary of the quality control algorithms used in the RainGaugeQC system before and after 241 

modification. 242 

Abbr. Algorithm Before modification After modification 

GEC Gross Error Check Gross errors 

RC Range Check Exceeding climatological thresholds 

RCC Radar Conformity Check Detection of false rainy and non-rainy events 

BSC Blocked Sensor Check Detection of blocked sensors 

TCC Temporal Consistency 

Check 

Comparison of two sensors Time series comparison with 

weather radar data 

BC Bias Check ‒ Detection and correction of bias with 

adjusted radar data 

https://doi.org/10.5194/amt-2024-204
Preprint. Discussion started: 24 January 2025
c© Author(s) 2025. CC BY 4.0 License.



9 

 

SCC Spatial Consistency Check Detection of outliers from the local 

vicinity 

Detection of outliers from the local 

vicinity (updated) 

 243 

3.2 Directions of development in RainGaugeQC 244 

The possibility of incorporating non-professional data at IMGW became a motivation for more sophisticated data 245 

quality control. The QC algorithms in the previous version of RainGaugeQC proved unsuitable for non-246 

professional data, as they are often subject to greater uncertainty than from professional rain gauges, and besides, 247 

these gauges are generally not dual-sensor. On the other hand, the inclusion of new data significantly improved 248 

the performance of the SCC algorithm due to the higher density of the measurement network. Therefore, it was 249 

necessary to redesign the RainGaugeQC system in order to adapt it to rain gauge networks equipped with different 250 

types of sensors, supervised to various degrees, so that the system became more universal. The modified algorithms 251 

tailored to the new challenges associated with incorporating non-professional data are summarised in Table 2 in 252 

the “After modification” column. 253 

TCC. In the new version of the TCC (time series comparison with adjusted weather radar data) algorithm, 254 

weather radar data is used to compare time series from a specific time interval to check the correlation between 255 

rain gauge measurements and radar observations. The correlation coefficient is used as a metric for the relevant 256 

component of the quality index of the rain gauge data. This allows a reduction in the data quality index of rain 257 

gauges with measurements disturbed for a certain time period due to failure, poor maintenance or bad location. 258 

BC. The above TCC algorithm is not sensitive to the bias of rain gauge measurements, so the BC (bias check 259 

with adjusted radar data) algorithm is used to detect bias in the data. It also works by analysing long-term data 260 

series, but in this case they are used to compare data accumulations from rain gauges with radar accumulations. 261 

The quantitative estimation of the bias of the rain gauge data allows relevant components of the quality index to 262 

be determined. In the case of private rain gauges, unbiasing is carried out as well as reducing the 𝑄𝐼 value. 263 

SCC. The SCC (detection of outliers from the local vicinity) algorithm was already introduced in the first 264 

version of the RainGaugeQC system, but significant modifications have been made to the current version. It detects 265 

outliers, i.e. the measurements at a given time-step deviate from the values from rain gauges located in a certain 266 

area. The increase in the number of rain gauges through incorporating non-professional data has made it easier to 267 

determine the degree of outlying for individual data. The quality index reduction for outliers is quantified on the 268 

basis of the spatial variability of the precipitation field derived from the radar data. 269 

3.3 New version of TCC algorithm (Time series comparison with weather radar data) 270 

The TCC algorithm is designed to eliminate erroneous rain gauge measurements (𝐺) by analysing the correlation 271 

on long time series. The reference is radar precipitation (𝑅) after adjustment with rain gauge observations only 272 

from professional networks.  273 

For the calculation, pairs of rain gauge (𝐺) and radar (𝑅) data are taken if at least one of the values is greater 274 

than 0.025 mm, and their quality index (𝑄𝐼) is at least 0.7 for 𝐺 and 0.8 for 𝑅. Two time series aggregated from 275 

10-min accumulations: “long” and “short” comprising 10 and 5 days, respectively, are analysed. For long series 276 

the number of non-precipitation pairs 𝑐𝑑𝑟𝑦 is determined provided that both values are less than 0.025 mm. For 277 
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each series hourly accumulations are determined and then the number of measurement pairs c and correlation 278 

coefficient r are calculated. 279 

The procedure for assessing data quality is carried out by checking a list of conditions. For a given measurement 280 

these conditions are examined sequentially and, depending on the result, further ones are checked or the quality 281 

index is reduced accordingly. 282 

The check is stopped if the accumulations of both radar and rain gauge precipitation for the long series are 283 

below the assumed threshold values: 284 

(∑ (𝑅)10 days < 3.0) and (∑ (𝐺)10 days < 6.0) → TCC stopped      (1) 285 

If the amount of radar precipitation for the long series is below the assumed threshold and the amount of rain 286 

gauge precipitation is above the corresponding threshold, then the check is also stopped, but the quality of the rain 287 

gauge data is reduced by a value of 0.05: 288 

(∑ (𝑅)10 𝑑𝑎𝑦𝑠 < 3.0) and (∑ (𝐺)10 𝑑𝑎𝑦𝑠  6.0) → TCC stopped, 𝑄𝐼 = 𝑄𝐼 − 0.05   (2) 289 

This indicates that there are large differences between the two accumulations, but because the rainfall recorded 290 

by the radar is too low, the calculation of the correlation coefficient may be not reliable in such cases. 291 

The check is passed if the number of measurement pairs is above the preset threshold and correlation coefficient 292 

is above 0.3 for short or long series. Then the quality index is reduced on the basis of the relevant correlation 293 

coefficient, according to the following formula: 294 

(𝑐 > 6) and (𝑟 > 0.3) → TCC passed, 𝑄𝐼 = {
𝑄𝐼 𝑟 > 0.85

𝑄𝐼 −
1−𝑟

4
𝑟 ≤ 0.85

     (3) 295 

If there is an insufficient number of measurements for short series and at the same time the number of non-296 

precipitation data pairs is above a preset threshold, indicating that there is a longer non-precipitation period, then 297 

the TCC is stopped and 𝑄𝐼 is reduced: 298 

(𝑐𝑑𝑟𝑦 > 1000) and (𝑐𝑠ℎ𝑜𝑟𝑡 ≤ 6) → TCC stopped, 𝑄𝐼 = 𝑄𝐼 − 0.05     (4) 299 

Finally, the number of measurements and correlation coefficient with radar data for short and long periods are 300 

examined. If the condition in Formula 5 is met then the check is stopped. If not, the check is failed: 301 

[(𝑐 ≤ 6) or (𝑟 = ”no data”)] → TCC stopped, 𝑄𝐼 = 𝑄𝐼 − 0.05     (5) 302 

else → TCC failed, 𝑄𝐼 = 𝑄𝐼 − 0.3. 303 

This formula applies to cases when there are too few measurements, or the correlation coefficient could not be 304 

calculated or was below the assumed threshold for short or long series. 305 

3.4 New algorithm BC (Detection of bias with adjusted radar data) 306 

The determination of bias in the BC algorithm is carried out by comparing the precipitation accumulations obtained 307 

from the time series recorded on a given rain gauge with adjusted radar rainfall as a reference. For the most recent 308 

10 days using a 10-min temporal resolution, rain gauge and radar precipitation accumulations, denoted as Σ𝐺 and 309 

Σ𝑅 respectively, are calculated from gauge-radar pairs, for which both measurements have a quality index of at 310 

least 0.7 for 𝐺 and 0.8 for 𝑅.  311 

https://doi.org/10.5194/amt-2024-204
Preprint. Discussion started: 24 January 2025
c© Author(s) 2025. CC BY 4.0 License.



11 

 

Choice of the length of the precipitation accumulation period to determine the bias is not a trivial issue. Long 312 

accumulations better reflect the overall uncertainty of the measurements at a given station, but, on the other hand, 313 

short accumulations better follow the current precipitation characteristics during a particular precipitation event. 314 

Most often, bias is determined on rainfall accumulations from up to a few dozen hours, but sometimes on much 315 

longer accumulations – e.g. Yousefi et al. (2023) used seasonal totals to unbias radar data with rain gauge data. 316 

The 𝑏𝑖𝑎𝑠 of the rain gauge measurements is calculated from the ratio of radar to rain gauge precipitation 317 

accumulations: 318 

𝑏𝑖𝑎𝑠 =
Σ𝑅

Σ𝐺
             (6) 319 

The bias determined in this way is used to reduce the quality index 𝑄𝐼 of the controlled rain gauge data. If the 320 

precipitation accumulations Σ𝐺 and Σ𝑅 are similar, which is checked using the corresponding similarity function, 321 

the quality of the measurement remains unchanged. The similarity function is defined as follows: 322 

1.3 ∙ min(Σ𝐺, Σ𝑅) +  7.0 >  max(Σ𝐺, Σ𝑅)        (7) 323 

If the radar and rain gauge precipitation accumulations for a given rain gauge are not similar, then depending 324 

on the bias determined from Formula 6, the value of the quality index 𝑄𝐼 of a given measurement is reduced, but 325 

to a varying extent, according to the formula: 326 

𝑄𝐼 =

{
  
 

  
 𝑄𝐼 − 0.05 𝑏𝑖𝑎𝑠 ∈ [

1

5
, 5]

𝑄𝐼 − 0.2 𝑏𝑖𝑎𝑠 ∈ [
1

10
,
1

5
)  or 𝑏𝑖𝑎𝑠 ∈ (5, 10]

𝑄𝐼 − 0.5 𝑏𝑖𝑎𝑠 ∈ [
1

20
,
1

10
)  or 𝑏𝑖𝑎𝑠 ∈ (10, 20]

𝑄𝐼 − 1.0 𝑏𝑖𝑎𝑠 ∈ (0,
1

20
)  or 𝑏𝑖𝑎𝑠 ∈ (20, +∞)

       (8) 327 

In cases when the bias cannot be estimated, the 𝑄𝐼 of a particular measurement is reduced according to the 328 

formula: 329 

𝑄𝐼 = {
𝑄𝐼 − min (1.0,

|Σ𝐺−Σ𝑅|

10.0
) (Σ𝐺 = 0.0) or (Σ𝑅 = 0.0)

𝑄𝐼 − 0.2 (Σ𝐺 = "no data") and (Σ𝑅 = "no data")
    (9) 330 

In terms of data from private weather stations, they are considered subject to much greater uncertainty due to 331 

the lack of supervision of the technical condition of the rain gauges, poor maintenance, bad location, etc. Such 332 

stations should therefore be treated more rigorously than stations supervised by the institutions responsible for the 333 

measurements. The similarity function (Formula 7) is not applied, as their 𝑄𝐼 values are always reduced by the 334 

formula: 335 

𝑄𝐼 =

{
  
 

  
 𝑄𝐼 − 0.1 𝑏𝑖𝑎𝑠 ∈ [

1

5
, 5]

𝑄𝐼 − 0.3 𝑏𝑖𝑎𝑠 ∈ [
1

10
,
1

5
)  or 𝑏𝑖𝑎𝑠 ∈ (5, 10]

𝑄𝐼 − 0.7 𝑏𝑖𝑎𝑠 ∈ [
1

20
,
1

10
)  or 𝑏𝑖𝑎𝑠 ∈ (10, 20]

𝑄𝐼 − 1.0 𝑏𝑖𝑎𝑠 ∈ (0,
1

20
)  or 𝑏𝑖𝑎𝑠 ∈ (20, +∞)

       (10) 336 

when 𝑏𝑖𝑎𝑠 cannot be estimated, the 𝑄𝐼 value of a given measurement is reduced by the formula: 337 
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𝑄𝐼 = {
𝑄𝐼 − min (1.0,

|Σ𝐺−Σ𝑅|

10.0
) (Σ𝐺 = 0.0) or (Σ𝑅 = 0.0)

𝑄𝐼 − 0.4 (Σ𝐺 = "no data") and (Σ𝑅 = "no data")
    (11) 338 

In addition, unbiasing should be performed for data from private stations, which is not done for other types of 339 

stations, as they only have a reduced 𝑄𝐼. Unbiasing is performed on the basis of the bias determined from Formula 340 

6, but limiting its value to factor 4:  341 

𝑏𝑖𝑎𝑠4 = {

1

4
𝑏𝑖𝑎𝑠 ≤

1

4

𝑏𝑖𝑎𝑠
1

4
< 𝑏𝑖𝑎𝑠 ≤ 4

4 𝑏𝑖𝑎𝑠 > 4

          (12) 342 

The above limitation on the value of the 𝑏𝑖𝑎𝑠4 factor is to protect against too large a change in the value of the 343 

corrected precipitation (van Andel, 2021). 344 

Finally, the unbiased precipitation accumulation 𝐺𝑐𝑜𝑟  is determined from the formula: 345 

𝐺𝑐𝑜𝑟 = 𝑏𝑖𝑎𝑠4 ∙ 𝐺            (13) 346 

As IMGW does not yet have a sufficiently dense network of cooperating private stations (Droździoł and 347 

Absalon, 2023), tests have not been carried out to verify the algorithm designed in this study on data from such a 348 

network. 349 

3.5 Updated SCC algorithm (Detection of outliers from the local vicinity) 350 

The spatial methods for quality control, such as the SCC, are especially effective for dense rain gauge networks 351 

because they utilise observations from nearby stations (Alerskans et al., 2022). Thus, when applied to sparse 352 

networks, it is more likely that a correct value measured by a rain gauge will be classified as erroneous in the case 353 

of intense convective rainfall of a very local nature.  354 

Based on the analysis of the performance of the SCC algorithm – as published in a previous paper on the 355 

standard version of RainGaugeQC system (Ośródka et al., 2022) in Appendix C – a modification was made in 356 

relation to the degree of 𝑄𝐼 reduction depending on the spatial variability of rainfall. 357 

The algorithm has not changed in terms of assigning each rain gauge measurement to one of the three classes 358 

of outliers: strong, medium, and weak, and additionally non-outlier. However, the algorithm for reducing the 𝑄𝐼 359 

value of each measurement assigned to any of the outlier classes was modified. In the current version of the 360 

algorithm, the magnitude of 𝑄𝐼 reduction depends on whether a given rain gauge measurement is within an area 361 

of a high spatial variability of precipitation determined from weather radar data of sufficient quality 𝑄𝐼(𝑅). In this 362 

case, the outlier is treated less restrictively. The concept of spatial variability function (𝑆𝑉𝐹) was introduced for 363 

this purpose, and is defined as follows:  364 

𝑆𝑉𝐹 =  
𝑆𝑉𝐹𝑚𝑒𝑎𝑛(𝑅𝑚𝑒𝑎𝑛)+𝑆𝑉𝐹𝑣𝑎𝑟(𝑅𝑣𝑎𝑟)

2
          (14) 365 

The 𝑆𝑉𝐹 consists of two components indicating the degree of spatial variability of the precipitation: 366 

𝑆𝑉𝐹𝑚𝑒𝑎𝑛(𝑅𝑚𝑒𝑎𝑛) = {

1 𝑅𝑚𝑒𝑎𝑛 ≥ 1.0 mm
𝑅𝑚𝑒𝑎𝑛−0.1 mm

1.0 mm−0.1 mm
0.1 mm < 𝑅𝑚𝑒𝑎𝑛 < 1.0 mm

0 𝑅𝑚𝑒𝑎𝑛 ≤ 0.1 mm

     (15) 367 
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𝑆𝑉𝐹𝑣𝑎𝑟(𝑅𝑣𝑎𝑟) = {

1 𝑅𝑣𝑎𝑟 ≥ 1.0 mm
2

𝑅𝑣𝑎𝑟−0.03 mm
2

1.0 mm2−0.03 mm2
0.03 mm2 < 𝑅𝑣𝑎𝑟 < 1.0 mm2

0 𝑅𝑣𝑎𝑟 ≤ 0.03 mm
2

 , 368 

where 𝑅𝑚𝑒𝑎𝑛 is the mean radar precipitation (in mm) for wet pixels in the 100 km x 100 km subdomain including 369 

25 km margins (see: Ośródka et al., 2022); 𝑅𝑣𝑎𝑟 is the mean variance of radar precipitation (in mm2) in the 370 

subdomain calculated analogously to 𝑅𝑚𝑒𝑎𝑛. 371 

On the basis of the value of the 𝑆𝑉𝐹 function, the reduction in the quality index for individual rain gauge 372 

observation is determined, according to its classification into a specific outlier class: 373 

𝑄𝐼 = {

𝑄𝐼 − (0.30 ∙ (1 − 𝑆𝑉𝐹) + 0.10 ∙ 𝑆𝑉𝐹) strong outlier

𝑄𝐼 − (0.20 ∙ (1 − 𝑆𝑉𝐹) + 0.05 ∙ 𝑆𝑉𝐹) medium outlier

𝑄𝐼 − 0.10 ∙ (1 − 𝑆𝑉𝐹) weak outlier

     (16) 374 

3.6 Determination of 𝑸𝑰 375 

Before all the checks, each rain gauge observation is assigned the perfect 𝑄𝐼 value (1.0). Depending on the result 376 

of a particular QC algorithm, the 𝑄𝐼 of an examined measurement is decreased by a relevant value. If the final 𝑄𝐼 377 

value, i.e. after all checks, is below a preset threshold, the observation is considered useless and is replaced with 378 

“no data”. 379 

4 Analysis of the RainGaugeQC system performance on non-professional data 380 

 The performance of the RainGaugeQC system, designed to control the quality of precipitation data from 381 

professional and non-professional rain gauge networks, is shown through a comparison of the statistics calculated 382 

for these two rain gauge networks: 383 

• professional network of IMGW, the Polish NMHS, supplemented in the border region by data from 384 

CHMU, which is the Czech NHMS,  385 

• non-professional network of the General Directorate of the State Forests.  386 

The most important characteristics of these networks are summarised in Table 1, and the locations of the rain 387 

gauges are shown in Fig. 1. Rain gauges from private networks have not been included, as the establishment of 388 

their network at IMGW is still at a preliminary stage.  389 

The analysis was carried out for four months – April, July, October 2023 and January 2024 – considered typical 390 

of the four seasons. The summer season (July) is dominated by convective precipitation, which is often intense 391 

and highly variable in time and space, while the winter season (January) is dominated by stratiform precipitation, 392 

often in the form of snow. In the intermediate seasons (April, October) precipitation is less intense – it is 393 

generally rain, and is rarely convective. 394 

4.1 Verification metrics 395 

The reliability of the precipitation estimates generated using the RainGaugeQC system was verified by 396 

comparison with the reference precipitation accumulations from manual rain gauges that are treated as the closest 397 

to the true precipitation at their locations. The following metrics were employed: 398 

• Pearson correlation coefficient:  399 
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CC =
∑ (𝐸𝑖−𝐸)
𝑛
𝑖=1 (𝑂𝑖−𝑂)

√∑ (𝑂𝑖−𝑂)
2𝑛

𝑖=1 ∑ (𝐸𝑖−𝐸)
2𝑛

𝑖=1

          (17) 400 

• root mean square error:  401 

RMSE = √
1

𝑛
∑ (𝐸𝑖 − 𝑂𝑖)

2𝑛
𝑖=1           (18) 402 

• root relative square error:  403 

RRSE =
√∑ (𝐸𝑖−𝑂𝑖)

2𝑛
𝑖=1

√∑ (𝑂𝑖−𝑂)
2𝑛

𝑖=1

           (19) 404 

• statistical bias:  405 

BIAS =
1

𝑛
∑ (𝐸𝑖 − 𝑂𝑖)
𝑛
𝑖=1            (20) 406 

where 𝐸𝑖 is the estimated value, 𝑂𝑖  is the reference value, 𝑖 is the gauge number, 𝑛 is the number of gauges, whereas 407 

𝐸 and 𝑂 are the mean values of 𝐸𝑖 and 𝑂𝑖 , respectively. 408 

4.2 Non-professional versus professional rain gauge data 409 

A comparison of reliability metrics of precipitation estimates obtained from a network of professional and non-410 

professional rain gauges is shown in Fig. 4. Point measurements of rainfall were verified against values at rain 411 

gauge locations obtained from the interpolation of manual rain gauges using the inverse distance weighting 412 

method. Professional rain gauges situated at manual gauge locations, a relatively common situation in the IMGW 413 

network, were not included in the statistics in order not to favour this category of data. Therefore, around 200 414 

professional rain gauges were used for verification instead of all 469. 415 

 416 
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 417 

Figure 4: Reliability statistics of rainfall estimates calculated for data obtained from the network of professional (navy) 418 

and non-professional (orange) rain gauges. Spatially interpolated manual rain gauges are used as a reference. Data 419 

from April, July, October 2023 and January 2024. 420 

 421 

The reliability of the non-professional data in general is close to that of the professional data, especially as 422 

regards the correlation coefficient: on average for both it is about 0.82, and the differences between them are small, 423 

at below 0.06. The RMSE metric related to the deviation from the reference data is already clearly worse for the 424 

non-professional data, by on average about 0.41 mm. The largest difference was found for January, when it reached 425 

0.65 mm. Only in the summer period (July) is the difference between the non-professional and professional data 426 

small (0.09 mm), though the error values are highest at that time (4.65 and 4.55 mm, respectively). During this 427 

period, convective precipitation is frequent, more intense, and also more dynamic, and as a consequence, the 428 

comparison with spatially interpolated reference data can produce large differences. In contrast, a similar but 429 

relative RRSE metric gives less conclusive results: in April it is much better for the non-professional data (0.69 430 

versus 0.88), while in the other months the non-professional data are worse than the professional, with a significant 431 

difference of 0.63 in October. 432 
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4.3 Comparison of the QC system performance on professional and non-professional data 433 

In this Section an examination is made of the extent to which the 𝑄𝐼 of rain gauge data for professional and non-434 

professional stations is reduced by the RainGaugeQC system in different months of the year. The 𝑄𝐼 plays a key 435 

role in the multi-source precipitation field estimation performed by the RainGRS system as the 𝑄𝐼 index is one of 436 

the most important weights during spatial interpolation of rain gauge data and, most importantly, it is a weight 437 

when rain gauge data is combined with the other precipitation estimates – radar and satellite-based. As a result of 438 

this approach, the impact of low-quality data on the final precipitation field estimate can be reduced. 439 

 440 

 441 

Figure 5: Percentages of data with 𝑸𝑰 values in different ranges (histograms). Data from April, July, October 2023 and 442 

January 2024. 443 

 444 

Fig. 5 summarises the percentage of rain gauge data in different ranges of 𝑄𝐼 values assigned to individual 445 

measurements as a result of 𝑄𝐼 performed with a modified version of the RainGaugeQC system for four months 446 

representing different seasons, separately for professional and non-professional stations. It can be noted that, in 447 

general, 𝑄𝐼 values are significantly higher for professional data, meaning that QC algorithms indicate higher 448 

uncertainty in non-professional data. While unreduced quality (𝑄𝐼 = 1.0) characterises 32.5 – 76.1% of all 449 

professional data depending on the season, just 26.0 – 57.6% of non-professional data. On the other hand, lower 450 

values below 𝑄𝐼 < 0.75 at different seasons characterise 1.4 – 4.9% of the professional data and 7.4 – 24.2% of 451 

the non-professional data. 452 
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There is noticeable seasonal dependence of the number of data with 𝑄𝐼 in specific value ranges, which is similar 453 

for professional as well as non-professional data. The highest percentage of data with a 𝑄𝐼 of exactly 1.0, i.e. 454 

perfect data according to the RainGaugeQC system, is observed in July (summer) and equals 76.1% and 57.6% 455 

for professional and non-professional data respectively, while the percentage of data with poor qualities is also 456 

lowest in this month for both types of the data: 1.4% and 7.2%, respectively. Considering the distribution of 𝑄𝐼 457 

values in the different ranges, the data from January proved to be the least reliable, when the percentage of data 458 

with low 𝑄𝐼 values, i.e. in the range between 0.0 and 0.75, is the highest, reaching 4.9% for professional and 24.2% 459 

non-professional data. 460 

4.4 Impact of non-professional rain data on the reliability of precipitation estimates 461 

The following data sets were applied to test the influence of non-professional rain data on the reliability of 462 

precipitation estimation: (i) professional only and (ii) professional and non-professional together after quality 463 

control with the modified version of RainGaugeQC. From both rain gauge data sets, 10-min multi-source estimates 464 

of precipitation accumulations were generated with the RainGRS system and then aggregated to the daily 465 

accumulations. Table 3 shows the reliability metrics of the daily accumulations calculated for April, July, October 466 

2023 and January 2024, using the manual rain gauge data as a reference. Statistics were determined at the locations 467 

of the manual rain gauges. 468 

 469 

Table 3. Reliability metrics of estimates of daily RainGRS precipitation accumulations generated using rain 470 

gauge data: professional and professional with attached data from non-professional rain gauges after 471 

quality control with the modified version of RainGaugeQC. Measurements from manual rain gauges are 472 

used as a reference, data from April, July, October 2023 and January 2024. 473 

Rain gauge networks CC 

(‒) 

RMSE 

(mm) 

RRSE 

(‒) 

BIAS 

(mm) 

April 2023 

Professional (IMGW and CHMU) 0.832 2.74 0.64 1.36 

Professional (IMGW and CHMU) and non-professional (State 

Forests) 0.872 2.40 0.55 1.11 

July 2023 

Professional (IMGW and CHMU) 0.835 3.99 0.57 1.03 

Professional (IMGW and CHMU) and non-professional (State 

Forests) 0.847 3.71 0.55 0.93 

October 2023 

Professional (IMGW and CHMU) 0.920 2.35 0.43 0.91 

Professional (IMGW and CHMU) and non-professional (State 

Forests) 0.922 2.28 0.41 0.79 

January 2024 

Professional (IMGW and CHMU) 0.844 2.55 0.65 1.42 

Professional (IMGW and CHMU) and non-professional (State 

Forests) 0.846 2.52 0.64 1.40 

 474 
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It can be seen from Table 3 that after the incorporation of non-professional data provided by the General 475 

Directorate of the State Forests into RainGRS, all reliability metrics improved. The correlation coefficient, CC, 476 

increased for all months analysed only marginally. Greater improvement after the inclusion of non-professional 477 

data can be seen in all metrics related to error magnitude: RMSE, RRSE and BIAS, which on average decreased 478 

by 0.13 mm, 0.02, and 0.08 mm, respectively. 479 

Analysing the four metrics used, the most positive impact of incorporating non-professional data was found in 480 

April 2023, an intermediate month, when all characteristics improved: CC increased by 0.04, while metrics related 481 

to error magnitude decreased: RMSE by 0.34 mm, RRSE by 0.09 and BIAS by 0.35 mm. This observation is 482 

consistent with the results shown in Fig. 4, where in April the non-professional data were even more reliable than 483 

the professional data in terms of CC and RRSE metrics. The smallest impact of non-professional data was observed 484 

in January, when the improvement was negligible. 485 

It should be pointed out that the number of non-professional rain gauges available for this study was not large: 486 

the ratio between the number of rain gauges in the non-professional and professional networks was about 1:4. 487 

Therefore, it can be expected that if there were more of these non-professional rain gauges, then the benefit from 488 

them in terms of improvement in the reliability of the precipitation estimates would be even more pronounced. 489 

This impact is not only due to the measurement information provided by these rain gauges, but also largely due to 490 

the fact that additional rain gauges make quality control of all rain gauges much more effective. 491 

4.5 Impact of non-professional rain gauges on estimated multi-source precipitation field – varying impact 492 

in different locations 493 

This section presents two case studies illustrating the influence of non-professional precipitation data on the 494 

reliability of precipitation estimates generated by the RainGRS system. The location of the study areas is shown 495 

on a map of Poland (Fig. 6). Locations in central Poland were chosen because the network of professional rain 496 

gauges is sparsest there (see Fig. 1), so the influence of non-professional data on the final estimate of the 497 

precipitation field can be expected to be more evident. Two different RainGRS precipitation field estimates were 498 

generated using rain gauge data: (i) from professional rain gauges only, (ii) from both professional and non-499 

professional rain gauges. The impact of incorporating non-professional rain gauge data on multi-source field 500 

estimates was assessed using manual rain gauge measurements as reference data. The analyses were conducted on 501 

daily accumulations because only this kind of data are available from manual rain gauges. 502 

 503 
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 504 

Figure 6. Location of case studies on a map of Poland. 505 

 506 

4.5.1 Case study 1: isolated convective precipitation (29-30 July 2023) 507 

On 29 and 30 July 2023 Poland was under the influence of a trough of low pressure and atmospheric front systems 508 

moving from west to east. There were some showers and thunderstorms with precipitation locally reaching more 509 

than 60 mm per day, which triggered flash flooding in major cities in the north of the country. Fig. 7 presents the 510 

daily precipitation accumulations for this day, which shows the effect of including non-professional rain gauge 511 

data to the input data to the RainGRS model generating multi-source precipitation field estimates. 512 

 513 

 514 

Figure 7: Precipitation maps of multi-source RainGRS estimates from: a) professional, b) professional and non-515 

professional data. The symbols are filled with colours that correspond to the precipitation values measured by each rain 516 

gauge. A fragment of Poland, daily accumulations from 29.07.2023, 06 UTC to 30.07.2023, 06 UTC. 517 

 518 

In the fields of estimated precipitation accumulations in the vicinity of the thunderstorm cell in Fig. 7, it can 519 

be seen that after incorporation of the non-professional data, the accumulations became noticeably higher, as the 520 
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data from the non-professional rain gauges are generally higher than those from the professional ones – a general 521 

increase in values can be seen in Fig. 7b compared to Fig.7a. Using the measurements from the manual rain gauges 522 

as reference data, it can be concluded that the obtained increase in the estimated RainGRS precipitation field is 523 

closer to the reference precipitation (this is confirmed by the results in Table 3). Regarding the thunderstorm cell 524 

moving through the study area, it was compact, small in size (its diameter was about 10 km) and no professional 525 

rain gauge was in its path. It was detected by weather radars, so it is visible on the multi-source estimate, but the 526 

precipitation values are underestimated compared to the reference precipitation recorded by the manual rain gauges 527 

located in the path of this cell. 528 

When including the non-professional data, a rain gauge in Zamrzenica on the route of this storm cell measured 529 

a daily rainfall of 62.3 mm, resulting in a significant increase in the RainGRS precipitation estimate in this area: 530 

from 31.6 to 50.6 mm at the Zamrzenica location. However, due to the small number of rain gauges in the area, 531 

the high precipitation spread over a much larger region than the close vicinity of the cell. This is evidenced by the 532 

lower precipitation measured by the manual rain gauge at Nowy Jasiniec (23.3 mm), while the precipitation 533 

estimate increased here from 24.2 to 31.0 mm. 534 

Closest to the path of the cell was the Makowarsko manual rain gauge, which measured 46.8 mm. The multi-535 

source estimate after including the non-professional rain gauge increased from 37.8 to 47.1 mm, which is in very 536 

good agreement with the reference value. The precipitation estimate at the Płazowo manual rain gauge location 537 

also increased: from 22.4 to 33.5 mm, while this rain gauge measured 29.2 mm. The increase in estimates was 538 

therefore too high, but nevertheless, after data from non-professional rain gauges were added to the estimate, it 539 

was closer to the measurement from the reference rain gauge. The highest value of 68.5 was measured by the Tleń 540 

manual rain gauge, but the incorporation of the non-professional data only slightly improved the highly 541 

underestimated estimate from 31.5 to 33.7 mm. 542 

4.5.2 Case study 2: winter stratiform precipitation (3-4 January 2024) 543 

At the beginning of January 2024, Poland was in the range of low-pressure systems moving from west to east and 544 

associated atmospheric fronts. Rainfall and sleet were observed, with snowfall in the north-east of the country and 545 

in the mountains in the south. In the north and centre, there was also freezing rain causing glaze. The example 546 

shown in Fig. 8 relates to a lowland area in central Poland, like in the first case study, but here there was stratiform 547 

precipitation, which was significantly lower but at a greater extent, as is typical for winter. 548 

 549 

https://doi.org/10.5194/amt-2024-204
Preprint. Discussion started: 24 January 2025
c© Author(s) 2025. CC BY 4.0 License.



21 

 

 550 

Figure 8: Precipitation maps of multi-source RainGRS estimates from: a) professional, b) professional and non-551 

professional data. The symbols are filled with colours that correspond to the precipitation values measured by each 552 

rain gauge. A fragment of Poland, 24-h accumulations from 3.01.2024, 06 UTC to 4.01.2024, 06 UTC. 553 

 554 

The RainGRS precipitation field estimation generated values that were underestimated compared to the manual 555 

rain gauge measurements: the estimated values were lower by 3.2 mm on average, while their daily accumulation 556 

averaged 9.5 mm at the locations of these rain gauges. This is mainly due to the underestimation of weather radar 557 

and, to a lesser extent, telemetric measurements. 558 

The inclusion of data from non-professional rain gauges, despite their small number, increased the RainGRS 559 

estimate at manual rain gauge locations by an average of 1.3 mm. For example, it can be seen that that Zamrzenica 560 

non-professional rain gauge had a positive effect on the estimated daily precipitation accumulation (RainGRS) at 561 

the manual rain gauge located in Płazowo, where 12.1 mm was measured, and the estimates with and without the 562 

incorporation of non-professional data were 9.5 and 3.3 mm, respectively.  563 

The impact of the Miradz non-professional rain gauge was slightly different. It measured a value of 3.1 mm 564 

and caused the estimates at the location of the two closest manual rain gauges to decrease at Jeziorki from 6.7 to 565 

4.7 mm, and at Gębice from 6.0 to 4.9 mm, approaching the values from the manual rain gauges of 1.7 and 3.0 566 

mm respectively. On the other hand, the influence of Miradz appeared to negatively affect the estimates at the 567 

manual rain gauge locations of Kołuda Wielka and Szelejewo, where values that had been underestimated 568 

compared to the reference rainfall were lowered even further. 569 

The analysis of the two case studies shows that data from non-professional rain gauges, despite their generally 570 

somewhat greater uncertainty, can in most cases play a positive role in the estimation of the precipitation field. 571 

5 Conclusions 572 

Data from non-professional rain gauge networks, as additional source of precipitation data, increase the density of 573 

available rain gauge networks. In consequence they can improve precipitation field estimates at high spatial 574 

resolution and can be very helpful to NHMSs for various meteorological and hydrological applications. However, 575 

advanced data quality control systems are required to make these data useful for operational applications. At the 576 

same time, it should be possible to objectively quantify the uncertainty associated with each individual 577 

measurement. 578 
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The RainGaugeQC system, applied to quality control of rain gauge data, was redesigned in order to adapt it to 579 

different rain gauge networks supervised to various degrees. In a modified version of the TCC algorithm, more 580 

sophisticated data control was developed applying weather radar data, taking into account various aspects of data 581 

quality, such as consistency analysis of data time series. The new BC algorithm was introduced to detect bias of 582 

rain gauge measurements comparing rain gauge and radar long-term accumulations. In the SCC algorithm, 583 

significant modifications have been made to quantify the quality index reduction for outliers on the basis of the 584 

spatial variability of the precipitation field derived from the radar data. The performance of the modified system 585 

was verified based on independent measurement data from manual rain gauges, which are considered one of the 586 

most accurate measurement instruments. The influence of incorporating non-professional precipitation data on 587 

reliability of multi-source precipitation estimates generated by the RainGRS system was also analysed. 588 

The main conclusions derived from the analyses carried out in this study can be summarised as follows: 589 

1. The incorporation of data from non-professional stations into professional rain gauge data, even if they 590 

are of poorer quality (Fig. 5), nevertheless improves the reliability of the estimated multi-source 591 

precipitation field (Table 3), but on the condition that advanced quality control is carried out. 592 

2. Despite the quality control performed, the influence of individual rain gauges on the precipitation field 593 

estimates may sometimes not be positive, as can be seen from the examples shown in Section 4.5. 594 

Furthermore, the same rain gauge may have a different influence, positive or negative, on an estimated 595 

precipitation field in various places. 596 

3. Precipitation field estimates provided by weather radar data play a very important role in the developed 597 

RainGaugeQC algorithms. However, it is necessary to perform their advanced quality control beforehand 598 

and to adjust them with rain gauge measurements. 599 

4. An important benefit of including data from non-professional networks is the improvement in 600 

performance of individual QC algorithms. This is especially true for the spatial consistency check (SCC), 601 

in which the density of a rain gauge network is crucial. 602 

5. IMGW is in the process of setting up a network of private rain gauges. After its operational launch, it will 603 

become possible to test the QC algorithms proposed in this paper on data from these rain gauges. 604 
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