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Abstract.

Biogenic volatile organic compounds (BVOCs), as a crucial component that impacts atmospheric chemistry and ecological

interactions with various organisms, play a significant role in the atmosphere-ecosystem relationship. However, traditional field

observation methods are challenging to accurately estimate BVOCs emissions in forest ecosystems with high biodiversity,5

leading to significant uncertainty in quantifying these compounds. To address this issue, this research proposes a workflow

utilizing drone-mounted lidar
::::::
LiDAR and photogrammetry technologies for identifying plant species to obtain accurate BVOCs

emissions data. By applying this workflow to a typical subtropical forest plot, the following findings were made: The drone-

mounted lidar
::::::
LiDAR

:
and photogrammetry modules effectively segmented trees and acquired single wood structures and

images of each tree. Image recognition technology enabled relatively accurate identification of tree species, with the highest10

frequency family being Euphorbiaceae. The largest cumulative isoprene emissions in the study plot were from the Myrtaceae

family while monoterpenes were from the Rubiaceae family. To fully leverage the estimation results of BVOCs emissions

directly from individual tree levels, it may be necessary for communities to establish more comprehensive tree species emission

databases and models.

Copyright statement. Author(s) 2020. CC BY 4.0 License.15

1 Introduction

Biogenic volatile organic compounds (BVOCs) is the medium of communication for plants to realize their wide ecological

functions (Laothawornkitkul et al., 2009). BVOCs are involved in plant growth, reproduction and defense (Peñuelas and Staudt,
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2010). Plants respond to the feeding of herbivores by emitting BVOCs to attract potential predators or as repellents (Kegge

and Pierik, 2010). The communication process between plants is also based on BVOCs (Šimpraga et al., 2016). For example,20

gnawed plants will emit BVOCs to induce the production of defensive substances in non-attack objects (Dicke and Baldwin,

2010). In addition, BVOCs components are also used by plants to attract pollinators to bloom (Loreto et al., 2014). For the

plants themselves, under heat waves or high ozone concentrations, BVOCs seem to reduce oxidative stress and other stresses

caused by the complex non-biological urban environment (Ghirardo et al., 2016; Chen et al., 2018). At the same time, BVOCs

are emitted into the atmosphere from vegetation and have significant impacts on other organisms and atmospheric chemistry25

and physics (Peñuelas and Staudt, 2010). BVOCs account for 90% of VOCs in atmospheric chemistry research which were

considered as the fuel to drive atmospheric chemical processes and the key component of the atmosphere (Heald and Kroll,

2020). The atmospheric chemical activity of BVOCs species is very sprightly, and it’s lifetime usually from only a few minutes

to a few hours (Mellouki et al., 2015; Canaval et al., 2020). The contribution of BVOCs emission to global secondary organic

aerosol (SOA) generation is about 90%, which is the main source of global atmospheric SOA (Henze et al., 2008). At the same30

time, BVOCs contributed about 10% ∼ 30% of the surface ozone in urban areas (Ran et al., 2011; Tsimpidi et al., 2012; Wu

et al., 2020; Chen et al., 2022).

However, there is considerable uncertainty
::
in

:::
the

::::::::
estimation

:::
of

:::::::
BVOCs (about 90% ∼ 120%) in the estimation of BVOCs

which have important ecological functions and connect the biosphere and the atmosphere (Situ et al., 2014; Wang et al., 2021)

. This situation restricts
:::::
which

:::::::::
constrains our understanding of the atmospheric environment and ecological effects of BVOCs35

:::::::::::::::::::::::::::::
(Situ et al., 2014; Wang et al., 2021). Especially for the forest ecosystem with the highest biodiversity, forest vegetation is con-

sidered to be the main body
:::::::::
contributer of BVOCs emissions, accounting for more than 70% of global BVOCs emissions,

but the uncertainty of estimation of BVOCs emissions from forest vegetation is the most significant (Hartley et al., 2017).

This uncertainty comes from two problems
:::::
arises

:::::
from

:::
two

:::::::
aspects: the lack of field observations and the simplification of

numerical simulations. There are different methods for measuring BVOCs emissions on various scales. At the leaf and plant40

scale, scholars have used confined chamber and various improved confined chamber methods (for example, open-top cham-

ber, free air concentration enrichment, etc) to conduct a large number of outstanding observational studies on the BVOCs

emissions of leaves, branches and the whole tree and contribute different BVOCs database of single-tree BVOCs component

emissions (Isidorov et al., 1990; Komenda and Koppmann, 2002; Baghi et al., 2012; Curtis et al., 2014). Existing potential

BVOCs emission databases include seBVOCs(Steinbrecher et al., 2009), the tree BVOCs index(Simpson and McPherson,45

2011), MEGAN(Guenther et al., 2012), and other general inventories (e.g. http://itreetools.org/; http://www.es.lancs.ac.uk/

cnhgroup/download.html), etc. These studies mainly quantify the emission rate of BVOCs from specific tree species, which

can help understand the processes and factors that affect the emission of BVOCs. At the forest landscape and canopy scale,

flux towers are generally established at specific forest sites to observe the BVOCs emissions of the entire vegetation canopy

(Sarkar et al., 2020). This method is relatively reliable and widely used. It can estimate vegetation within a few
:
,
:::
and

::::
can50

:::::::
estimate

:::
the

:::::::::
vegetation

::::::
canopy

::::::::
emission

:::
flux

::::::
within

::
a
:::::
range

::
of

::::::
several

:
hundred meters from the flux towerCanopy emission

flux. Confined
:::
The

::::::
closed

:
chamber method and flux tower observation results can indirectly estimate the emission flux of

BVOCs at an ecological scale
:::::::
calculate

:::
the

::::::
BVOC

::::::::
emission

::::
flux

::
at

::::::::
ecological

::::::
scales with low biodiversity. However,

:
,
:::
but for

2

http://itreetools.org/
http://www.es.lancs.ac.uk/cnhgroup/download.html
http://www.es.lancs.ac.uk/cnhgroup/download.html
http://www.es.lancs.ac.uk/cnhgroup/download.html


ecosystems with high biodiversity
:
, such as tropical rainforest areas, this method is difficult to characterize the characteristics

of such varied vegetations
::
all

::::::
species.55

In order to bypass the detailed investigation of ecosystem species, the academic community used aerial surveys and satellite

remote sensing methods for indirect inversion of the emissions flux of BVOCs at the ecosystem and regional scales(Batista

et al., 2019). However, its
:::::::
inversion

:
accuracy is relatively low , and there are still large

:::::::::
significant errors. Similarly, in terms of

numerical models, due to the chemical composition and species diversity of BVOCs, and are greatly affected by environmental

factors , it is a big challenge to accurately simulate BVOCs emissions with numerical models
:
of
:::::::

BVOCs
::::

and
:::
the

::::::::
diversity60

::
of

::::
their

:::::::
emitting

::::
tree

:::::::
species,

:::
as

::::
well

::
as

:::
the

::::::::
influence

:::
of

:::::
many

::::::::::::
environmental

::::::
factors

:::
on

:::
the

::::::::
emission

:::::::
process

::
of

::::::::
BVOCs,

::::::::
accurately

:::::::::
simulating

::::::
BVOC

:::::::::
emissions

:::::
using

::::::::
numerical

:::::::
models

::::
faces

:::::::::
significant

:::::::::
challenges. Existing numerical models (for

example, BEIS, g95, MEGAN, BEM, etc.) mainly use land use, leaf biomass, emission factors, and meteorological elements

to estimate BVOCs emitted by vegetation (Wang et al., 2016; Chen et al., 2022). And the key source of uncertainty in its

estimation comes from the inaccuracy of the numerical model on the parameterazation and characterization of land use types,65

forest tree species composition, and leaf biomass. Some recent
:::::
Recent

:
studies have found that BVOCs also have considerable

spatial heterogeneity at the sub-forest scale (for example,
:::::::::
significant

::::::
spatial

:::::::::::
heterogeneity

::
of

:::::::
BVOCs

::
at
:::

the
::::

sub
:::::
forest

:::::
scale

::::
(e.g. hundreds of meters on a hillside

:::::::
mountain

::::::
slopes)(Li et al., 2021). Due to the differences in the distribution of forest tree

species, their BVOCs emissions are higher than those
::::
more

:::::::
complex

::::
than

:
commonly assumed in biosphere emission models.

More complicated. Generally
::::::
Overall, for the calculation of BVOCs emissions, accurately characterizing the spatial distribution70

of emission factors is a scientific difficulty that should
:::::::
challenge

::::
that

::::
need

:
be overcome to accurately quantitative

:::::::
quantify the

spatial distribution of BVOCs emissions.

In recent years, consumer-grade UAV platforms, lidar
::::::
LiDAR measurement technology and computer image recognition

technology have developed rapidly. UAVs equipped with measuring instruments for rapid sample observation technology

gradually mature, and its positioning accuracy can reach the centimeter level. Even in areas such as forest protection areas,75

it is possible to set up routes to carry out surveys based on suitable forest gaps. UAVs equipped with sensors to measure

atmospheric components have also begun to emerge (Villa et al., 2016). Many scholars install sensors in drone-based platforms

for low-cost and flexible measurement of VOC, black carbon (BC), ozone, aerosol particles, etc (Brosy et al., 2017; Rüdiger

et al., 2018; Shakhatreh et al., 2019; Li et al., 2021; Wu et al., 2021). And the camera carried by the drone can also obtain very

high-resolution images, and even multi-spectral images (Nebiker et al., 2008; Villa et al., 2016; Dash et al., 2017). At the same80

time, the miniaturization of lidar
::::::
LiDAR measurement technology also makes it possible to be carried by UAVs (Zhao et al.,

2016). Lidar as the instrument with the highest surveying accuracy so far. Compared with the original measurement method, the

point cloud obtained by lidar can
::
As

:::
the

::::
most

:::::::
accurate

:::::::::
surveying

:::::::::
instrument

::
to

::::
date,

::::::
LiDAR

::::
can

:::::::::::
revolutionary characterize the

canopy structure of each tree in the measurement range in a revolutionary way
::
by

::::::::
obtaining

:::::
point

:::::
clouds

:::::::::
compared

::
to

:::::::
existing

:::::::::::
measurement

::::::::
methods. (Li et al., 2012; Jin et al., 2021). The characterization of forest community structure, morphological85

and physiological forest traits has been greatly enriched by the combined laser scanning and imaging spectroscopy (Schneider

et al., 2017).

3



With the rapid development of
:::
The

::::::::::
recognition

::
of

:::::
plant

::::::
species

::::
has

:::::::::
undergone

:::::
rapid

:::::::::::
development

::::
with

:
computer image

recognition technology, the recognition of plant species is based on the method of machine vision recognition of plants in plant

phenomics to directly characterize plant species
:
. (Fassnacht et al., 2016; Cheng et al., 2023). Usually, machine learning and90

deep learning methods are used to call plant image libraries to train machine vision interpretation learning models, and then

violently interpret high-resolution multi-spectral remote sensing images and laser point clouds to obtain accurate plant popu-

lations and species result (Sylvain et al., 2019). At present, there are several vegetation species classifiers have been applied:

logistic regression, linear discriminat analysis, random forest, support vector machines, k-nearest neighbors (kNN), and 2d or

3d convolutional neural networks (CNNs) (Michałowska and Rapiński, 2021). With the maturity of various technologies and95

recognition training databases, various communities have created a batch of open source, shared, and API-callable recogni-

tion apps or platform for the public. The users only need to upload photos to get the recognized result, and the accuracy is

quite good. Open source recognition tools for lidar
:::::
LiDAR

:
results have also been developed rapidly. The accuracy of species

classification methods based on structural features based on LiDAR height, intensity, and combination of height and intensity

parameters can reach from 87% to 92% (You et al., 2020). Many publications have proven that the combination of LiDAR data100

and multispectral or hyperspectral images produces higher accuracy of species classification compared to LiDAR data alone

(Michałowska and Rapiński, 2021).

Therefore, this research intends to establish a technical framework based on the lidar
::::::
LiDAR

:
and photogrammetry carried by

drones and image recognition technologies from community to identify plant species to obtain accurate BVOCs emissions. It is

expect that the combination of the Lidar
::::::
LiDAR accurate characterization technology of forest canopy, the ascendant accurate105

identification technology of tree species, and the tree-species emission factor database obtained from long-term surveys, could

creates a new way to accurately quantify the biogenic emissions.

2 Methods

2.1 The Description of Workflow

The entire workflow includes the following aspects (as shown in Fig.1) : The first is the selection of drones equipped with lidar110

::::::
LiDAR

:
and high-resolution cameras; the second is the interpretation of photogrammetry results. The third part is to give the

images of each tree to API-callable plant species identify platforms, and then establish a match between the interpreted tree

species and the single tree species BVOCs emission factor database; the fourth step is to calculate the BVOCs emissions of the

study area based on the match results and emission factors.

2.2 Study Area115

The location of the provision of the work is in the coniferous and broadleaved mixed forest of the Dinghushan Forest Ecosystem

Research Station of Chinese Ecosystem Research Network (CERN). Dinghu Station is located in South Subtropical Zone, be-

longs to Subtropical Tropical quarter wind moisturized climate, and winter and summer climate is obvious. The average annual
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Figure 1. Schematic workflow of this study

temperature is 20.9 ◦C, the average annual rainfall is 1900 mm, and the annual sun radiation is about 4665 MJ·m−2·year−1,

and the average annual sunshine time is 1433 hours, and the average annual evaporation amount is 1115 mm, and the average120

relative humidity in many years is 82%. The position is near the northern return line, and its elevation is 300∼350 meters while

the slope is about 25◦∼30◦, and the slope direction is south. Its soil is Lateritic red soil, the soil layer depth is about 30 cm to

90 cm. The plots have
::::
This

:::
plot

:::
has

:
a long-term appearance of the

::::::
on-site

::::::
survey

::
of tree species, which is easy to compare the

::::::::
facilitates

:::
the

::::::::::
comparison

::
of test results. There are 260 families, 864 genus, 1740 species, and 349 species of cultivated plants

in Dinghushan Forest. At the same time, Li et al. (2021) used drones equipped with online mass spectrometers at Dinghushan125

Station to observe the composition of VOCs. We hope
::
It

::
is

::::::
expect to compare their results to explore the influence of tree

species on the spatial heterogeneity of VOCs.

2.3 Flight Equipment and Instruments

The main UAV platform used in this technical framework is DJI® Matrice 600 Pro, which is an universal platform that can

carry various sensors. We equipped the GreenValley® LiAir V lidar
::::::
LiDAR scanning system on this platform, which also130

includes a set of integrated navigation system composed of global navigation satellite systems(GNSS), inertial measurement

unit(IMU), and attitude calculation software.
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At the same time, we simultaneously used a DJI® Phantom 3 Professional UAV to get visible light images. Its camera model

is FC300X_3.6_4000×3000(RGB) , and the camera image sensor (CMOS) is 1/2.3 inch which effective pixels is 12.4 million

(total pixels 12.76 million). According to the image attribute information, the camera parameters used in this work are: aperture135

value f/2.8, maximum aperture 2, exposure time 1/1250 second, ISO speed 100, focal length 4 mm.

The DJI® pilot software are employed to design the flight route and guide the flight of the UAVs.
:::
The

::::
flight

:::::
mode

::
of

:::
the

::::
two

:::::
planes

::
is

::::::::
designed

::
as

:
a
:::::
same

::::
flight

:::::
route,

:::
so

:::
that

::::
they

:::
can

::::::
obtain

:
a
:::::::::
consistent

:::::::::::
measurement

::::
area.

::
It

:
is
::::::
worth

:::::
noting

::::
that

::
in

:::::
forest

:::::
areas,

:::
due

::
to

:::
the

:::::
dense

::::::
layers

::
of

:::::
trees,

::::
there

:::
are

:::::::::
significant

:::::
risks

:::::
during

:::::::
takeoff

:::
and

:::::::
landing,

:::
so

:
it
::
is
:::::::
usually

::::::::
necessary

::
to

::::
find

:
a
:::::::
suitable

::::::
landing

::::::::
location.

:::
We

::::::
usually

::::::
choose

:::
the

:::::::
location

::
at

:::
the

::::::
"forest

:::::
gap",

:::::
which

::
is

::::::
usually

::
a

:::::
tomb,

:::::
ridge,

::
or

:::::
other

::::::
natural140

:::
bare

:::::::
ground.

:
At the beginning of the take-off

:::::
takeoff

:
phase, we use

:::
used

:
manual operation to ensure that the

::::
avoid

:
trees near

the forest gap are avoided, and after the
:
to
::::::
reduce

:::
the

::::
risk

::
of

:
a
:::::
crash,

:::::
while

::::::::::
completing

::::::
inertial

::::::::
guidance

::
for

:::
the

:::::
IMU.

:::::
After

:::
the

takeoff reaches the specified height, it changes to automatic flight (as shown in Fig. 2). The flight mode of the two planes is

designed as a same flight route, so that they can obtain a consistent measurement area.

Figure 2. Flight route of this study

2.4 LiDAR-Based Tree Segmentation and Canopy Structure Calculation145

The study specifically uses GreenValley® LiDAR360 and Esri® ArcGIS software to carry out its
:::
this

::::
part

::
of

:::
the work. First,

the laser point cloud results are coordinated and spliced, and then the noise is removed when it overload 5 times the standard

deviation, and then the improved progressive TIN densification (IPTD) algorithm is used to separate the ground points (Zhao
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Table 1.
:::
The

::::::
specific

::::::::
parameter

::::::
settings

::
for

:::::::
airborne

:::::
image

:::
data

::::::::
processing

:::::::
Patameter

::::
Value

: ::::
Unit

::::::
Ground

:::::
sample

:::::::
distance

:::
7.2

::
cm

:

::::::
Overlap

:
in
:::::
flight

:::::::
direction

:::
85%

:
-
:

:::
Side

::::::
overlap

:::
60%

:
-
:

:::
Aera

::::::
Coverd

::::
0.372

: ::::
km2

::::
Mean

:::::::
absolute

:::::::::
geolocation

::::::
variance

: :::::::::::
0.0138-0.0361

::
cm

:

::::
Mean

::::
point

::::::
density

: :::
42.6

::::::::
point/m2

et al., 2016). On this basis, a digital elevation model is generated based on the inverse distance weight (IDW) method (Ismail

et al., 2016).150

The processing of obtaining single tree features based on lidar
::::::
LiDAR is based on the layer stacking algorithm (Ayrey et al.,

2017). According to the layer height of different trees, the position of the seed point in the laser point cloud is determined

for segmentation, and then the boundary of each tree is obtained.
:::
The

::::::::
principle

:::
of

:::
this

:::::::::
algorithm

::
is

::
to

::::
first

:::::
obtain

:::
the

:::::
seed

:::::
points

::
of

::::
each

::::::
single

:::
tree

::::
and

::::
then

:::
find

:::
its

::::::::
watershed

::::::::::::::
(Li et al., 2012).

:
Then, the

::
On

::::
this

:::::
basis,

:::
the

::::::
default

:::::::::
calculation

:::::::
module

::
of

:::::::::
LiDAR360

::
is

::::
used

::
to

::::::
obtain

:::
the

::::::::
structural characteristic parameters of tree canopystructure, such as canopy height, canopy155

:::::
crown

:
radius, etc ., are calculated.

::::::::::::::
(Ma et al., 2017).

:::
At

:::
the

:::::
same

:::::
time,

:::
we

::::
fuse

:::
and

:::::::::::
concatenate

:::
the

:::::::
airborne

::::::
visible

:::::
light

:::::
image

::::
into

:
a
::::::::
complete

::::::
image

:::::
raster

::::
data.

:
Based on the individual tree boundary, the results of the visible light image

:::::
raster

:::
data

:
segmentation through the overlay analysis of ArcGIS are used to obtain the image picture

:::::
raster of each individual tree.

:::
The

:::::::
specific

::::::::
parameter

:::::::
settings

:::
for

:::::::
airborne

::::::
image

::::
data

:::::::::
processing

:::
are

:::::
shown

:::
in

:::
the

:::::
Table

::
1. After that, the pictures

::::
raster

:
of

individual trees are given to different APPs to obtain the plant species identification results.160

2.5 Vegetation Identification

With the continuous improvement of a new generation of plant recognition algorithms based on deep learning methods, a

variety of plant recognition APPs and platforms continue to appear (Irimia et al., 2020; Otter et al., 2021). They can all import

and identify plant images in the mobile phones or give a application programming interface (API) to the public researchers.

There are also quite a lot of open source deep learning trained models and datasets, allowing researchers to submit visible light165

images and obtain recognition results (Ma et al., 2019; Zhanhui et al., 2020).

The apps and platforms shown in the table
::::
Table

:
2 were used in this study to identify the visible light image after point cloud

segmentation. They are usually trained based on a certain national or international plant classification picture database. For

example, the AiPlants® is based on the database of Plant Photo Bank of China (PPBC) (Zhanhui et al., 2020). With the rise

of cloud computing services, there have provided their own calling methods on various platforms, such as Aliyun® general170

image recognition service (GIRS), Amazon® rekognition service, Baidu® paddle-paddle platform, etc. And their identification

results can be obtained using simple script submission (Jin, 2017). However,
::::::::
However,

:::
due

::
to

::::::::::
differences

::
in

::::
their

:::::::::
respective
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Table 2. List of plant species identification apps and platforms

Name Source Reference

AiPlants http://hbl.nongbangzhu.cn/ Zhanhui et al. (2020)

Aliyun GIRS https://vision.aliyun.com/ Jin (2017)

Baidu EasyDL (PaddlePaddle) https://cloud.baidu.com/ Ma et al. (2019)

LeafSnap http://leafsnap.com/ Kumar et al. (2012)

Pl@ntNet https://identify.plantnet.org/ Joly et al. (2016)

PlantSnap https://www.plantsnap.com/ Otter et al. (2021)

Tree-detection-evo https://github.com/jaeeolma/tree-detection-evo/ Mäyrä et al. (2021)

::::::
training

::::
sets,

::::
the

::::::::
accuracy

::
of

:::::
plant

::::::::::
recognition

:::::
varies

::::::
among

::::::::
different

:::::
apps,

::
It

::
is

::::::::
currently

::::::
unclear

:
whether the reliability,

accuracy, and portability of these simple retrieval methods can support their application in the survey of plant emissionsneeds

more explore
::::::::::
investigating

::::
plant

:::::::::
emissions.

::
In

::::
this

:::::
study,

:
a
::::::
simple

::::::::::
recognition

:::
and

::::::::
judgment

::::::
method

::::
was

:::::::
adopted

::
to

::::::
ensure

:::
our175

:::::::::
recognition

::::::::
accuracy.

::::
We

:::::::
perform

:
a
::::::::::
conditional

::::::::
judgment

:::
on

::
all

:::::::
results,

:::
and

::
if
::::
one

:::::
input

::::
data

::::::
obtains

:::
the

:::::
same

::::::::::
recognition

::::
result

:::
on

:::
two

:::
or

::::
more

:::::::::
platforms,

:::
the

:::::::::
recognition

:::::
result

::
is
::::::::
accepted.

2.6 BVOCs Emission Factor and Emission Calculation

In this study, we calculated based on the database of detailed BVOCs emission factors (EF) for tree species provided by

MEGAN3.2 which contains a set of EF libraries with more than 40,000 tree species (Guenther et al., 2018). When the tree180

species determined based on section 2.5 is clear, the corresponding BVOCs EF can be obtained by looking up
::::
from

:
the table.

For the types of trees that are not contained in the EF library, we obtain the BVOCs emission factor of the tree species based

on the literature survey method (Chen et al., 2022; Mu et al., 2022). For tree species that still cannot be found even through

literature surveys
::::::
research, we choose plants of the same Gemera to replace.

::
to

::::::
replace

:::::
them

::::
with

::::::
plants

::::
from

:::
the

:::::
same

::::::
family.

:
Because there are quite a few types of BVOCs obtained by observa-185

tion experiments, they are generally dominated by isoprene and monoterpenes (Li et al., 2021). Therefore, our study is also

characterized by the distribution of emissions using its genus-specific average emission factor.

Since the images we use to identify tree species are single temporal, we only attempt to calculate the maximum and minimum

emissions of the forest in the sample plot. The calculation method is based on the emission factors corresponding to the species

of each tree, multiplied by its biomass and the area occupied by its crown diameter.190
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3 Results

3.1 The morphological composition of the vegetation

Based on the point cloud results measured by lidar
::::::
LiDAR, more accurate arbor morphological characteristics can be obtained.

Then we split the individual trees, and the point clouds of each individual tree are shown in Fig. 3. It can be seen that due to the

influence of terrain, the point cloud at the edge has a much lower density than the point cloud in the center, which may cause195

higher uncertainty in the segmentation of the single-wood in this area.

Figure 3. Point cloud of each individual tree obtained based on layer stacking algorithm excluding topographic

After the statistics of single tree segmentation, there are 1291 trees in the sample plot. The overall distribution of morpho-

logical parameters and the corresponding relationship between tree height and crown diameter of each tree are shown in Fig.4.

It can be seen that the tree height in the sample plot obtained by the measurement follows the GaussAmp skew distribution. Its

distribution range spans from 2 m to 30 m, and its average is at 14.9 m. At the same time, its crown radius presents a lognormal200

distribution, and its average value is about 4 m.

3.2 The composition of vegetation species

The plant identification APPs were called to identify the tree species based on the segmentation results. The spatial distribution

and frequency of tree species are shown in Fig.5 and Table 3 It can be seen from its spatial distribution that different tree

species appear to be scattered and gathered. Among them, the top three frequency tree species is Aidia canthioides (Champ.205

ex Benth.) Masam., followed by Macaranga sampsonii Hance, and third is Blastus cochinchinensis Lour. while the highest

frequency family is Euphorbiaceae. The ratio of top three species is about 12%, 11% and 6%. Other identified tree species are

also shown in Table 3. Combined with their canopy morphology distribution, it can be seen that the plot presents significant

9



Figure 4. The distribution of tree height and crown radius (left: overall distribution; right: each tree)

coniferous and broad-leaved mixed forest characteristics, and coniferous/broad-leaved trees occupy the position of dominant

tree species. Meanwhile, it still can be see from Fig.5 that lots of trees could not recognized.210

3.3 The BVOCs emission in family and individualized scale

The emission we obtained for isoprene and monoterpene for each family are shown in Table 4. It can be seen that in the

study area of Dinghu Mountain, the largest cumulative isoprene emissions were from Myrtaceae family (maximum 18.7

µgCm−2h−1), followed by Salicaceae family (maximum 3.8 µgCm−2h−1), while for monoterpenes their cumulative emis-

sions were largest in Rubiaceae family (maximum 3.9 µgCm−2h−1), followed by Theaceae family (maximum 2.8 µgCm−2h−1).215

However, it is worth noting that since we cannot confirm the leaf type, leaf age, and corresponding phenological period of each

tree, we only calculated the maximum and minimum possible emissions based on their standard emission factors and biomass.

At the same time, the spatial distribution of individual plant emissions from Fig.6 shows that there are clusters of BVOCs

emitting plants in the study area, which are caused by the aggregation of plants of the same family. The clusters of isoprene

and terpene emitting plants are homogeneous, while there are some non-BVOCs emitting plants between the different clusters,220

which may be related to their ecological competition strategy (Fitzky et al., 2019). According to the forest competition theory,

the emission of BVOCs is related to its competitive pressure, relative size and area overlap rate (Contreras et al., 2011).

On the other hand, the strategies adopted by different species are different. The intra-specific competition and inter-specific

competition play a specific role through different biopheromones which are all BVOCs (Šimpraga et al., 2019). In addition, it

is noteworthy from Fig.6 that the number of plants not discriminated in the study area is quite large, implying that this is an225

important source of uncertainty in the estimation of BVOCs emissions in this method.

10



Figure 5. The spatial distribution of tree species

4 Discussion

4.1 The uncertainties sources of this method

4.1.1 Flight altitude
::::
route

::::::
design

:
and image resolution

:::::
aerial

::::::
survey

:::::
data

::::::::::
acquisition

::::::
process

During the field flight using this workflow, we found that the height of the flight and the pixel area occupied by each tree in230

the resulting visible light image is the decisive link that determines whether the image recognition tool can effectively identify

the plant species in the image. In practice flight, we designed different flight altitude routes, namely 60 meters, 120 meters and

200 meters, in order to find a suitable flight altitude. We checked and found that for the images obtained at a flying altitude

of 120 meters or more, the number of pixels per tree obtained after being cut and paired by a single tree in the lidar
::::::
LiDAR

point cloud is less (about 200*300 pixels). The description of tree leaf characteristics is very unclear and presents mosaic-235

11



Figure 6. The individualized spatial distribution of isoprene and monoterpenes emission factor

like characteristics, which makes it impossible to accurately identify the hidden plant species in different image recognition

tools, which also makes the subsequent
:
it

::::
hard

::
in

::::
the calculation of BVOCs emissionsinto trouble. Especially since the

:
.
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::::::::
Especially

::::
due

::
to

:::
the

::::
fact

::::
that

:::
the

:
images obtained from the aerial survey of drones are all looking down, the expression

of canopy morphological features is lacking. This requires further integration with lidar results, or the use of multi-spectral

and multi-angles cameras in the future
:::::
drone

::::
flight

:::::::
surveys

:::
are

:::
all

:::::::::
orthophoto

:::::::
images,

::::
their

:::::::::
expression

::
in

::::::
canopy

:::::::::::
morphology240

::::::
features

::
is
:::::::
missing.

:

::
At

:::
the

:::::
same

::::
time,

:::
the

:::::::::
vegetation

::::::
below

:::
the

:::::
forest

::::::
canopy

::::
also

:::::
emits

:
a
:::::::::::

considerable
:::::::
amount

::
of

:::::::
BVOCs.

::::::::
Although

::::::::
airborne

::::::
LiDAR

::::
can

:::::
detect

:::::
their

::::::::
presence

:::::::
through

::::
leaf

:::::
gaps.

::::::
visible

::::
light

:::::::
images

::::::
cannot

::::::
obtain

:::::
their

::::::::::
information

::::
due

::
to

:::::::
canopy

::::::::
occlusion,

:::::::
making

::
it

::
an

:::::::::
important

::::::
source

::
of

::::::::::::::
underestimation

:::
of

:::::::
BVOCs

::::::::
emissions

:::
for

::::
this

:::::::
method.

::
It
::::
may

:::
be

:::::::
possible

:::
to

::
try

:::::
using

::::::
lateral

:::::
aerial

::::::::::
photography

:::
or

:::::::
airborne

:::::::::
multi-band

::::::::
enhanced

::::::::::
penetrating

::::::
LiDAR

::::::::::
technology

::
to

::::::
achieve

::::::::
detection

::::
and245

::::::::
modeling

:::::::::
recognition

::
of

:::::::::
understory

::::::
plants.

4.1.2 The selection of image
::::::
Single

:::
tree

::::::::::::
segmentation

::::
and

:
recognition tool

::::::
process

::
of

:::::::
images

:::
The

:::::
single

::::
tree

:::::::::::
segmentation

::::::::
technique

::::
used

::
in

:::
this

:::::
study

::
is

:::::
based

::
on

:::
the

::::
layer

:::::::
stacking

:::::::::
algorithm.

::::
This

:::::
single

::::
tree

:::::::::::
segmentation

::::::
process

::::
first

::::::
obtains

:::
the

::::
seed

:::::
points

:::
of

::::
each

::::
tree,

:::
and

::::
then

::::::::::
determines

:::
the

:::::::::
boundaries

:::::::
between

::::
each

:::::::::
individual

::::
tree

::::::
through

:::
its

::::::::
watershed

:::::::::::::
(Li et al., 2012)

:
.
::::
This

::::::
method

::::
may

:::::
result

::
in

:::::::::
undetected

::
or

:::::::::
incorrectly

:::::::
detected

:::::
trees,

:::::::::
depending

::
on

:::
the

:::::::
density

::
of

:::
the250

::::
laser

::::
point

:::::
cloud

:::
per

::::
unit

::::
area.

::
In

::::
this

:::::
study,

:::
the

::::::
density

::
of

::::
laser

:::::
point

:::::
clouds

::::
was

::::
42.6

::::::::
pointm2,

:::::
which

:::::::
although

::::
very

:::::
high,

::::
may

:::
still

:::::
result

::
in

:::::
some

:::::
small

:::::::
saplings

:::
not

:::::
being

::::::::
correctly

:::::::::
identified.

::
In

:::::
future

::::::::
research,

:::::::::
techniques

::::
such

:::
as

:::::::::::
ground-based

:::::::
LiDAR

:::::::::::
segmentation

:::
and

::::::::::::
coarse-to-fine

:::::::::
algorithms

:::
can

::
be

:::::::::
combined

::
to

:::::::
improve

::
its

::::::::
accuracy

:::::::::::::::
(Zhao et al., 2023)

:
.

It
:::
also can be seen that the recognition accuracy of these APPs is not as high as it claims for the visible light images obtained

by drones. Among them, platforms trained by satellite images give quite accurate results of tree specie recognition. EasyDL255

gave back "unrecognizable" feedback for quite a lot of individual tree images while AiPlants and LeafSnap gave incorrect

classification and recognition results such as succulents, garden plants, etc. This result may related to the fact that the APPs

did not train image inputs with right tree species tags during the collection and training of the general image datasets.

In general, for the refined calculation of vegetation VOCs emission factors, the platform based on deep learning training from

remote sensing images can provide faster and more reliable tree species identification results than traditional methods.
::::::::
However,260

::::
these

::::::::::
recognition

::::::::
platforms

:::
still

::::::
require

:::::
more

:::::::
accurate

::::
and

:::::::::
large-scale

::::::
training

:::::::
datasets

::
to

:::::::
support

::::
their

:::::::::::
classification

::::::::
accuracy.

::::::::
Although

::::::
various

::::::::::::
crowdsourcing

:::::
based

::::
apps

:::
are

::::::
widely

:::::
used,

::::
most

::
of

:::
the

::::::::
vegetation

::::
tree

::::::
species

::::::::::
information

::::::::
uploaded

::
by

:::::
users

:
is
:::::::::::
concentrated

::
in

::::::
garden

:::
tree

:::::::
species

::
or

:::::::
common

::::
tree

::::::
species,

:::::
more

::::::
sample

::::::
images

:::
are

::::::
needed

:::
for

::::
rare

:::
tree

:::::::
species.

::::
Due

::
to

:::
the

:::::::::
differences

::
of

::::::::
functions

:::
and

:::::::
selected

:::::::
training

::::::
datasets

::
of

::::::::
different

::::::::
platforms,

::
it

::
is

::::::
difficult

::
to

:::::::
quantify

:::
the

:::::
range

::
of

::::::::::
uncertainty

::
of

:::
this

:::::::
process.

::::
With

:::
the

:::::::::::
development

::
of

:::::
open

::::::
source

::::::::
databases

:::
and

:::::
open

:::::
source

:::::::
training

::::
sets,

::::::
further

::::::::::
uncertainty

::::::
source

::::::
control265

::
of

:::
this

:::::::
process

:::
can

::
be

:::::::::
promoted.

4.1.3 The
:::::::::
estimation

:::::::
process

::
of BVOCs emission factor database

::::::::
emissions

The emission
::::::::
Although

:::
this

:::::
study

:::::::::
integrated

:::::::::
MEGAN’s

:::::::
emission

::::
tree

::::::
species

::::::::::
information

::::
and

:::::::
literature

::::::::
obtained

::::::::::
information

::
as

::::
input

:::::::::::
calculations,

::::::::
MEGAN

::::::
mainly

:::::::
consists

:::
of

:::::::
common

::::
tree

:::::::
species

::
at

:::
the

:::::
global

::::::
scale.

:::::::::
Therefore,

:::
the

::::::::
emission factors

of various tree species used in this study mainly come
::::
came from Mu et al. (2022) measured results database. Although this270
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literature has rarely measured
::::
This

::::::::
literature

:::
has

:::::
made

::
it

::::
quite

::::
rare

::
to

:::::::
measure

:
over a hundred tree species

::::::
species

::
of

:::::
trees in

South China, there are still considerable shortcomings
:::::::
allowing

:::
for

:::
the

::::::::
discovery

:::
of

::::::::
emission

:::::
factor

::::::::::
information

:::
for

::::
most

:::
of

::
the

::::
tree

::::::
species

::
in
::::

the
::::::
sample

:::
plot

:::
of

:::
this

:::::
study.

::::
But

:::
this

::::::::
situation

:::::::
indicates

::::
that

:::::
there

:::
are

::::::
several

::::::::
technical

:::::
issues

::
in

::::::::
selecting

::
the

:::::::
BVOCs

::::::::
emission

:::::
factor

::::::
library

:::::
when

::::::::
applying

:::
this

::::::::::
framework. Firstly, there are still quite a few parsed tree species that

::::::::::
considerable

:::::
cases

::
in

:::
this

:::::
study

:::::
where

:::
the

::::
tree

::::::
species

::::::::
analyzed are not within the scope of this databasein this study;

:::::
range

::
of275

::
the

::::::::
MEGAN

:::
EF

::::::::
database. Secondly, the emissions

:::::::
emission

:
of BVOCs from trees are

::
is subject to various photochemical and

hydrothermal conditions, but currently, various databases are unable to provide detailed characterization of the impact of these

environmental factors at the tree species level;
:
. Thirdly, different BVOCs emission factor databases have different emphasis

on the emission parameters of BVOCs components of
:::
for the same tree species. These deficiencies

:::
The

:::::
above

::::::::::::
shortcomings

limit our further application and migration of this method to other forests. Community peers can only
::::::::
However,

:::
this

:::::::
method280

:::
can

::::::
quickly

::::::
obtain

::
an

:::::::::::
independent

::
set

:::
of

:::::
upper

:::
and

:::::
lower

:::::
limits

::
of

:::::::
BVOCs

:::::::::
emissions

:::
for

::
its

::::::
sample

::::
plot,

::::::
which

::
is

::::::
helpful

:::
for

:::::::::
conducting

:::::
model

:::::::::
validation

::::
work

:::::
based

:::
on

:::
the

::::::
sample

::::
plot.

::
It

::
is

::::::::::::
recommended

:::
that

::::::::::
community

::::
peers

:
refer to our Technology

roadmap and
::::::::
workflow

::::
and

:::::::
combine

::
it
:::::

with
:
their local tree species emission factor library for further

:
to
:::::::

further
:::::::
BVOCs

::::::::
emissions

:::::::::
estimation.

:

:::::::::
Meanwhile,

::
it
::
is

::::::::
important

:::
for

:::
the

::::::::
academic

::::::::::
community

::
to

:::::::::
understand

:::
that

:::::::
existing

:::::::
BVOCs

::::::::::::
computational

:::::::
emission

:::::::
models285

::::
such

::
as

::::::::
MEGAN

::::
have

:::::::
already

::::
taken

::::
into

:::::::
account

::::::
various

:::::::::::::
meteorological

:::::::::
conditions,

::::
leaf

:::::::
growth,

:::
and

:::::
other

::::::
factors

::::::::
relatively

:::::::::
completely.

::::::::
However,

:::
its

::::::::
definition

::
of

:::::::::
vegetation

::::
itself

:::::
often

:::::::
depends

::
on

:::
the

::::::::
definition

::
of

::::
land

:::
use

:::::
types

::
in

:::
the

:::::::
coupled

:::::::
regional

::::::
models.

::::
For

:::::::
example,

:::
in

:::
the

:::::::::
commonly

::::
used

::::::::::
WRF-Chem

::::::
model,

:::::::::
vegetation

:::::
types

:::
are

::::::
usually

::::::::
classified

:::::
using

:::
the

:::::::
MODIS

:::
20

::
or

:::::
USGS

:::
24

:::::::::::
classification

:::::::
systems,

:::::
which

::::
still

::::
using

:::
the

:::::::::::
combination

::
of

:::::::::
coniferous

::::::
forests,

:::::::::::
broad-leaved

::::::
forests,

:::::
mixed

:::::::
forests,

::::::::
evergreen

::::::
forests,

::::
and

::::::::
deciduous

::::::
forests

:::
for

::::::
forest

:::::::::::
classification.

::::
This

::::::
means

::::
that

::::
there

::
is
::
a
::::
need

:::
for

::::::
further

::::::::::::
improvement

::
in290

::
the

::::::::::::::
characterization

::
of

::::::::
emissions

:::::
from

:::::::
different

:::
tree

:::::::
species.

:::::::::
Therefore,

:::::
future

:::::::
regional

:
estimation of BVOCs emissions

::
can

:::
be

::::::
carried

:::
out

::
by

:::::::::
combining

:::
the

:::::::
method

:::::::::
framework

::::::::
obtained

::
in

:::
this

:::::
study

::::
with

:::
the

::::::::
coupling

::
of

:::::::
BVOCs

::::::::::::
computational

::::::::
emission

::::::
models.

4.2 The differences of BVOCs emission
::::
from

:::::
other

:::::::
method

:
and its potential impact

The BVOCs295

:::
We

::::::::
compared

:::
the

:::::::
BVOCs

:::::
results

:
obtained in this study were compared with the emission and concentration results obtained

by different methods at the sample site of Dinghu Mountain
::
in

:::
the

::::::
Dinghu

::::::::
Mountain

:::::::
sample

:::
plot, as shown in the Table 5. It

is interesting to see that the ways of the different studies are very diverse (including model calculations, forest floor sampling

observations, drone-mounted sensor observations
:::
can

:::
be

::::
seen

:::
that

::::
there

:::
are

:::::
many

::::::::
different

:::::::
research

:::::::
methods

:::::::::
(including

::::::
remote

::::::
sensing

::::::::
inversion,

::::::
model

::::::::::
calculation,

:::::::::
understory

::::::::
sampling

::::::::::
observation,

:::::::::
unmanned

:::::
aerial

::::::
vehicle

::::::::
mounted

:::::
sensor

::::::::::
observation,300

etc.). The quantitative differences in the emissions of BVOCs
:
,
:::
and

:::
the

::::::::::
magnitude

::
of

:::
the

:::::::
BVOC

::::::::
emissions

:
from Dinghu

Mountain obtained by the methods of the different studies are significant
::::
varies

:::::::
greatly. The results obtained in this study

show
::::
from

::::
this

:::::
study

:::::::
indicate

:
that a more BVOCs emissions

::::::
accurate

::::::::::
description

:
of forest biodiversity allows

:::
can

:::::
make

the calculated results to be more consistent with those obtained from direct observations carried out in the forest canopy.
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Previous estimates of biomass based on a simple PFT approach may have underestimated BVOCs emissions
::
At

:::
the

:::::
same305

::::
time,

::
it

:::
can

:::
be

:::::
found

::::
that

::
in

:::::::
previous

::::::
model

:::::::::
estimations

::::::
based

::
on

::::::
simple

::::
PFT

::::::::
methods

::
to

:::::::
estimate

::::::::
biomass,

:::
the

:::::::
emission

:::
of

::::::
BVOCs

::::
may

:::
be

::::::::::::
underestimated

:
to a considerable extent. This places a new requirement on the regional-scale estimation

:::::
poses

:::
new

:::::::::::
requirements

:::
for

:::
the

:::::::::
estimation

::::
and

::::::::::::::
parameterization

:
of BVOCs emissionsto consider the forest’s biodiversity

:
,
:::
that

:::
is,

::::
when

:::::::::
simulating

::::
the

:::::::
emission

:::
of

:::::::
BVOCs,

:::
the

::::::::::
biodiversity

:::
of

:::
the

:::::
forest in the region when modeling regional-scale BVOCs

emissions and to consider vegetation factors beyond purely physical canopy size representations
:::::
should

:::
be

:::::::::
considered,

::::
and

:::
the310

:::::::::::
consideration

::
of

:::::::::
vegetation

::::::
factors

:::
not

::::
only

:::::
comes

:::::
from

::::
pure

::::::
canopy

:::::::
physical

::::
size

::::::::
indicators such as LAI and crown diameter.

5 Conclusions

This research has established a workflow for identifying plant species based on lidar
::::::
LiDAR, photogrammetry and image

recognition technologies carried by drones to obtain accurate BVOCs emissions. The innovation of this research is to combine

the newly developed rapid survey method of plant species with the calculation of BVOCs emissions, and discussed the main315

uncertainty sources of the BVOCs emissions obtained in this method. The current limitation of this study is that although

LiDAR can capture the multi-layer structure of tree crowns, visible light is difficult to identify other vegetation below trees,

such as shrubs and herbs, which can result in a certain loss of BVOCs emissions.

The inspiration
:::
The

::::::::::
implication

:
of this study is thatwith the development of new

:
,
::::
with

:::
the

::::::::::::
advancement

::
of

:::::
novel

:
tech-

nologies in computer science,
:::
the

:::::::
obstacle

::
of tree species identification, which previously restricted

:::::::
impeded the estimation of320

BVOCs emissions, will gradually be able to achieve breakthroughs
::::::::
addressed through large-scale image recognition technol-

ogy. However, at the same time, the open source
:::
the

::::::::::
open-source

:
and standardized image recognition technology methods, as

well as
:::::::::
techniques,

:::::
along

::::
with the BVOCs emission factor library of

:::
for tree species, have become

:::::::
emerged

::
as new bottlenecks,

and relevant research communities need to consider
:::::::::::
necessitating

:::
the

:::::::
relevant

:::::::
research

::::::::::
community

::
to

::::::::::
contemplate

:::
on how to

share corresponding data and technologies more openly.325
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Table 3. Specific species composition information of vegetation identification result

Families Gemera Species Count Mean Height (m) Mean Crown Radius (m)

Actinidiaceae Saurauia Saurauia tristyla DC. 3 7.4 0.9

Aquifoliaceae Ilex Ilex cochinchinensis (Lour.) Loes. 1 17.2 6.7

Araliaceae Schefflera Schefflera heptaphylla (Linnaeus) Frodin 5 10.1 2.9

Arecaceae Caryota Caryota maxima Blume ex Martius 2 13.7 2.7

Burseraceae Canarium Canarium album (Lour.) Rauesch. 6 19.8 4.5

Cannabaceae Gironniera Gironniera subaequalis Planch. 19 18.0 5.6

Celastraceae Euonymus Euonymus laxiflorus Champ. ex Benth. 2 15.1 3.7

Ebenaceae Diospyros Diospyros eriantha Champ. ex Benth. 3 10.9 2.1

Ericaceae Craibiodendron Craibiodendron scleranthum (Dop) Judd. 2 10.6 1.6

Euphorbiaceae
Macaranga

Macaranga sampsonii Hance 67 12.5 1.9

Macaranga andamanica Kurz 4 9.4 0.3

Mallotus Mallotus paniculatus (Lam.) Muell. Arg. 22 12.3 2.7

Fabaceae
Ormosia Ormosia glaberrima Y. C. Wu 20 17.8 5.4

Archidendron Archidendron lucidum (Benth) I. C. Nielsen 6 18.2 7.6

Fagaceae Castanopsis Castanopsis chinensis (Sprengel) Hance 6 15.9 5.0

Juglandaceae Engelhardtia Engelhardia roxburghiana Wall. 3 11.1 2.8

Lauraceae

Cryptocarya
Cryptocarya concinna Hance 17 18.2 7.2

Cryptocarya chinensis (Hance) Hemsl. 9 11.2 0.8

Lindera Lindera chunii Merr. 5 17.7 5.8

Machilus Machilus chinensis (Champ. ex Benth.) Hemsl. 3 12.6 3.6

Neolitsea Neolitsea cambodiana Lec. 1 15.1 5.5

Malvaceae Pterospermum
Pterospermum lanceifolium Roxburgh 19 12.0 2.4

Pterospermum heterophyllum Hance 4 15.2 3.6

Melastomataceae
Blastus Blastus cochinchinensis Lour. 35 18.9 6.8

Memecylon Memecylon ligustrifolium Champ. 2 6.2 1.9

Moraceae Ficus
Ficus esquiroliana Levl. 9 18.1 5.7

Ficus nervosa Heyne ex Roth 2 5.6 1.8

Myrtaceae Syzygium

Syzygium rehderianum Merr. et Perry 29 15.6 3.7

Syzygium acuminatissimum (Blume) Candolle 10 15.3 5.5

SyzygiumlevineiMerr. et Perry 2 9.3 2.8

Syzygium championii (Benth.) Merr. et Perry 1 18.1 4.8

Pandaceae Microdesmis Microdesmis caseariifolia Planch. 6 14.0 3.2

Phyllanthaceae
Aporosa Aporosa yunnanensis (Pax & K. Hoffmann) F. P. Metcalf 34 13.2 2.8

Bridelia Bridelia balansae Tutcher 4 13.2 3.8

Polygalaceae Xanthophyllum Xanthophyllum hainanense Hu 15 16.9 3.8

Primulaceae Ardisia
Ardisia quinquegona Bl. 13 16.2 4.1

Ardisia waitakii C. M. Hu 3 15.2 6.3

Rhizophoraceae Carallia Carallia brachiata (Lour.) Merr. 2 15.4 3.1

Rosaceae Pygeum Pygeum topengii Merr. 7 13.2 4.9

Rubiaceae

Aidia Aidia canthioides (Champ. ex Benth.) Masam. 68 17.1 5.6

Lasianthus Lasianthus chinensis (Champ.) Benth. 6 13.0 2.8

Peponidium Canthium horridum Bl. Bijdr. 5 11.7 1.0

Psychotria Psychotria rubra (Lour.) Poir. 5 14.1 2.1

Canthium Canthium dicoccum(Gaertn.) Teysmann et Binnedijk 3 12.6 2.7

Rutaceae Acronychia Acronychia pedunculata (L.) Miq. 2 17.2 4.0

Sabiaceae Meliosma Meliosma rigida Sieb. et Zucc. 3 9.2 2.8

Salicaceae Casearia Casearia glomerata Roxb. 2 13.9 0.8

Sapindaceae Mischocarpus Mischocarpus pentapetalus (Roxb.) Radlk 24 11.8 1.2

Sapotaceae Sarcosperma Sarcosperma laurinum (Benth.) Hook. f. 8 16.9 3.7

Theaceae Schima Schima superba Gardn. et Champ. 3 7.8 0.7

Thymelaeaceae Aquilaria Aquilaria sinensis (Lour.) Spreng. 2 17.2 7.8
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Table 4. The maximum and minimum emissions from different families in study area (Unit: µgCm−2h−1))

Isoprene Monoterpenes

Families
Minimum Maximum Minimum Maximum

Count of trees

Actinidiaceae 0.0 0.0 0.0 0.0 3

Aquifoliaceae 0.0 0.0 0.0 0.0 1

Araliaceae 0.0 0.0 0.0 0.0 5

Arecaceae 1.6 1.6 0.0 0.0 2

Burseraceae 0.1 2.9 0.0 0.0 6

Cannabaceae 0.0 0.0 0.0 0.0 19

Celastraceae 0.0 0.0 0.0 0.0 2

Ebenaceae 0.0 0.0 0.0 0.1 3

Ericaceae 0.0 0.0 0.0 0.0 2

Euphorbiaceae 0.6 0.9 0.1 0.1 93

Fabaceae 0.8 0.8 0.2 0.2 26

Fagaceae 0.0 0.0 0.0 0.0 6

Juglandaceae 0.0 0.0 0.0 0.0 3

Lauraceae 2.2 2.8 2.4 2.6 35

Malvaceae 0.0 0.0 0.0 0.0 23

Melastomataceae 0.0 0.0 0.0 0.0 37

Moraceae 0.1 0.4 0.0 0.0 11

Myrtaceae 0.7 18.7 0.0 0.8 42

Pandaceae 0.0 0.0 0.0 0.0 6

Phyllanthaceae 0.0 0.0 0.0 0.5 38

Polygalaceae 0.0 0.0 0.0 0.0 15

Primulaceae 0.0 0.0 0.0 0.1 16

Rhizophoraceae 0.0 0.0 0.0 0.0 2

Rosaceae 0.0 0.0 0.0 0.0 7

Rubiaceae 0.0 0.3 0.0 3.9 87

Rutaceae 0.0 0.0 0.0 0.1 2

Sabiaceae 0.0 0.0 0.0 0.0 3

Salicaceae 0.7 3.8 0.0 0.0 2

Sapindaceae 0.0 2.9 0.0 0.7 24

Sapotaceae 0.0 1.8 0.0 0.0 8

Theaceae 0.0 0.0 2.8 2.8 3

Thymelaeaceae 0.0 0.0 0.0 0.0 2

Total 7.0 37.1 5.8 12.1 534
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Table 5. Measurements and simulations of isoprene and monoterpenes emissions/concentrations using different methods at the same site

Methods Isoprene Monoterpene Reference

This study 7.0∼37.1 µgCm−2h−1 5.8∼12.1 µgCm−2h−1 -

MEGAN 0.1∼10 µgCm−2h−1 0.1∼10 µgCm−2h−1 (Guenther et al., 2012)

REA techniques 0.11 mgCm−2h−1 0.24 mgCm−2h−1 (Gao et al., 2011)

REA techniques 0.215 mgCm−2h−1 0.313 mgCm−2h−1 (Situ et al., 2013)

GC-MS 0.12 ± 0.80 ppbv 0.32 ± 0.16 ppbv (α-pinene) (Tang et al., 2007)

GC-MS 0.76 ± 0.50 ppbv 0.33 ± 0.18 ppbv (α-pinene) (Wu et al., 2016)

UAV-based VOC sampler 0.047 ± 0.040 ppbv 0.084 ± 0.104 ppbv (α-pinene) (Li et al., 2021)
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