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Abstract.

Biogenic volatile organic compounds (BVOCs), as a crucial component that impacts atmospheric chemistry and ecological

interactions with various organisms, play a significant role in the atmosphere-ecosystem relationship. However, traditional field

observation methods are challenging to accurately estimate BVOCs emissions in forest ecosystems with high biodiversity,5

leading to significant uncertainty in quantifying these compounds. To address this issue, this research proposes a workflow

utilizing drone-mounted LiDAR and photogrammetry technologies for identifying plant species to obtain accurate BVOCs

emissions data. By applying this workflow to a typical subtropical forest plot, the following findings were made: The drone-

mounted LiDAR and photogrammetry modules effectively segmented trees and acquired single wood structures and images of

each tree. Image recognition technology enabled relatively accurate identification of tree species, with the highest frequency10

family being Euphorbiaceae. The largest cumulative isoprene emissions in the study plot were from the Myrtaceae family while

monoterpenes were from the Rubiaceae family. To fully leverage the estimation results of BVOCs emissions directly from

individual tree levels, it may be necessary for communities to establish more comprehensive tree species emission databases

and models.
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1 Introduction

Biogenic volatile organic compounds (BVOCs) is the medium of communication for plants to realize their wide ecological

functions (Laothawornkitkul et al., 2009). BVOCs are involved in plant growth, reproduction and defense (Peñuelas and Staudt,
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2010). Plants respond to the feeding of herbivores by emitting BVOCs to attract potential predators or as repellents (Kegge

and Pierik, 2010). The communication process between plants is also based on BVOCs (Šimpraga et al., 2016). For example,20

gnawed plants will emit BVOCs to induce the production of defensive substances in non-attack objects (Dicke and Baldwin,

2010). In addition, BVOCs components are also used by plants to attract pollinators to bloom (Loreto et al., 2014). For the

plants themselves, under heat waves or high ozone concentrations, BVOCs seem to reduce oxidative stress and other stresses

caused by the complex non-biological urban environment (Ghirardo et al., 2016; Chen et al., 2018).

At the same time, BVOCs are emitted into the atmosphere from vegetation and have significant impacts on other organ-25

isms and atmospheric chemistry and physics (Peñuelas and Staudt, 2010). BVOCs account for 90% of VOCs in atmospheric

chemistry research which were considered as the fuel to drive atmospheric chemical processes and the key component of the

atmosphere (Heald and Kroll, 2020). The atmospheric chemical activity of BVOCs species is very sprightly, and it’s lifetime

usually from only a few minutes to a few hours (Mellouki et al., 2015; Canaval et al., 2020). The contribution of BVOCs

emission to global secondary organic aerosol (SOA) generation is about 90%, which is the main source of global atmospheric30

SOA (Henze et al., 2008). At the same time, BVOCs contributed about 10% ∼ 30% of the surface ozone in urban areas (Ran

et al., 2011; Tsimpidi et al., 2012; Wu et al., 2020; Chen et al., 2022).

However, there is considerable uncertainty in the estimation of BVOCs (about 90% ∼ 120%) which constrains our under-

standing of the atmospheric environment and ecological effects of BVOCs (Situ et al., 2014; Wang et al., 2021). Especially

for the forest ecosystem with the highest biodiversity, forest vegetation is considered to be the main contributer of BVOCs35

emissions, accounting for more than 70% of global BVOCs emissions, but the uncertainty of estimation of BVOCs emissions

from forest vegetation is the most significant (Hartley et al., 2017). This uncertainty arises from two aspects: the lack of field

observations and the simplification of numerical simulations. There are different methods for measuring BVOCs emissions

on various scales. At the leaf and plant scale, scholars have used confined chamber and various improved confined chamber

methods (for example, open-top chamber, free air concentration enrichment, etc) to conduct a large number of outstanding40

observational studies on the BVOCs emissions of leaves, branches and the whole tree and contribute different BVOCs database

of single-tree BVOCs component emissions (Isidorov et al., 1990; Komenda and Koppmann, 2002; Baghi et al., 2012; Curtis

et al., 2014). Existing potential BVOCs emission databases include seBVOCs(Steinbrecher et al., 2009), the tree BVOCs in-

dex(Simpson and McPherson, 2011), MEGAN(Guenther et al., 2012), and other general inventories (e.g. http://itreetools.org/;

http://www.es.lancs.ac.uk/cnhgroup/download.html), etc. These studies mainly quantify the emission rate of BVOCs from45

specific tree species, which can help understand the processes and factors that affect the emission of BVOCs. At the forest

landscape and canopy scale, flux towers are generally established at specific forest sites to observe the BVOCs emissions of the

entire vegetation canopy (Sarkar et al., 2020). This method is relatively reliable and widely used, and can estimate the vegeta-

tion canopy emission flux within a range of several hundred meters from the flux tower. The closed chamber method and flux

tower observation results can indirectly calculate the BVOC emission flux at ecological scales with low biodiversity, but for50

ecosystems with high biodiversity, such as tropical rainforest areas, this method is difficult to characterize the characteristics

of all species.
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In order to bypass the detailed investigation of ecosystem species, the academic community used aerial surveys and satellite

remote sensing methods for indirect inversion of the emissions flux of BVOCs at the ecosystem and regional scales(Batista

et al., 2019). However, its inversion accuracy is relatively low and there are still significant errors. Similarly, due to the chem-55

ical composition of BVOCs and the diversity of their emitting tree species, as well as the influence of many environmental

factors on the emission process of BVOCs, accurately simulating BVOC emissions using numerical models faces significant

challenges. Existing numerical models (for example, BEIS, g95, MEGAN, BEM, etc.) mainly use land use, leaf biomass,

emission factors, and meteorological elements to estimate BVOCs emitted by vegetation (Wang et al., 2016; Chen et al., 2022).

And the key source of uncertainty in its estimation comes from the inaccuracy of the numerical model on the parameterazation60

and characterization of land use types, forest tree species composition, and leaf biomass. Recent studies have found significant

spatial heterogeneity of BVOCs at the sub forest scale (e.g. hundreds of meters on mountain slopes)(Li et al., 2021). Due to

differences in the distribution of forest tree species, their BVOCs emissions are more complex than commonly assumed in

biosphere emission models. Overall, for the calculation of BVOCs emissions, accurately characterizing the spatial distribution

of emission factors is a scientific challenge that need be overcome to accurately quantify the spatial distribution of BVOCs65

emissions.

In recent years, consumer-grade UAV platforms, LiDAR measurement technology and computer image recognition technol-

ogy have developed rapidly. UAVs equipped with measuring instruments for rapid sample observation technology gradually

mature, and its positioning accuracy can reach the centimeter level. Even in areas such as forest protection areas, it is possible

to set up routes to carry out surveys based on suitable forest gaps. UAVs equipped with sensors to measure atmospheric com-70

ponents have also begun to emerge (Villa et al., 2016). Many scholars install sensors in drone-based platforms for low-cost

and flexible measurement of VOC, black carbon (BC), ozone, aerosol particles, etc (Brosy et al., 2017; Rüdiger et al., 2018;

Shakhatreh et al., 2019; Li et al., 2021; Wu et al., 2021). And the camera carried by the drone can also obtain very high-

resolution images, and even multi-spectral images (Nebiker et al., 2008; Villa et al., 2016; Dash et al., 2017). At the same time,

the miniaturization of LiDAR measurement technology also makes it possible to be carried by UAVs (Zhao et al., 2016). As75

the most accurate surveying instrument to date, LiDAR can revolutionary characterize the canopy structure of each tree in the

measurement range by obtaining point clouds compared to existing measurement methods. (Li et al., 2012; Jin et al., 2021).

The characterization of forest community structure, morphological and physiological forest traits has been greatly enriched by

the combined laser scanning and imaging spectroscopy (Schneider et al., 2017).

The recognition of plant species has undergone rapid development with computer image recognition technology. (Fassnacht80

et al., 2016; Cheng et al., 2023). Usually, machine learning and deep learning methods are used to call plant image libraries to

train machine vision interpretation learning models, and then violently interpret high-resolution multi-spectral remote sensing

images and laser point clouds to obtain accurate plant populations and species result (Sylvain et al., 2019). At present, there are

several vegetation species classifiers have been applied: logistic regression, linear discriminat analysis, random forest, support

vector machines, k-nearest neighbors (kNN), and 2d or 3d convolutional neural networks (CNNs) (Michałowska and Rapiński,85

2021). With the maturity of various technologies and recognition training databases, various communities have created a

batch of open source, shared, and API-callable recognition apps or platform for the public. The users only need to upload
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photos to get the recognized result, and the accuracy is quite good. Open source recognition tools for LiDAR results have also

been developed rapidly. The accuracy of species classification methods based on structural features based on LiDAR height,

intensity, and combination of height and intensity parameters can reach from 87% to 92% (You et al., 2020). Many publications90

have proven that the combination of LiDAR data and multispectral or hyperspectral images produces higher accuracy of species

classification compared to LiDAR data alone (Michałowska and Rapiński, 2021).

Therefore, this research intends to establish a technical framework based on the LiDAR and photogrammetry carried by

drones and image recognition technologies from community to identify plant species to obtain accurate BVOCs emissions.

It is expect that the combination of the LiDAR accurate characterization technology of forest canopy, the ascendant accurate95

identification technology of tree species, and the tree-species emission factor database obtained from long-term surveys, could

creates a new way to accurately quantify the biogenic emissions.

2 Methods

2.1 The Description of Workflow

The entire workflow includes the following aspects (as shown in Fig.1) : The first is the selection of drones equipped with100

LiDAR and high-resolution cameras; the second is the interpretation of photogrammetry results. The third part is to give the

images of each tree to API-callable plant species identify platforms, and then establish a match between the interpreted tree

species and the single tree species BVOCs emission factor database; the fourth step is to calculate the BVOCs emissions of the

study area based on the match results and emission factors.

2.2 Study Area105

The location of the provision of the work is in the coniferous and broadleaved mixed forest of the Dinghushan Forest Ecosystem

Research Station of Chinese Ecosystem Research Network (CERN). Dinghu Station is located in South Subtropical Zone, be-

longs to Subtropical Tropical quarter wind moisturized climate, and winter and summer climate is obvious. The average annual

temperature is 20.9 ◦C, the average annual rainfall is 1900 mm, and the annual sun radiation is about 4665 MJ·m−2·year−1,

and the average annual sunshine time is 1433 hours, and the average annual evaporation amount is 1115 mm, and the average110

relative humidity in many years is 82%. The position is near the northern return line, and its elevation is 300∼350 meters while

the slope is about 25◦∼30◦, and the slope direction is south. Its soil is Lateritic red soil, the soil layer depth is about 30 cm to

90 cm. This plot has a long-term on-site survey of tree species, which facilitates the comparison of test results. There are 260

families, 864 genus, 1740 species, and 349 species of cultivated plants in Dinghushan Forest. At the same time, Li et al. (2021)

used drones equipped with online mass spectrometers at Dinghushan Station to observe the composition of VOCs. It is expect115

to compare their results to explore the influence of tree species on the spatial heterogeneity of VOCs.
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Figure 1. Schematic workflow of this study

2.3 Flight Equipment and Instruments

The main UAV platform used in this technical framework is DJI® Matrice 600 Pro, which is an universal platform that can

carry various sensors. We equipped the GreenValley® LiAir V LiDAR scanning system on this platform, which includes a set

of integrated navigation system composed of global navigation satellite systems(GNSS), inertial measurement unit(IMU), and120

attitude calculation software.

At the same time, we simultaneously used a DJI® Phantom 3 Professional UAV to get visible light images. Its camera model

is FC300X_3.6_4000×3000(RGB) , and the camera image sensor (CMOS) is 1/2.3 inch which effective pixels is 12.4 million

(total pixels 12.76 million). According to the image attribute information, the camera parameters used in this work are: aperture

value f/2.8, maximum aperture 2, exposure time 1/1250 second, ISO speed 100, focal length 4 mm.125

The DJI® pilot software are employed to design the flight route and guide the flight of the UAVs. The flight mode of the two

planes is designed as a same flight route, so that they can obtain a consistent measurement area. It is worth noting that in forest

areas, due to the dense layers of trees, there are significant risks during takeoff and landing, so it is usually necessary to find

a suitable landing location. We usually choose the location at the "forest gap", which is usually a tomb, ridge, or other natural

bare ground. At the beginning of the takeoff phase, we used manual operation to avoid trees near the forest gap to reduce the130
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risk of a crash, while completing inertial guidance for the IMU. After the takeoff reaches the specified height, it changes to

automatic flight (as shown in Fig. 2).

Figure 2. Flight route of this study

2.4 LiDAR-Based Tree Segmentation and Canopy Structure Calculation

The study specifically uses GreenValley® LiDAR360 and Esri® ArcGIS software to carry out this part of the work. First,

the laser point cloud results are coordinated and spliced, and then the noise is removed when it overload 5 times the standard135

deviation, and then the improved progressive TIN densification (IPTD) algorithm is used to separate the ground points (Zhao

et al., 2016). On this basis, a digital elevation model is generated based on the inverse distance weight (IDW) method (Ismail

et al., 2016).

The processing of obtaining single tree features based on LiDAR is based on the layer stacking algorithm (Ayrey et al.,

2017). According to the layer height of different trees, the position of the seed point in the laser point cloud is determined for140

segmentation, and then the boundary of each tree is obtained. The principle of this algorithm is to first obtain the seed points

of each single tree and then find its watershed (Li et al., 2012). On this basis, the default calculation module of LiDAR360

is used to obtain the structural characteristic parameters of tree canopy, such as canopy height, crown radius, etc (Ma et al.,

2017). At the same time, we fuse and concatenate the airborne visible light image into a complete image raster data. Based on

the individual tree boundary, the results of the visible light raster data segmentation through the overlay analysis of ArcGIS are145

used to obtain the raster of each individual tree. The specific parameter settings for airborne image data processing are shown
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Table 1. The specific parameter settings for airborne image data processing

Patameter Value Unit

Ground sample distance 7.2 cm

Overlap in flight direction 85% -

Side overlap 60% -

Aera Coverd 0.372 km2

Mean absolute geolocation variance 0.0138-0.0361 cm

Mean point density 42.6 point/m2

in the Table 1. After that, the raster of individual trees are given to different APPs to obtain the plant species identification

results.

2.5 Vegetation Identification

With the continuous improvement of a new generation of plant recognition algorithms based on deep learning methods, a150

variety of plant recognition APPs and platforms continue to appear (Irimia et al., 2020; Otter et al., 2021). They can all import

and identify plant images in the mobile phones or give a application programming interface (API) to the public researchers.

There are also quite a lot of open source deep learning trained models and datasets, allowing researchers to submit visible light

images and obtain recognition results (Ma et al., 2019; Zhanhui et al., 2020).

The apps and platforms shown in the Table 2 were used in this study to identify the visible light image after point cloud155

segmentation. They are usually trained based on a certain national or international plant classification picture database. For

example, the AiPlants® is based on the database of Plant Photo Bank of China (PPBC) (Zhanhui et al., 2020). With the rise

of cloud computing services, there have provided their own calling methods on various platforms, such as Aliyun® general

image recognition service (GIRS), Amazon® rekognition service, Baidu® paddle-paddle platform, etc. And their identification

results can be obtained using simple script submission (Jin, 2017). However, due to differences in their respective training sets,160

the accuracy of plant recognition varies among different apps, It is currently unclear whether the reliability, accuracy, and

portability of these simple retrieval methods can support their application in investigating plant emissions. In this study, a

simple recognition and judgment method was adopted to ensure our recognition accuracy. We perform a conditional judgment

on all results, and if one input data obtains the same recognition result on two or more platforms, the recognition result is

accepted.165

2.6 BVOCs Emission Factor and Emission Calculation

In this study, we calculated based on the database of detailed BVOCs emission factors (EF) for tree species provided by

MEGAN3.2 which contains a set of EF libraries with more than 40,000 tree species (Guenther et al., 2018). When the tree

species determined based on section 2.5 is clear, the corresponding BVOCs EF can be obtained by looking up from the table.
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Table 2. List of plant species identification apps and platforms

Name Source Reference

AiPlants http://hbl.nongbangzhu.cn/ Zhanhui et al. (2020)

Aliyun GIRS https://vision.aliyun.com/ Jin (2017)

Baidu EasyDL (PaddlePaddle) https://cloud.baidu.com/ Ma et al. (2019)

LeafSnap http://leafsnap.com/ Kumar et al. (2012)

Pl@ntNet https://identify.plantnet.org/ Joly et al. (2016)

PlantSnap https://www.plantsnap.com/ Otter et al. (2021)

Tree-detection-evo https://github.com/jaeeolma/tree-detection-evo/ Mäyrä et al. (2021)

For the types of trees that are not contained in the EF library, we obtain the BVOCs emission factor of the tree species170

based on the literature survey method (Chen et al., 2022; Mu et al., 2022). For tree species that cannot be found even through

literature research, we choose to replace them with plants from the same family. Because there are quite a few types of BVOCs

obtained by observation experiments, they are generally dominated by isoprene and monoterpenes (Li et al., 2021). Therefore,

our study is also characterized by the distribution of emissions using its genus-specific average emission factor.

Since the images we use to identify tree species are single temporal, we only attempt to calculate the maximum and minimum175

emissions of the forest in the sample plot. The calculation method is based on the emission factors corresponding to the species

of each tree, multiplied by its biomass and the area occupied by its crown diameter.

3 Results

3.1 The morphological composition of the vegetation

Based on the point cloud results measured by LiDAR, more accurate arbor morphological characteristics can be obtained. Then180

we split the individual trees, and the point clouds of each individual tree are shown in Fig. 3. It can be seen that due to the

influence of terrain, the point cloud at the edge has a much lower density than the point cloud in the center, which may cause

higher uncertainty in the segmentation of the single-wood in this area.

After the statistics of single tree segmentation, there are 1291 trees in the sample plot. The overall distribution of morpho-

logical parameters and the corresponding relationship between tree height and crown diameter of each tree are shown in Fig.4.185

It can be seen that the tree height in the sample plot obtained by the measurement follows the GaussAmp skew distribution. Its

distribution range spans from 2 m to 30 m, and its average is at 14.9 m. At the same time, its crown radius presents a lognormal

distribution, and its average value is about 4 m.
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Figure 3. Point cloud of each individual tree obtained based on layer stacking algorithm excluding topographic

Figure 4. The distribution of tree height and crown radius (left: overall distribution; right: each tree)

3.2 The composition of vegetation species

The plant identification APPs were called to identify the tree species based on the segmentation results. The spatial distribution190

and frequency of tree species are shown in Fig.5 and Table 3. It can be seen from its spatial distribution that different tree

species appear to be scattered and gathered. Among them, the top three frequency tree species is Aidia canthioides (Champ.

ex Benth.) Masam., followed by Macaranga sampsonii Hance, and third is Blastus cochinchinensis Lour. while the highest

frequency family is Euphorbiaceae. The ratio of top three species is about 12%, 11% and 6%. Other identified tree species are
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also shown in Table 3. Combined with their canopy morphology distribution, it can be seen that the plot presents significant195

coniferous and broad-leaved mixed forest characteristics, and coniferous/broad-leaved trees occupy the position of dominant

tree species. Meanwhile, it still can be see from Fig.5 that lots of trees could not recognized.

Figure 5. The spatial distribution of tree species

3.3 The BVOCs emission in family and individualized scale

The emission we obtained for isoprene and monoterpene for each family are shown in Table 4. It can be seen that in the

study area of Dinghu Mountain, the largest cumulative isoprene emissions were from Myrtaceae family (maximum 18.7200

µgCm−2h−1), followed by Salicaceae family (maximum 3.8 µgCm−2h−1), while for monoterpenes their cumulative emis-

sions were largest in Rubiaceae family (maximum 3.9 µgCm−2h−1), followed by Theaceae family (maximum 2.8 µgCm−2h−1).

However, it is worth noting that since we cannot confirm the leaf type, leaf age, and corresponding phenological period of each

tree, we only calculated the maximum and minimum possible emissions based on their standard emission factors and biomass.

10



At the same time, the spatial distribution of individual plant emissions from Fig.6 shows that there are clusters of BVOCs205

emitting plants in the study area, which are caused by the aggregation of plants of the same family. The clusters of isoprene

and terpene emitting plants are homogeneous, while there are some non-BVOCs emitting plants between the different clusters,

which may be related to their ecological competition strategy (Fitzky et al., 2019). According to the forest competition theory,

the emission of BVOCs is related to its competitive pressure, relative size and area overlap rate (Contreras et al., 2011).

On the other hand, the strategies adopted by different species are different. The intra-specific competition and inter-specific210

competition play a specific role through different biopheromones which are all BVOCs (Šimpraga et al., 2019). In addition, it

is noteworthy from Fig.6 that the number of plants not discriminated in the study area is quite large, implying that this is an

important source of uncertainty in the estimation of BVOCs emissions in this method.

4 Discussion

4.1 The uncertainties sources of this method215

4.1.1 Flight route design and aerial survey data acquisition process

During the field flight using this workflow, we found that the height of the flight and the pixel area occupied by each tree in the

resulting visible light image is the decisive link that determines whether the image recognition tool can effectively identify the

plant species in the image. In practice flight, we designed different flight altitude routes, namely 60 meters, 120 meters and 200

meters, in order to find a suitable flight altitude. We checked and found that for the images obtained at a flying altitude of 120220

meters or more, the number of pixels per tree obtained after being cut and paired by a single tree in the LiDAR point cloud is

less (about 200*300 pixels). The description of tree leaf characteristics is very unclear and presents mosaic-like characteristics,

which makes it impossible to accurately identify the hidden plant species in different image recognition tools, which also makes

it hard in the calculation of BVOCs emissions. Especially due to the fact that the images obtained from drone flight surveys are

all orthophoto images, their expression in canopy morphology features is missing.225

At the same time, the vegetation below the forest canopy also emits a considerable amount of BVOCs. Although airborne

LiDAR can detect their presence through leaf gaps. visible light images cannot obtain their information due to canopy occlu-

sion, making it an important source of underestimation of BVOCs emissions for this method. It may be possible to try using

lateral aerial photography or airborne multi-band enhanced penetrating LiDAR technology to achieve detection and modeling

recognition of understory plants.230

4.1.2 Single tree segmentation and recognition process of images

The single tree segmentation technique used in this study is based on the layer stacking algorithm. This single tree segmentation

process first obtains the seed points of each tree, and then determines the boundaries between each individual tree through its

watershed (Li et al., 2012). This method may result in undetected or incorrectly detected trees, depending on the density of the

laser point cloud per unit area. In this study, the density of laser point clouds was 42.6 pointm2, which although very high, may235
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Figure 6. The individualized spatial distribution of isoprene and monoterpenes emission factor

still result in some small saplings not being correctly identified. In future research, techniques such as ground-based LiDAR

segmentation and coarse-to-fine algorithms can be combined to improve its accuracy (Zhao et al., 2023).
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It also can be seen that the recognition accuracy of these APPs is not as high as it claims for the visible light images obtained

by drones. Among them, platforms trained by satellite images give quite accurate results of tree specie recognition. EasyDL

gave back "unrecognizable" feedback for quite a lot of individual tree images while AiPlants and LeafSnap gave incorrect240

classification and recognition results such as succulents, garden plants, etc. This result may related to the fact that the APPs

did not train image inputs with right tree species tags during the collection and training of the general image datasets.

In general, for the refined calculation of vegetation VOCs emission factors, the platform based on deep learning training from

remote sensing images can provide faster and more reliable tree species identification results than traditional methods. However,

these recognition platforms still require more accurate and large-scale training datasets to support their classification accuracy.245

Although various crowdsourcing based apps are widely used, most of the vegetation tree species information uploaded by users

is concentrated in garden tree species or common tree species, more sample images are needed for rare tree species. Due to the

differences of functions and selected training datasets of different platforms, it is difficult to quantify the range of uncertainty of

this process. With the development of open source databases and open source training sets, further uncertainty source control

of this process can be promoted.250

4.1.3 The estimation process of BVOCs emissions

Although this study integrated MEGAN’s emission tree species information and literature obtained information as input cal-

culations, MEGAN mainly consists of common tree species at the global scale. Therefore, the emission factors of various tree

species used in this study mainly came from Mu et al. (2022) measured results database. This literature has made it quite rare

to measure over a hundred species of trees in South China, allowing for the discovery of emission factor information for most255

of the tree species in the sample plot of this study. But this situation indicates that there are several technical issues in selecting

the BVOCs emission factor library when applying this framework. Firstly, there are still considerable cases in this study where

the tree species analyzed are not within the range of the MEGAN EF database. Secondly, the emission of BVOCs from trees is

subject to various photochemical and hydrothermal conditions, but currently, various databases are unable to provide detailed

characterization of the impact of these environmental factors at the tree species level. Thirdly, different BVOCs emission factor260

databases have different emphasis on the emission parameters of BVOCs components for the same tree species. The above

shortcomings limit our further application and migration of this method to other forests. However, this method can quickly

obtain an independent set of upper and lower limits of BVOCs emissions for its sample plot, which is helpful for conducting

model validation work based on the sample plot. It is recommended that community peers refer to our workflow and combine

it with their local tree species emission factor library to further BVOCs emissions estimation.265

Meanwhile, it is important for the academic community to understand that existing BVOCs computational emission models

such as MEGAN have already taken into account various meteorological conditions, leaf growth, and other factors relatively

completely. However, its definition of vegetation itself often depends on the definition of land use types in the coupled regional

models. For example, in the commonly used WRF-Chem model, vegetation types are usually classified using the MODIS 20

or USGS 24 classification systems, which still using the combination of coniferous forests, broad-leaved forests, mixed forests,270

evergreen forests, and deciduous forests for forest classification. This means that there is a need for further improvement in the
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characterization of emissions from different tree species. Therefore, future regional estimation of BVOCs can be carried out

by combining the method framework obtained in this study with the coupling of BVOCs computational emission models.

4.2 The differences of BVOCs emission from other method and its potential impact

We compared the BVOCs results obtained in this study with the emission results obtained by different methods in the Dinghu275

Mountain sample plot, as shown in the Table 5. It can be seen that there are many different research methods (including remote

sensing inversion, model calculation, understory sampling observation, unmanned aerial vehicle mounted sensor observation,

etc.), and the magnitude of the BVOC emissions from Dinghu Mountain varies greatly. The results obtained from this study

indicate that a more accurate description of forest biodiversity can make the calculated results more consistent with those ob-

tained from direct observations in the forest canopy. At the same time, it can be found that in previous model estimations based280

on simple PFT methods to estimate biomass, the emission of BVOCs may be underestimated to a considerable extent. This

poses new requirements for the estimation and parameterization of BVOCs emissions, that is, when simulating the emission of

BVOCs, the biodiversity of the forest in the region should be considered, and the consideration of vegetation factors not only

comes from pure canopy physical size indicators such as LAI and crown diameter.

5 Conclusions285

This research has established a workflow for identifying plant species based on LiDAR, photogrammetry and image recognition

technologies carried by drones to obtain accurate BVOCs emissions. The innovation of this research is to combine the newly

developed rapid survey method of plant species with the calculation of BVOCs emissions, and discussed the main uncertainty

sources of the BVOCs emissions obtained in this method. The current limitation of this study is that although LiDAR can

capture the multi-layer structure of tree crowns, visible light is difficult to identify other vegetation below trees, such as shrubs290

and herbs, which can result in a certain loss of BVOCs emissions.

The implication of this study is that, with the advancement of novel technologies in computer science, the obstacle of tree

species identification, which previously impeded the estimation of BVOCs emissions, will gradually be addressed through

large-scale image recognition technology. However, the open-source and standardized image recognition techniques, along

with the BVOCs emission factor library for tree species, have emerged as new bottlenecks, necessitating the relevant research295

community to contemplate on how to share corresponding data and technologies more openly.
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Table 3. Specific species composition information of vegetation identification result

Families Gemera Species Count Mean Height (m) Mean Crown Radius (m)

Actinidiaceae Saurauia Saurauia tristyla DC. 3 7.4 0.9

Aquifoliaceae Ilex Ilex cochinchinensis (Lour.) Loes. 1 17.2 6.7

Araliaceae Schefflera Schefflera heptaphylla (Linnaeus) Frodin 5 10.1 2.9

Arecaceae Caryota Caryota maxima Blume ex Martius 2 13.7 2.7

Burseraceae Canarium Canarium album (Lour.) Rauesch. 6 19.8 4.5

Cannabaceae Gironniera Gironniera subaequalis Planch. 19 18.0 5.6

Celastraceae Euonymus Euonymus laxiflorus Champ. ex Benth. 2 15.1 3.7

Ebenaceae Diospyros Diospyros eriantha Champ. ex Benth. 3 10.9 2.1

Ericaceae Craibiodendron Craibiodendron scleranthum (Dop) Judd. 2 10.6 1.6

Euphorbiaceae
Macaranga

Macaranga sampsonii Hance 67 12.5 1.9

Macaranga andamanica Kurz 4 9.4 0.3

Mallotus Mallotus paniculatus (Lam.) Muell. Arg. 22 12.3 2.7

Fabaceae
Ormosia Ormosia glaberrima Y. C. Wu 20 17.8 5.4

Archidendron Archidendron lucidum (Benth) I. C. Nielsen 6 18.2 7.6

Fagaceae Castanopsis Castanopsis chinensis (Sprengel) Hance 6 15.9 5.0

Juglandaceae Engelhardtia Engelhardia roxburghiana Wall. 3 11.1 2.8

Lauraceae

Cryptocarya
Cryptocarya concinna Hance 17 18.2 7.2

Cryptocarya chinensis (Hance) Hemsl. 9 11.2 0.8

Lindera Lindera chunii Merr. 5 17.7 5.8

Machilus Machilus chinensis (Champ. ex Benth.) Hemsl. 3 12.6 3.6

Neolitsea Neolitsea cambodiana Lec. 1 15.1 5.5

Malvaceae Pterospermum
Pterospermum lanceifolium Roxburgh 19 12.0 2.4

Pterospermum heterophyllum Hance 4 15.2 3.6

Melastomataceae
Blastus Blastus cochinchinensis Lour. 35 18.9 6.8

Memecylon Memecylon ligustrifolium Champ. 2 6.2 1.9

Moraceae Ficus
Ficus esquiroliana Levl. 9 18.1 5.7

Ficus nervosa Heyne ex Roth 2 5.6 1.8

Myrtaceae Syzygium

Syzygium rehderianum Merr. et Perry 29 15.6 3.7

Syzygium acuminatissimum (Blume) Candolle 10 15.3 5.5

SyzygiumlevineiMerr. et Perry 2 9.3 2.8

Syzygium championii (Benth.) Merr. et Perry 1 18.1 4.8

Pandaceae Microdesmis Microdesmis caseariifolia Planch. 6 14.0 3.2

Phyllanthaceae
Aporosa Aporosa yunnanensis (Pax & K. Hoffmann) F. P. Metcalf 34 13.2 2.8

Bridelia Bridelia balansae Tutcher 4 13.2 3.8

Polygalaceae Xanthophyllum Xanthophyllum hainanense Hu 15 16.9 3.8

Primulaceae Ardisia
Ardisia quinquegona Bl. 13 16.2 4.1

Ardisia waitakii C. M. Hu 3 15.2 6.3

Rhizophoraceae Carallia Carallia brachiata (Lour.) Merr. 2 15.4 3.1

Rosaceae Pygeum Pygeum topengii Merr. 7 13.2 4.9

Rubiaceae

Aidia Aidia canthioides (Champ. ex Benth.) Masam. 68 17.1 5.6

Lasianthus Lasianthus chinensis (Champ.) Benth. 6 13.0 2.8

Peponidium Canthium horridum Bl. Bijdr. 5 11.7 1.0

Psychotria Psychotria rubra (Lour.) Poir. 5 14.1 2.1

Canthium Canthium dicoccum(Gaertn.) Teysmann et Binnedijk 3 12.6 2.7

Rutaceae Acronychia Acronychia pedunculata (L.) Miq. 2 17.2 4.0

Sabiaceae Meliosma Meliosma rigida Sieb. et Zucc. 3 9.2 2.8

Salicaceae Casearia Casearia glomerata Roxb. 2 13.9 0.8

Sapindaceae Mischocarpus Mischocarpus pentapetalus (Roxb.) Radlk 24 11.8 1.2

Sapotaceae Sarcosperma Sarcosperma laurinum (Benth.) Hook. f. 8 16.9 3.7

Theaceae Schima Schima superba Gardn. et Champ. 3 7.8 0.7

Thymelaeaceae Aquilaria Aquilaria sinensis (Lour.) Spreng. 2 17.2 7.8
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Table 4. The maximum and minimum emissions from different families in study area (Unit: µgCm−2h−1))

Isoprene Monoterpenes

Families
Minimum Maximum Minimum Maximum

Count of trees

Actinidiaceae 0.0 0.0 0.0 0.0 3

Aquifoliaceae 0.0 0.0 0.0 0.0 1

Araliaceae 0.0 0.0 0.0 0.0 5

Arecaceae 1.6 1.6 0.0 0.0 2

Burseraceae 0.1 2.9 0.0 0.0 6

Cannabaceae 0.0 0.0 0.0 0.0 19

Celastraceae 0.0 0.0 0.0 0.0 2

Ebenaceae 0.0 0.0 0.0 0.1 3

Ericaceae 0.0 0.0 0.0 0.0 2

Euphorbiaceae 0.6 0.9 0.1 0.1 93

Fabaceae 0.8 0.8 0.2 0.2 26

Fagaceae 0.0 0.0 0.0 0.0 6

Juglandaceae 0.0 0.0 0.0 0.0 3

Lauraceae 2.2 2.8 2.4 2.6 35

Malvaceae 0.0 0.0 0.0 0.0 23

Melastomataceae 0.0 0.0 0.0 0.0 37

Moraceae 0.1 0.4 0.0 0.0 11

Myrtaceae 0.7 18.7 0.0 0.8 42

Pandaceae 0.0 0.0 0.0 0.0 6

Phyllanthaceae 0.0 0.0 0.0 0.5 38

Polygalaceae 0.0 0.0 0.0 0.0 15

Primulaceae 0.0 0.0 0.0 0.1 16

Rhizophoraceae 0.0 0.0 0.0 0.0 2

Rosaceae 0.0 0.0 0.0 0.0 7

Rubiaceae 0.0 0.3 0.0 3.9 87

Rutaceae 0.0 0.0 0.0 0.1 2

Sabiaceae 0.0 0.0 0.0 0.0 3

Salicaceae 0.7 3.8 0.0 0.0 2

Sapindaceae 0.0 2.9 0.0 0.7 24

Sapotaceae 0.0 1.8 0.0 0.0 8

Theaceae 0.0 0.0 2.8 2.8 3

Thymelaeaceae 0.0 0.0 0.0 0.0 2

Total 7.0 37.1 5.8 12.1 534
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Table 5. Measurements and simulations of isoprene and monoterpenes emissions/concentrations using different methods at the same site

Methods Isoprene Monoterpene Reference

This study 7.0∼37.1 µgCm−2h−1 5.8∼12.1 µgCm−2h−1 -

MEGAN 0.1∼10 µgCm−2h−1 0.1∼10 µgCm−2h−1 (Guenther et al., 2012)

REA techniques 0.11 mgCm−2h−1 0.24 mgCm−2h−1 (Gao et al., 2011)

REA techniques 0.215 mgCm−2h−1 0.313 mgCm−2h−1 (Situ et al., 2013)

GC-MS 0.12 ± 0.80 ppbv 0.32 ± 0.16 ppbv (α-pinene) (Tang et al., 2007)

GC-MS 0.76 ± 0.50 ppbv 0.33 ± 0.18 ppbv (α-pinene) (Wu et al., 2016)

UAV-based VOC sampler 0.047 ± 0.040 ppbv 0.084 ± 0.104 ppbv (α-pinene) (Li et al., 2021)
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