

- 1 Aerosol trace element solubility determined using ultrapure water batch leaching: an
- 2 intercomparison study of four different leaching protocols
- 3
- 4 Rui Li,^{1,2} Prema Piyusha Panda,^{3,4} Yizhu Chen,^{2,5} Zhenming Zhu,⁶ Fu Wang,⁶ Yujiao Zhu,⁷
- 5 He Meng,⁸ Yan Ren,⁶ Ashwini Kumar,^{3,4} Mingjin Tang^{2,5,*}
- 6
- 7 ¹ Department of Environmental Health, School of Public Health, Shanxi Medical University,
- 8 Taiyuan, China
- 9 ² State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry,
- 10 Chinese Academy of Sciences, Guangzhou, China
- ³ CSIR-National Institute of Oceanography, Dona Paula, Goa, India
- ⁴ School of Earth, Ocean and Atmospheric Sciences, Goa University, Goa, India
- ⁵ College of Earth and Planetary Sciences, University of Chinese Academy of Sciences,
- 14 Beijing, China
- ⁶ Longhua Center for Disease Control and Prevention of Shenzhen, Shenzhen, China
- ⁷ Environment Research Institute, Shandong University, Qingdao, China
- ⁸ Qingdao Eco-environment Monitoring Center of Shandong Province, Qingdao, China
- 18
- 19 *Correspondence: Mingjin Tang (mingjintang@gig.ac.cn)
- 20
- 21
- 22

23 Abstract

24	Solubility of aerosol trace elements, which determines their bioavailability and reactivity, is
25	operationally defined and strongly depends on the leaching protocol used. Ultrapure water
26	batch leaching is one of the most widely used leaching protocols, while the specific leaching
27	protocols used in different labs can still differ in agitation methods, contact time, and filter pore
28	size. It is yet unclear to which extent the difference in these experimental parameters would
29	affect the aerosol trace element solubility reported. This work examined the effects of agitation
30	methods, filter pore size and contact time on the solubility of nine aerosol trace elements, and
31	found that the difference in agitation methods (shaking vs. sonication), filter pore size (0.22 vs.
32	0.45 μm), and contact time (1 vs. 2 h) only led to small and sometimes insignificant difference
33	in the reported solubility. We further compared aerosol trace element solubility determined
34	using four ultrapure water leaching protocols which are adopted by four different labs and vary
35	in agitation methods, filter pore size and/or contact time, and observed good agreement in the
36	reported solubility. Therefore, our work suggests that although ultrapure water batch leaching
37	protocols used by different labs vary in specific experimental parameters, the determined
38	aerosol trace element solubility is comparable. We recommend ultrapure water batch leaching
39	to be one of the reference leaching schemes, and emphasize that additional consensus in the
40	community on agitation methods, contact time and filter pore size is needed to formulate a
41	standard operating procedure for ultrapure water batch leaching.

42

44 **1 Introduction**

45	Aerosol trace elements, originating from natural and anthropogenic sources, are of great
46	concerns, as they significantly impact marine and terrestrial ecosystems (Boyd and Ellwood,
47	2010; Dong et al., 2023; Mahowald et al., 2018), have adverse effects on human health
48	(Dahmardeh Behrooz et al., 2021; Fang et al., 2017; Gao et al., 2022; Wei et al., 2019), and
49	play important roles in atmospheric chemistry (Al-Abadleh, 2024; Alexander et al., 2009; Mao
50	et al., 2013; Martin and Hill, 1987; Wang et al., 2021). The dissolved fraction of aerosol trace
51	elements, instead of their total abundance, is considered to be bioavailable (Baker and Croot,
52	2010; Ito et al., 2012; Mukhtar and Limbeck, 2013) and more chemically reactive in the
53	atmosphere (Kebede et al., 2016; Mao et al., 2017). Dissolved trace elements are typically
54	referred to as the fraction of elements which can pass through a filter with certain pore size
55	(usually 0.2-0.22 or 0.45 μm) after aerosol particles are dissolved in certain aqueous solutions
56	(Boyd and Ellwood, 2010; Ito and Xu, 2014; Meskhidze et al., 2016; Myriokefalitakis et al.,
57	2018). Solubility (or fractional solubility, to be more precise), which is defined as the ratio
58	(in %) of the dissolved element to the total element (Baker et al., 2006; Sholkovitz et al., 2012),
59	largely determines the bioavailability and reactivity of aerosol trace elements.
60	A wide range in the solubility has been reported in the literature for a given trace element
61	in atmospheric aerosols, and for example, the reported solubility of aerosol Fe ranges from $<\!\!1\%$
62	to >90% (Baker and Jickells, 2006; Sholkovitz et al., 2012). Such wide variabilities in aerosol

trace element solubility, on one hand, can be caused by difference in sources and aging processes of aerosol particles examined (Ito et al., 2021; Meskhidze et al., 2019); on the other hand, they also stem from various leaching protocols which were used by different studies

66 (Chen et al., 2006; Li et al., 2023; Upadhyay et al., 2011).

67 Various leaching protocols have been used in previous studies to extract dissolved aerosol trace elements, as summarized in a recent paper (Li et al., 2023). In brief, available leaching 68 protocols broadly consist of two catalogues, including flow-through leaching and batch 69 70 leaching. Flow-through leaching is instantaneous and typically has a contact time (between aerosol particles and the leaching solution used) of tens of seconds, and batch leaching usually 71 72 has a much longer contact time (tens of minutes or longer). Compared to flow-through leaching, 73 batch leaching is more widely used in atmospheric research. Furthermore, for batch leaching, 74 various leaching solutions were used in previous studies, such as ultrapure water, filtered seawater, and formate/acetate buffers. Compared to filtered seawater and formate/acetate 75 buffers, ultrapure water is more widely used in atmospheric research due to its simplicity and 76 77 reproducibility (Li et al., 2023; Meskhidze et al., 2019); another important reason is that 78 ultrapure water leaching does not introduce any other chemical species (except water) and thus can simultaneously extract water-soluble ions and organics for additional analysis. 79

Even for ultrapure water batch leaching, protocols used by different studies may still vary 80 81 in agitation methods, contact time, and filter pore size; nevertheless, the effects of these factors on the reported solubility are not well understood. First, some labs use sonication to agitate the 82 leaching solutions (Chen et al., 2006; Kumar and Sarin, 2010; Liu et al., 2021; Longo et al., 83 2016; Shi et al., 2020), and other labs use shaking (Baker et al., 2003; Gao et al., 2020; Hsu et 84 85 al., 2010; Li et al., 2022; Salazar et al., 2020). Sonication may cause changes in chemical composition and formation of reactive oxygen species in the solution (Juretic et al., 2015; 86 Miljevic et al., 2014); however, it remains to be examined whether sonication will change the 87

1 1 .1.

1 1'

0 0 0 00

88	solubility of aerosol trace elements. Second, filters with different pore sizes, including 0.2-0.22
89	and 0.45 μm (and 0.02 μm to a less extent), are employed to filter the leaching solutions,
90	contributing to the uncertainties in the reported solubility; however, the effects of filter pore
91	size have seldom been experimentally examined. Third, some studies (Li et al., 2023; Mackey
92	et al., 2015) suggested that contact time (2-8 h) could also influence the reported solubility.
93	In the present work, using aerosol particles collected at a suburban site close to the
94	coastline of the Northwest Pacific, we investigated to which extent different ultrapure water
95	batch leaching protocols would affect reported aerosol trace element solubility. In the first part
96	of this work, we examined the effects of agitation (shaking vs. sonication), filter pore size (0.22
97	vs. 0.45 μ m) and contact time (1 vs. 2 h) on the reported solubility of nine aerosol trace elements.
98	In the second part, we compared solubility determined using protocols commonly adopted by
99	four labs. The four labs all use ultrapure water batch leaching, but the leaching protocols they
100	use differ in agitation method, contact time, and/or filter pore size.

a

1 (*1)

101 **2 Experimental section**

102 **2.1 Sample collection and distribution**

We collected aerosol samples between 18 March and 22 April 2023 in Qingdao, a coastal city in northern China, typically impacted by desert dust and anthropogenic aerosols in spring. As described elsewhere (Zhang et al., 2022), aerosol sampling took place at a suburban site which was about 1.3 km from the coast. A cumstom-made high-volume aerosol sampler (ASM-1; flow rate: 1 m³/min) was deployed on a building roof (about 20 m above the ground) to collect PM₁₀ samples. Aerosol sampling started at 08:00 am each day and stopped at 07:30 am on the next day, resulting in a sampling volume of 1410 m³. PM₁₀ samples were collected onto

pre-cleaned Whatman 41 cellulose fiber filters (25 cm \times 20 cm) which had very low 110 111 backgrounds for trace elements (Morton et al., 2013; Zhang et al., 2022). In total we collected 26 filter samples, 4 sampling blanks, and 3 lab blanks: lab blanks were defined as pre-cleaned 112 filters, and sampling blanks were defined as pre-cleaned filters which were placed in the aerosol 113 114 sampler for 2 h when the sampling flow was off. After aerosol collection, each filter was folded inward and placed into a clean 115 116 polyethylene bag (12 inch \times 9 inch, supplied by Sigma-Aldrich) which was used due to its low background (Morton et al., 2013), and then stored at -20 °C. A titanium punch was used to 117 obtain 10 subsamples (47 mm in diameter) from each filter sample, and these subsamples were 118 stored at -20 °C. 119

120 2.2 Measurement of total and dissolved trace elements

121 **2.2.1 Total elements**

As shown in Table 1 and described below, for the 10 subsamples obtained from each original filter sample, the first subsample was digested to determine total elements, another eight subsamples were leached using different protocols to determine dissolved elements, and the last subsample was reserved for any unforeseen purpose (but was not used at the end).

Subsample 1 was digested in a Teflon jar which contained a mixture of HNO₃-HF-H₂O₂, using a microwave digestion system (Zhang et al., 2022). After digestion, we evaporated residual acids in the Teflon jar, and filled it with 20 mL HNO₃ (1%). Subsequently, we filtered the solution through a polyethersulfone membrane syringe filter (with a pore size of 0.22 μm), and then used ICP-MS (inductively coupled plasma mass spectrometry, iCAP Q, Thermo Fisher) to measure nine trace elements, including Fe, Al, As, Cr, Cu, Mn, Pb, V and Zn.

132

133 **Table 1.** Overview of protocols used to digest and leach subsamples examined in this work.

subsample	agitation	contact	filter pore	Lab	References
		time (h)	size (µm)		
1	digestion			GIG	
2a	shaking	2	0.22	GIG	Zhang et al. (2022)
2b	shaking	2	0.22	GIG	
2c	shaking	2	<u>0.45</u>		
2d	sonication	2	0.22		
2e	shaking	<u>1</u>	0.22		
3a	sonication	1	0.22	ZJU	Liu et al. (2021)
3b	sonication	1	0.45	OUC	Shi et al. (2020)
3c	sonication	0.5	0.20	NIO	Panda et al. (2022)

134

135 **2.2.2 Dissolved elements**

Subsample 2a was leached using the protocol adopted by the lab at Guangzhou Institute 136 of Geochemistry (GIG) (Li et al., 2023; Zhang et al., 2022; Zhang et al., 2023). In brief, the 137 138 subsample was shredded and then immersed in 20 mL ultrapure water for 2 h, stirred using an orbital shaker; subsequently, the solution was filtered through a polyethersulfone membrane 139 140 syringe filter (with a pore size of $0.22 \,\mu$ m). After that, the solution was immediately acidified with a small volume of high-purity HNO₃ to contain 1% HNO₃, and then analyzed using ICP-141 MS to determine dissolved trace elements. Subsample 2b was leached using the same protocol 142 as subsample 2a, and the purpose was to examine whether aerosol particles were 143 homogeneously distributed on different subsamples, and to assess the repeatability of the GIG 144 leaching protocol. 145

146	Subsamples 2c-2e were leached using protocols similar to that used to leach subsample
147	2a. As summarized in Table 1, the only difference to the protocol used to leach subsample 2a
148	was the filter pore for 2c (0.45 $\mu m,$ vs. 0.22 μm for 2a), agitation method for 2d (sonication, vs.
149	shaking for 2a), and contact time for 2e (1 h, vs. 2 h for 2a). The purpose of using subsamples
150	2c-2e is to examine the effects of filter pore size (0.22 vs. 0.45 μm), agitation method (shaking
151	vs. agitation), and contact time (1 vs. 2 h) on the reported solubility.
152	Subsamples 3a, 3b and 3c were leached using the protocols typically used by ZJU
153	(Zhejiang University, China), OUC (Ocean University of China, China) and NIO (National
154	Institute of Oceanography, India), respectively, in order to compare solubility determined by
155	the GIG lab with those reported by the other three labs. Please note that subsamples 3c were
156	leached and analyzed by NIO, while subsamples 3b and 3c were leached and analyzed at GIG
157	(using the ZJU and OUC protocols, respectively).
158	Subsample 3a was leached at GIG using the ZJU protocol (Liu et al., 2021; Zhu et al.,
159	2020). In brief, each subsample was shredded and immersed in 20 mL ultrapure water, and the
160	aqueous mixture was sonicated for 1 h during which the water bath temperature was kept below
161	30 °C; after that, the aqueous mixture was filtered using a polyether sulfone membrane syringe
162	filter (pore size: 0.22 $\mu m)$ and acidified for later ICP-MS analysis. Subsample 3b was leached
163	at GIG using the OUC protocol (Shi et al., 2020), which is very similar to the ZJU method: the
164	only difference is that the filter pore size was 0.45 μm for the OUC protocol and 0.22 μm for
165	the ZJU protocol.

Subsample 3c was leached and analyzed at NIO using the NIO protocol (Panda et al.,
2022). In brief, each subsample was shredded and placed into a pre-cleaned Savillex vial (50

168	mL); after that, the vial was filled with 20 mL ultrapure water, caped, and then sonicated for
169	30 minutes to agitate the aqueous mixture (but in 2 cycles with 15 min for each cycle, in order
170	to maintain the water bath at room temperature). The aqueous mixture was then filtered through
171	a Whatman PVDF syringe filter (pore size: 0.2 μm), and then acidified with HNO3 (2% v/v)
172	for later high-resolution ICP-MS analysis (Nu Instruments, Attom ES).
173	3 Results and discussion
174	Subsamples 2a and 2b were identically leached using the protocol GIG normally uses, and
175	the paired <i>t</i> -test ($\alpha = 0.05$) was employed to examine whether the difference in obtained
176	solubility was significant. As summarized in Table 2, the difference in obtained solubility was
177	not statistically significant between 2a and 2b for Fe, Al, As, Mn, Pb, and V; furthermore,
178	Figure S1 suggests good linear correlations in solubility between 2a and 2b for the six elements
179	(R > 0.99), and the corresponding slopes (0.98 to 1.02) were very close to 1. For the other three
180	elements (Cr, Cu and Zn), although the difference in solubility was found to be statistically
181	significant between 2a and 2b (Table 1), good linear correlations between the solubility were
182	found (R > 0.97) and the slopes (1.00-1.06) were close to 1; therefore, the difference in
183	solubility between 2a and 2b, if it existed, was small for Cr, Cu and Zn.
184	In summary, we conclude that the distribution of aerosol particles on a given original filter

185 was homogeneous and that the protocol GIG normally uses had very good repeatability.

- **Table 2.** Summary of statistical analysis (paired-*t*-test, $\alpha = 0.05$) which examined whether the 187
- difference in solubility obtained for different groups of subsamples is statistically significant. 188
- Solubility obtained for subsamples 2a is compared with those obtained for subsamples 2b, 2c, 189

element	2a vs. 2b	2a vs. 2c	2a vs. 2d	2a vs. 2e
Fe	Ν	<u>Y</u>	<u>Y</u>	<u>Y</u>
Al	Ν	Ν	Ν	<u>Y</u>
As	Ν	Ν	<u>Y</u>	<u>Y</u>
Cr	<u>Y</u>	<u>Y</u>	<u>Y</u>	<u>Y</u>
Cu	<u>Y</u>	<u>Y</u>	<u>Y</u>	<u>Y</u>
Mn	Ν	Ν	<u>Y</u>	<u>Y</u>
Pb	Ν	<u>Y</u>	<u>Y</u>	Ν
V	Ν	Ν	Ν	Ν
Zn	<u>Y</u>	<u>Y</u>	Y	Y

190 2d and 2e, respectively. Y: the difference is statistically different; N: the difference is not

191	statistically different.

192

3.1 The effects of filter pore size

To examine the effects of filter pore size on the reported solubility, subsamples 2a and 2c
were leached using very similar protocols, and the only difference is the pore size (2a: 0.22 μm;
2c: 0.45 μm) of filters used (Table 1).

The difference in obtained solubility was not statistically significant between 2a and 2c for Al, As, Mn and V (Table 2); moreover, good linear correlations between 2a and 2c were found for the four elements (Figure 1), with slopes (0.96-1.04) very close to 1. For the other five elements (Fe, Cr, Cu Pb, and Zn), the difference in solubility between 2a and 2c was found to be statistically significant; however, solubility between 2a and 2c was very well linearly correlated (Figure 1), with slopes (1.03-1.12) close to or slightly larger than 1.

To conclude, among the nine elements we examined, the effects of filter pore size (0.22
vs. 0.45 μm) on reported solubility were found to be insignificant for four elements (Al, As,

206

Figure 1. The effects of filter pore size (2a: 0.22 μm; 2c: 0.45 μm) on measured element
solubility. The only difference in protocols used to leach subsamples 2a and 2c is the filter pore
size (0.22 versus 0.45 μm).

210

211 **3.2 The effects of agitation**

As shown in Table 1, the only difference between the protocol used to leach subsamples 213 2a and that used to leach subsamples 2d is the agitation method used (2a: shaking; 2d: 214 sonication), and solubility obtained for subsamples 2a and 2d was compared to assess the 215 effects of agitation methods on reported solubility.

Table 2 shows that the reported solubility between 2a and 2d was not statistically different for two elements (Al and V); in addition, good linear correlations between 2a and 2d were

- found for the two elements (Figure 2), and these slopes (1.10 for Al and 1.05 for V) were quite
- 219 close to 1. With respect to the other seven elements (Fe, As, Cr, Cu, Mn, Pb and Zn), on one
- hand, the difference in solubility between 2a and 2d was found to be statistically significant;
- 221 on the other hand, good linear correlations in solubility existed between 2a and 2d (Figure 2),

and these slopes were in the range of 0.94-1.21.

Figure 2. The effects of agitation (2a: shaking; 2d: sonication) on measured element solubility.

The only difference in protocols used to leach subsamples 2a and 2d is the agitation method (shaking vs. sonication).

227

223

In summary, we found that the choice of agitation methods (shaking vs. sonication) had no measurable (for Al and V) or small effects (for Fe, As, Cr, Cu, Mn, Pb and Zn) on the reported solubility.

231 **3.3 The effects of contact time**

232	To assess the impacts of contact time on reported solubility, subsamples 2a and 2e were
233	leached using very similar protocols, and the only difference was contact time (2a: 2 h; 2e: 1 h).
234	As shown in Table 2, the reported solubility were not statistically different between 2a
235	and 2e for Pb and V; moreover, good linear relationships between 2a and 2e were found for the
236	two elements (Figure 3), with slopes close to 1 (1.24 for Pb and 1.02 for V). For the other seven
237	elements, their solubility was found to be statistically significant between 2a and 2e (Table 2);
238	nevertheless, for each of the seven elements, the solubility reported for 2a was very well
239	linearly correlated with that reported for 2e (Figure 3), and the slopes were close to 1 (in the

240 range of 0.95-1.28).

- Figure 3. The effects of contact time (2a: 1 h; 2e: 2 h) on measured element solubility. The
 only difference in protocols used to leach subsamples 2a and 2e is the contact time (1 h versus
- 244

2 h).

245 246 To summarize, our present work suggested that the increase in contact time from 1 h to 2 h would cause insignificant or small effects on reported solubility. Using a different set of 247 248 aerosol samples, our previous work (Li et al., 2023) compared the measured solubility obtained 249 with longer contact time (4 and 8 h) to that obtained with a contact time of 2 h. As shown in 250 Table S1, increase in contact time from 2 to 4 h would cause significant increase in solubility, 251 on average by a factor of ~ 1.3 for Zn to ~ 3.1 for As (Li et al., 2023). It is still not clear why the increase in contact time from 1 to 2 h would not cause significant change in aerosol trace 252 element solubility while the increase in contact time from 2 to 4 h would. 253

3.4 Comparison of solubility obtained using protocols commonly used by four labs

- We further compared solubility determined using the GIG protocol with those determined using ZJU, OUC and NIO protocols, respectively. Table 3 summarizes the slopes obtained from correlation analysis (Figures 4 and S2-S8). The NIO lab measured eleven elements, among which five elements (Fe, Al, Cu, Mn, and V) were measured using the other three protocols; as a result, the solubility of these five elements determined using the NIO protocol was compared with those determined using the GIG protocol.
- 261

Table 3. Correlations between solubility determined using the GIG protocol and that determined using ZJU, OUC and NIO protocols. Here only the slopes (*k*) are provided.

	ZJU	OUC	NIO
	k	k	k
Fe	1.03	1.39	1.82
Al	1.09	1.19	1.80
As	0.96	0.87	
Cr	0.96	0.97	
Cu	1.06	1.04	0.99
Mn	0.99	0.98	1.09
Pb	0.97	1.01	
V	1.06	0.99	1.05
Zn	0.97	0.94	

264

With respect to Fe solubility, GIG results were very well correlated with ZJU results (r =265 0.99, Figure 4a) and the slope was found to be 1.03, suggesting good agreement between GIG 266 and ZJU; GIG results were also well correlated with while overall larger than OUC results (r 267 = 0.98, Figure 4b), and the slope was determined to be 1.39; good correlation was also found 268 269 between GIG and NIO results (r = 0.91, Figure 4c), and the slope was determined to be 1.82, indicating that Fe solubility determined using the NIO protocol was larger than that determined 270 using the GIG protocol. Similarly, with respect to Al solubility (Figure S2 and Table 3), the 271 GIG results were well correlated with ZJU, OUC and NIO results, and correlations were best 272 273 for ZJU (r = 0.99) and moderate for NIO (r = 0.93); in addition, the slopes were determined to 274 be 1.09, 1.19 and 1.80 for ZJU, OUC and NIO results, respectively. With respect to Cu (Figure S5), Mn (Figures 4d-4f) and V (Figure S7), their solubility 275 276 determind using the ZJU, OUC and NIO protocols was well correlated with that determined

277 using the GIG protocol, and the slopes obtained from correlation analysis, which ranged from

278 0.98 to 1.09 (Table 3), were all close to 1.

Since As, Cr, Pb and Zn were not measured using the NIO protocol, we only compared
GIG results with ZJU and OUC results for these four elements. As shown in Figures S3, S4,

- 281 S6 and S8, the solubility of As, Cr, Pb and Zn determined using ZJU and OUC protocols was
- well correlated with that determined using the GIG protocol, and the slopes (0.87-1.01, as

summarized in Table 3) were close to 1.

284

Figure 4. Solubility of Fe and Mn determined using the GIG protocol vs. those determined
using ZJU, OUC and NIO protocols: (a) Fe, GIG vs. ZJU; (b) Fe, GIG vs OUC; (c) Fe, GIG
vs. NIO; (d) Mn, GIG vs. ZJU; (e) Mn, GIG vs OUC; (f) Mn, GIG vs. NIO.

288

To summarize, although the four ultrapure water batch leaching protocols differ in agitation method, contact time and/or filter pore size (GIG: shaking, 2 h contact time, 0.22 µm filter pore size; ZJU: sonication, 1 h contact time, 0.22 µm filter pore size; OUC: sonication, 1 h contact time, 0.45 µm filter pore size; NIO: sonication, 1 h contact time, 0.22 µm filter pore

293	size), for the nine elements examined in this intercomparison study, their solubility determined
294	using the four protocols in general showed good agreement. This is consistant with the results
295	presented in Sections 3.1-3.3, where we found that the effects of agitation method (shaking vs.
296	sonication), contact time (1 vs. 2 h) and filter pore size (0.22 vs. 0.45 $\mu m)$ were rather limited.
297	The solubility of Fe and Al determined using the NIO protocol deviated considerably from
298	those determined using the GIG protocol, probably because Fe and Al solubility was very low
299	(mostly <2%) and small change in leaching protocol may cause significant change in the
300	amounts of Fe and Al dissolved.

301 4 Conclusion

Ultrapure water batch leaching is widely used in atmospheric research to determine aerosol trace element solubility, and the specific leaching protocols used in different labs can still vary in agitation methods, contact time, and filter pore size. It is yet unclear to which extent the difference in these experimental parameters would affect the reported aerosol trace element solubility; in other words, it remains to be examined whether solubility reported by previous studies which used different ultrapure water batch leaching protocols is comparable.

We examined the effects of agitation methods, filter pore size and contact time on the reported solubility of nine aerosol trace elements, including Fe, Al, As, Cr, Cu, Mn, Pb, V and Zn. It was found that the difference in agitation methods (shaking vs. sonication), filter pore size (0.22 vs. 0.45 μ m), and contact time (1 vs. 2 h) only led to small and sometimes insignificant difference in the reported solubility. We further compared aerosol trace element solubility determined using four widely used ultrapure water leaching protocols which differ in agitation methods, filter pore size and/or contact time, and in general the solubility

- determined using the four protocols was found to be in good agreement. Therefore, aerosol
 trace element solubility determined in previous studies using ultrapure water batch leaching
 may be comparable.
- Aerosol trace element solubility is an operationally defined term (Baker and Croot, 2010; 318 319 Meskhidze et al., 2019), and strongly depends on the leaching protocol employed. A number of leaching protocols have been used in previous studies to extract dissolved trace elements, 320 321 making it very challenging to compare solubility reported in different studies (Perron et al., 322 2024). In order to reduce uncertainties in aerosol trace element solubility, it is necessary to 323 formulate standard operating procedures for frequently-used aerosol leaching protocols. Our 324 current work suggests that although ultrapure water batch leaching protocols used by different labs vary in specific experimental parameters, the determined aerosol trace element solubility 325 326 showed good agreement; furthermore, ultrapure water batch leaching is operationally simple 327 and does not introduce any other chemical species which may interfer analysis of water-soluble inorganic ions and organics. Therefore, we recommend ultrapure water batch leaching to be 328 one of the reference leaching schemes. Before a standard operating procedure can be 329 330 formulated for ultrapure water batch leaching, the community will need to reach consensus on agitation methods, contact time and filter pore size, and further intercomparison studies, 331 preferentially with more labs involved, will be very helpful. 332

333

334 Data availability.

335 Data are available upon request (Mingjin Tang: mingjintang@gig.ac.cn).

336 Author contributions.

- 337 Rui Li: methodology, formal analysis, investigation, writing original draft, writing review
- 338 & editing; Prema Piyusha Panda: formal analysis, investigation; Yizhu Chen: investigation;
- 339 Zhenming Zhu: investigation; Fu Wang: investigation, supervision; Yujiao Zhu: resources; He
- 340 Meng: resources; Yan Ren: resources, supervision; Ashiwini Kumar: resources, writing -
- 341 review & editing, supervision; Mingjin Tang: conceptualization, methodology, resources,
- 342 writing original draft, writing review & editing, supervision.

343 Competing interests.

- 344 Mingjin Tang is a member of the editorial board of Atmospheric Measurement Techniques.
- 345 Acknowledgements.
- 346 The authors would like to thank Professor Likun Xue and other colleagues at Shandong
- 347 University for their assistance in aerosol sampling.

348 Financial support.

- 349 This work was supported by the National Natural Science Foundation of China (42321003 and
- 42277088), Guangzhou Bureau of Science and Technology (2024A04J6533), and Guangdong
- Basic and Applied Basic Research Foundation (2022A1515110371).
- 352
- 353

354 **References**

- 355 Al-Abadleh, H. A.: Iron content in aerosol particles and its impact on atmospheric chemistry,
- 356 Chemical Communications, 60, 1840-1855, 2024.
- Alexander, B., Park, R. J., Jacob, D. J., and Gong, S.: Transition metal-catalyzed oxidation of
 atmospheric sulfur: Global implications for the sulfur budget, Journal of Geophysical
- 359 Research: Atmospheres, 114, 10.1029/2008JD010486, 2009.
- 360 Baker, A. R., Kelly, S. D., Biswas, K. F., Witt, M., and Jickells, T. D.: Atmospheric deposition
- of nutrients to the Atlantic Ocean, Geophys. Res. Lett., 30, 10.1029/2003GL018518, 2003.
- 362 Baker, A. R., French, M., and Linge, K. L.: Trends in aerosol nutrient solubility along a west-
- east transect of the Saharan dust plume, Geophys. Res. Lett., 33, 10.1029/2005GL024764,
 2006.
- Baker, A. R., and Jickells, T. D.: Mineral particle size as a control on aerosol iron solubility,
 Geophys. Res. Lett., 33, 10.1029/2006GL026557, 2006.
- Baker, A. R., and Croot, P. L.: Atmospheric and marine controls on aerosol iron solubility in
 seawater, Marine Chemistry, 120, 4-13, 2010.
- Boyd, P. W., and Ellwood, M. J.: The biogeochemical cycle of iron in the ocean, Nature
 Geoscience, 3, 675-682, 2010.
- Chen, Y., Street, J., and Paytan, A.: Comparison between pure-water- and seawater-soluble
 nutrient concentrations of aerosols from the Gulf of Aqaba, Marine Chemistry, 101, 141152, 2006.
- Dahmardeh Behrooz, R., Kaskaoutis, D. G., Grivas, G., and Mihalopoulos, N.: Human health
 risk assessment for toxic elements in the extreme ambient dust conditions observed in Sistan,
 Iran, Chemosphere, 262, 127835, https://doi.org/10.1016/j.chemosphere.2020.127835,
- 377 2021.
- Dong, Z., Shao, Y., Jiao, X., Parteli, E., Wei, T., Li, W., and Qin, X.: Iron Variability Reveals
 the Interface Effects of Aerosol-Pollutant Interactions on the Glacier Surface of Tibetan
 Plateau, Journal of Geophysical Research: Atmospheres, 128, e2022JD038232,
 https://doi.org/10.1029/2022JD038232, 2023.
- 382 Fang, T., Guo, H., Zeng, L., Verma, V., Nenes, A., and Weber, R. J.: Highly Acidic Ambient

- Particles, Soluble Metals, and Oxidative Potential: A Link between Sulfate and Aerosol
- Toxicity, Environmental Science & Technology, 51, 2611-2620, 10.1021/acs.est.6b06151,
- 385 2017.
- Gao, K., Chen, X., Li, X., Zhang, H., Luan, M., Yao, Y., Xu, Y., Wang, T., Han, Y., Xue, T.,
 Wang, J., Zheng, M., Qiu, X., and Zhu, T.: Susceptibility of patients with chronic obstructive
 pulmonary disease to heart rate difference associated with the short-term exposure to metals
 in ambient fine particles: A panel study in Beijing, China, Science China Life Sciences, 65,
 387-397, 2022.
- Gao, Y., Yu, S., Sherrell, R. M., Fan, S., Bu, K., and Anderson, J. R.: Particle-Size Distributions
 and Solubility of Aerosol Iron Over the Antarctic Peninsula During Austral Summer,
 Journal of Geophysical Research: Atmospheres, 125, e2019JD032082,
 https://doi.org/10.1029/2019JD032082, 2020.
- Hsu, S.-C., Wong, G. T. F., Gong, G.-C., Shiah, F.-K., Huang, Y.-T., Kao, S.-J., Tsai, F., Candice
 Lung, S.-C., Lin, F.-J., Lin, I. I., Hung, C.-C., and Tseng, C.-M.: Sources, solubility, and dry
 deposition of aerosol trace elements over the East China Sea, Marine Chemistry, 120, 116127, 2010.
- Ito, A., Kok, J. F., Feng, Y., and Penner, J. E.: Does a theoretical estimation of the dust size
 distribution at emission suggest more bioavailable iron deposition?, Geophys. Res. Lett., 39,
 10.1029/2011GL050455, 2012.
- Ito, A., and Xu, L.: Response of acid mobilization of iron-containing mineral dust to
 improvement of air quality projected in the future, Atmos. Chem. Phys., 14, 3441-3459,
 2014.
- Ito, A., Ye, Y., Baldo, C., and Shi, Z.: Ocean fertilization by pyrogenic aerosol iron, npj Climate
 and Atmospheric Science, 4, 30, 10.1038/s41612-021-00185-8, 2021.
- Juretic, H., Montalbo-Lomboy, M., van Leeuwen, J., Cooper, W. J., and Grewell, D.: Hydroxyl
 radical formation in batch and continuous flow ultrasonic systems, Ultrasonics
 Sonochemistry, 22, 600-606, https://doi.org/10.1016/j.ultsonch.2014.07.003, 2015.
- 410 Kebede, M. A., Bish, D. L., Losovyj, Y., Engelhard, M. H., and Raff, J. D.: The Role of Iron-
- 411 Bearing Minerals in NO2 to HONO Conversion on Soil Surfaces, Environmental Science
- 412 & Technology, 50, 8649-8660, 10.1021/acs.est.6b01915, 2016.

- 413 Kumar, A., and Sarin, M. M.: Aerosol iron solubility in a semi-arid region: temporal trend and
- impact of anthropogenic sources, Tellus B: Chemical and Physical Meteorology, 62, 125-414
- 132, 10.1111/j.1600-0889.2009.00448.x, 2010. 415
- 416 Li, R., Zhang, H., Wang, F., Ren, Y., Jia, S., Jiang, B., Jia, X., Tang, Y., and Tang, M.: Abundance and fractional solubility of phosphorus and trace metals in combustion ash and 417 desert dust: Implications for bioavailability and reactivity, Science of The Total 418 Environment, 816, 151495, https://doi.org/10.1016/j.scitotenv.2021.151495, 2022. 419
- Li, R., Dong, S., Huang, C., Yu, F., Wang, F., Li, X., Zhang, H., Ren, Y., Guo, M., Chen, Q., 420
- Ge, B., and Tang, M.: Evaluating the effects of contact time and leaching solution on 421
- measured solubilities of aerosol trace metals, Applied Geochemistry, 148, 105551, 422 https://doi.org/10.1016/j.apgeochem.2022.105551, 2023. 423
- Liu, L., Lin, Q., Liang, Z., Du, R., Zhang, G., Zhu, Y., Qi, B., Zhou, S., and Li, W.: Variations 424 in concentration and solubility of iron in atmospheric fine particles during the COVID-19 425 426 pandemic: An example from China, Gondwana Research, 97, 138-144, 2021.
- Longo, A. F., Feng, Y., Lai, B., Landing, W. M., Shelley, R. U., Nenes, A., Mihalopoulos, N., 427
- Violaki, K., and Ingall, E. D.: Influence of Atmospheric Processes on the Solubility and 428
- 429 Composition of Iron in Saharan Dust, Environmental Science & Technology, 50, 6912-6920, 10.1021/acs.est.6b02605, 2016. 430
- 431 Mackey, K. R. M., Chien, C.-T., Post, A. F., Saito, M. A., and Paytan, A.: Rapid and gradual 432 modes of aerosol trace metal dissolution in seawater, Frontiers in Microbiology, 5, 10.3389/fmicb.2014.00794, 2015. 433
- Mahowald, N. M., Hamilton, D. S., Mackey, K. R. M., Moore, J. K., Baker, A. R., Scanza, R. 434
- 435 A., and Zhang, Y.: Aerosol trace metal leaching and impacts on marine microorganisms, Nature Communications, 9, 1-15, 2018. 436
- Mao, J., Fan, S., Jacob, D. J., and Travis, K. R.: Radical loss in the atmosphere from Cu-Fe 437 redox coupling in aerosols, Atmos. Chem. Phys., 13, 509-519, 10.5194/acp-13-509-2013, 438 2013. 439
- 440 Mao, J., Fan, S., and Horowitz, L. W.: Soluble Fe in Aerosols Sustained by Gaseous HO2 98-104, Uptake, Environmental Science & Technology Letters, 4, 441 10.1021/acs.estlett.7b00017, 2017.

443	Martin, L. R., and Hill, M. W.: The effect of ionic strength on the manganese catalyzed
444	oxidation of sulfur(IV), Atmospheric Environment, 21, 2267-2270, 1987.
445	Meskhidze, N., Johnson, M. S., Hurley, D., and Dawson, K.: Influence of measurement
446	uncertainties on fractional solubility of iron in mineral aerosols over the oceans, Aeolian
447	Research, 22, 85-92, https://doi.org/10.1016/j.aeolia.2016.07.002, 2016.
448	Meskhidze, N., Vlker, C., Al-Abadleh, H. A., Barbeau, K., and Ye, Y.: Perspective on
449	identifying and characterizing the processes controlling iron speciation and residence time
450	at the atmosphere-ocean interface, Marine Chemistry, 217, 103704, 2019.
451	Miljevic, B., Hedayat, F., Stevanovic, S., Fairfull-Smith, K. E., Bottle, S. E., and Ristovski, Z.
452	D.: To Sonicate or Not to Sonicate PM Filters: Reactive Oxygen Species Generation Upon
453	Ultrasonic Irradiation, Aerosol Science and Technology, 48, 1276-1284,
454	10.1080/02786826.2014.981330, 2014.
455	Morton, P. L., Landing, W. M., Hsu, SC., Milne, A., Aguilar-Islas, A. M., Baker, A. R., Bowie,
456	A. R., Buck, C. S., Gao, Y., Gichuki, S., Hastings, M. G., Hatta, M., Johansen, A. M., Losno,
457	R., Mead, C., Patey, M. D., Swarr, G., Vandermark, A., and Zamora, L. M.: Methods for the
458	sampling and analysis of marine aerosols: results from the 2008 GEOTRACES aerosol
459	intercalibration experiment, Limnology and Oceanography: Methods, 11, 62-78, 2013.
460	Mukhtar, A., and Limbeck, A.: Recent developments in assessment of bio-accessible trace
461	metal fractions in airborne particulate matter: A review, Analytica Chimica Acta, 774, 11-
462	25, 2013.
463	Myriokefalitakis, S., Ito, A., Kanakidou, M., Nenes, A., Krol, M. C., Mahowald, N. M., Scanza,
464	R. A., Hamilton, D. S., Johnson, M. S., Meskhidze, N., Kok, J. F., Guieu, C., Baker, A. R.,
465	Jickells, T. D., Sarin, M. M., Bikkina, S., Shelley, R., Bowie, A., Perron, M. M. G., and
466	Duce, R. A.: Reviews and syntheses: the GESAMP atmospheric iron deposition model
467	intercomparison study, Biogeosciences, 15, 6659-6684, 2018.
468	Panda, P. P., Aswini, M. A., Bhatt, P., Srimuruganandam, B., Peketi, A., and Kumar, A.:
469	Bioactive Trace Elements' Composition and Their Fractional Solubility in Aerosols from
470	the Arabian Sea during the Southwest Monsoon, ACS Earth Space Chem., 6, 1969-1981,
471	2022.

472 Perron, M. M. G., Fietz, S., Hamilton, D. S., Ito, A., Shelley, R. U., and Tang, M.: Preface to

- the inter-journal special issue "RUSTED: Reducing Uncertainty in Soluble aerosol Trace
- Element Deposition", Atmos. Meas. Tech., 17, 165-166, 2024.
- 475 Salazar, J. R., Cartledge, B. T., Haynes, J. P., York-Marini, R., Robinson, A. L., Drozd, G. T.,
- 476 Goldstein, A. H., Fakra, S. C., and Majestic, B. J.: Water-soluble iron emitted from vehicle
- 477 exhaust is linked to primary speciated organic compounds, Atmos. Chem. Phys., 20, 1849-
- 478 1860, 10.5194/acp-20-1849-2020, 2020.
- Shi, J., Guan, Y., Ito, A., Gao, H., Yao, X., Baker, A. R., and Zhang, D.: High Production of
 Soluble Iron Promoted by Aerosol Acidification in Fog, Geophys. Res. Lett., 47,
 e2019GL086124, https://doi.org/10.1029/2019GL086124, 2020.
- Sholkovitz, E. R., Sedwick, P. N., Church, T. M., Baker, A. R., and Powell, C. F.: Fractional
 solubility of aerosol iron: Synthesis of a global-scale data set, Geochimica et Cosmochimica
 Acta, 89, 173-189, 2012.
- Upadhyay, N., Majestic, B. J., and Herckes, P.: Solubility and speciation of atmospheric iron
 in buffer systems simulating cloud conditions, Atmospheric Environment, 45, 1858-1866,
 2011.
- 488 Wang, W., Liu, M., Wang, T., Song, Y., Zhou, L., Cao, J., Hu, J., Tang, G., Chen, Z., Li, Z., Xu,
- Z., Peng, C., Lian, C., Chen, Y., Pan, Y., Zhang, Y., Sun, Y., Li, W., Zhu, T., Tian, H., and
 Ge, M.: Sulfate formation is dominated by manganese-catalyzed oxidation of SO2 on
 aerosol surfaces during haze events, Nature Communications, 12, 1993, 10.1038/s41467021-22091-6, 2021.
- Wei, J., Yu, H., Wang, Y., and Verma, V.: Complexation of Iron and Copper in Ambient
 Particulate Matter and Its Effect on the Oxidative Potential Measured in a Surrogate Lung
 Fluid, Environmental Science & Technology, 53, 1661-1671, 10.1021/acs.est.8b05731,
 2019.
- Zhang, H., Li, R., Dong, S., Wang, F., Zhu, Y., Meng, H., Huang, C., Ren, Y., Wang, X., Hu,
 X., Li, T., Peng, C., Zhang, G., Xue, L., Wang, X., and Tang, M.: Abundance and Fractional
 Solubility of Aerosol Iron During Winter at a Coastal City in Northern China: Similarities
 and Contrasts Between Fine and Coarse Particles, Journal of Geophysical Research:
 Atmospheres, 127, e2021JD036070, https://doi.org/10.1029/2021JD036070, 2022.
- 502 Zhang, H., Li, R., Huang, C., Li, X., Dong, S., Wang, F., Li, T., Chen, Y., Zhang, G., Ren, Y.,

- 503 Chen, Q., Huang, R., Chen, S., Xue, T., Wang, X., and Tang, M.: Seasonal variation of
- aerosol iron solubility in coarse and fine particles at an inland city in northwestern China,
- 505 Atmos. Chem. Phys., 23, 3543-3559, 2023.
- 506 Zhu, Y., Li, W., Lin, Q., Yuan, Q., and Shi, Z.: Iron solubility in fine particles associated with
- secondary acidic aerosols in east China, Environmental Pollution, 114769, 2020.