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Abstract. This paper introduces a machine-learning-driven approach for automated Nocturnal Low-Level Jet (NLLJ) identification 

using observations of wind profiles from a Radar Wind Profiler (RWP). The work discussed here is an effort to lay the groundwork 10 

for a systematic study of the Mid-Atlantic NLLJ’s formation mechanisms and their influence on nocturnal and diurnal air quality 

in major urban regions by establishing a general framework of NLLJ features and characteristics with an identification algorithm. 

Leveraging a comprehensive wind profile dataset maintained by the Maryland Department of Environment’s RWP network, our 

methodology employs supervised machine learning techniques to isolate the features of the south-westerly NLLJ, because of its 

association with pollution transport in the Mid-Atlantic states. This methodology was developed to illuminate spatiotemporal 15 

patterns and nuanced characteristics of NLLJ events, unveiling their significant role in shaping the planetary boundary layer. This 

paper discusses the construction of this methodology, its performance against known NLLJs in the current literature, intended 

usage, and a preliminary statistical analysis. First light results from this analysis have identified a total of 90 south-westerly NLLJs 

from May - September of 2017 - 2021 as captured by the RWP stationed in Beltsville, MD (39.05° N, 76.87° W, 135 m ASL).  A 

composite of these 90 jets is presented to better illustrate many of the bulk parameters, such as core height, duration, and maximum 20 

wind speed, associated with the onset and decay of the Mid-Atlantic NLLJ. We hope our study equips researchers and policymakers 

with further means to monitor, predict, and address these nocturnal dynamics phenomena that frequently influence boundary layer 

composition and air quality in the U.S. Mid-Atlantic and Northeastern regions. 

1 Introduction 

Low-Level jets (LLJs) are broadly defined as localized wind speed maxima that occur within the lower troposphere accompanied 25 

by decreasing wind speed above the maximum (Stensrud, 1996). LLJs have been reported all over the world under a wide range 

of formation mechanisms with varying characteristics, and subsequently different impacts to the lower troposphere (De Jong et al., 

2024; Ortiz-Amezcua et al., 2022; Lima et al., 2019, 2018; Tuononen et al., 2017; Ranjha et al., 2015; Karipot et al., 2009; Baas 

et al., 2009; Zhang et al., 2006; Corsmeier et al., 1997; Blackadar, 1957). Under this broad definition, there are many different 

types of LLJs, however, in this study, we focus on long-lived nocturnal LLJs (NLLJs) as a focus for future study of impacts to 30 

boundary layer chemistry. These NLLJs are important in moisture transport and air pollutant transport (Wei et al., 2023; Roots et 

al., 2023; Sullivan, 2017; Delgado et al., 2015; Weldegaber, 2009; Tollerud et al., 2008; Weaver and Nigam, 2008; Ryan, 2004; 

Corsmeier et al., 1997; Stensrud, 1996). We focus on furthering the study of the NLLJs reported by researchers in the East Coast 

Mid-Atlantic region of the United States. We do this by developing a framework for our future work in developing a climatology 

and systematic study of LLJs by characterizing their “critical characteristics” (maximum wind speed, height of maximum, duration, 35 

wind direction, etc.) and formation mechanisms (synoptic influence, temperature gradients, inertial oscillation, diurnal cycle, etc.). 

Herein we describe an algorithm developed to detect South-Westerly NLLJs in the study area of Maryland (MD) in the United 

States using the Maryland Department of Environment’s (MDE) 915 MHz DeTect RAPTOR DBS-BL/LAP-3000 Radar Wind 
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Profiler (RWP) stationed in Beltsville, MD. We use these systems because we hope to adapt our methods for the network of wind 

profilers in the area, and our region lacks sufficient decadal measurements of wind profilers from other more commonly used 40 

systems like Doppler wind lidar.  

 

The Mid-Atlantic nocturnal low-level jet (NLLJ), similar to the Southern Great Plains (SGP) NLLJ, arises from the cooling of the 

low-level air mass relative to the air above it, resulting in a stratified nocturnal boundary layer and subsequent decoupling 

(Rabenhorst et al., 2014; Zhang et al., 2006). This decoupling facilitates the development of a low-friction residual layer where a 45 

super-geostrophic wind maximum emerges near the surface due to inertial oscillation, as described by Blackadar (1957) and later 

refined by Holton (1967). The genesis of NLLJs is influenced by a confluence of geographic-specific atmospheric dynamics, 

including the formation of a pronounced temperature inversion within the stratified nocturnal boundary layer, diurnal pressure 

shifts, and the influence of terrain (Shapiro and Fedorovich, 2010; Holton, 1967; Blackadar, 1957). These jets typically exhibit 

wind speed maxima at altitudes between 200 to 800 meters above ground level (AGL), with directional variability governed by 50 

geographical and meteorological conditions, though they generally flow northward as per Blackadar’s theory. The unique synoptic 

and diurnal physical conditions that define NLLJs make them more prevalent during spring and summer when formation conditions 

are more favourable (Bonner, 1968; Shapiro et al., 2016; Shapiro and Fedorovich, 2010; Zhang et al., 2006). The implications of 

NLLJs extend significantly into weather, climate, and air quality, as they play a crucial role in the transport and mixing of 

atmospheric constituents such as pollutants, moisture, and heat, thereby influencing air quality and promoting cloud formation 55 

(Baas et al., 2009; Banta, 2008; Mahrt, 1998). In the Great Plains, NLLJs have been extensively documented since the 1950s, 

where they contribute to moisture transport and regional weather, including convective storm development (Banta et al., 2003; 

Carroll et al., 2019, 2021; Lundquist, 2003; Stensrud, 1996; Tollerud et al., 2008; Whiteman et al., 1997). The Mid-Atlantic NLLJ, 

while analogous to the SGP NLLJ in its reliance on inertial oscillation theory combined with the influence of temperature gradients 

induced by sloping terrain (Shapiro et al., 2016); however, with lower wind-speed maximums and vastly different topographic 60 

influences, with the Appalachian Mountains to the East and North, the Chesapeake Bay and Atlantic Ocean to the West, and the 

Coastal Plains and Piedmont region in between.  

Figure 1: Example depiction of the nocturnal low-level jet in the Mid-Atlantic US on May 20, 2021: (A) ERA5 Horizontal Wind Speed 
at 975 mb (“x”); (B) shows the vertical profile evolution of the horizontal wind speed taken from a vertical slice (black square); (C) 
shows the horizontal wind speed from (black circle). Dashed vertical lines indicate the sunset and sunrise times, respectively. 
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We define the Mid-Atlantic NLLJ closely following the results found by Zhang et al. (2006) and Ryan, (2004) in their Fort Meade, 

MD RWP (decommissioned in 2006) observations. These studies provided detailed observations and analysis of NLLJ events, 

mainly focusing on their occurrence, structure, and dynamics within the Mid-Atlantic region of the United States. According to 65 

Zhang et al. (2006) and Ryan, (2004), the Mid-Atlantic NLLJ is characterized by a robust and low-level wind speed maximum that 

typically occurs during the nighttime hours. These jets are predominantly observed during the warm season (late spring through 

early fall). The studies noted that winds from the south and southwest directions dominate most of the Mid-Atlantic NLLJs. Figure 

1 provides an illustrative example of the spatial and temporal extent of the Mid-Atlantic nocturnal low-level jet (NLLJ) as depicted 

by an event reported on May 20, 2021, by Roots et al., 2023: Panel (A) displays the 0.25° spatial and hourly temporal resolution 70 

European Centre for Medium-Range Weather Forecasts Reanalysis 5th Generation (ERA5, Hersbach et al., 2020) reanalysis data 

showing horizontal wind speeds at 975 mb (chosen to be near the core of the NLLJ in both the model and observations), 

highlighting the spatial distribution of the NLLJ across the region. Panel (B) presents the vertical evolution of the horizontal wind 

speed along a vertical slice (indicated by the black square in panel A), capturing the temporal progression of the jet's strength and 

altitude through the night. Panel (C) provides a visual comparison between this reanalysis data and the observations from our site 75 

in Maryland, showing much less magnitude in the horizontal wind speed evolution than the observations from the black circle 

marked in panel B. The impact of NLLJs on air pollution in the Mid-Atlantic is particularly significant during warm seasons, as 

these jets contribute to the transport of pollutants across the East Coast, elevating surface ozone and particulate matter 

concentrations (Delgado et al., 2015; Roots et al., 2023; Sullivan, 2017; Weldegaber, 2009; Ryan, 2004). Zhang et al. (2006) 

reported that approximately 60% of the Mid-Atlantic NLLJs observed during their study period (warm seasons in 2001 and 2002) 80 

exhibited this southerly and south-westerly wind direction. Ryan (2004) contributed to our definition by providing insights into 

the frequency and timing of NLLJ occurrences, noting that these events were common during the study period from 1998 to 2002, 

noting 80 warm season cases in total. Together, the work of Zhang et al. (2006) and Ryan, (2004) defines the Mid-Atlantic NLLJ 

as a nocturnal atmospheric phenomenon characterized by a significant increase in wind speed (~15 m s-1) at low altitudes (400 – 

600 m AGL), typically showing a preferential direction from the south or southwest.  85 

 

This work presents the culmination of an investigation into the NLLJ phenomena within the Mid-Atlantic region, leveraging a 

supervised machine-learning model tested against a comprehensive dataset including previously reported NLLJ events. The model, 

designed with a focus on advancing our capability to detect and analyze NLLJs, was evaluated using cases from notable studies 

by Sullivan et al. (2017), Delgado et al. (2015), and Weldegaber (2009) based on data from the RWP stationed in Beltsville, 90 

Maryland, US (39.05° N, 76.87° W, 135 m ASL). Without established benchmarks for NLLJ detection accuracy, our analysis 

adopts a qualitative approach, emphasizing visual inspection to assess the model's performance in accurately capturing NLLJ 

characteristics, particularly wind speed and direction. The primary objective of this research is to transition from episodic, 

qualitative analyses to a systematic, quantitative understanding of NLLJ physics and its impacts, utilizing observational data to 

explore the temporal distribution, morphology, and statistical properties of Mid-Atlantic NLLJs. Furthermore, developing a 95 

generalized representation of Mid-Atlantic NLLJs based on observational data marks a significant step forward in our ability to 

identify and analyze these phenomena. 

 

The rest of the paper is structured as follows: Section 2 outlines the dataset and study area. Section 3 describes the methods, 

alongside the development and application of machine learning algorithms for detecting NLLJ features. Section 4 evaluates the 100 

performance of these algorithms in isolating NLLJ characteristics within the wind profile data, addressing the efficacy and 

limitations encountered. Section 4 also presents a brief analysis of the NLLJs identified by the RWP from May to September 2017 



 

4 
 

to 2021, revealing insights into their morphological characteristics. Finally, Section 5 synthesizes the study's key findings and 

discusses their implications for the understanding of the Mid-Atlantic NLLJ and similar atmospheric phenomena, proposing 

directions for future research to enhance model accuracy and expand the scope of study within the field of atmospheric science. 105 

2 Observations 

 

This study solely employs the 2017 – 2021 dataset of continuous daily wind profiles from the Howard University – Beltsville 

Campus (HUBC) RWP stationed in Beltsville, MD (referred to as BELT); see Figure 1 for location reference. These RWP 

instruments measure the radial velocity of wind from one zenith and four azimuthal beams at 915 MHz. These are used to calculate 110 

the horizontal speed and direction with sub-100-meter vertical resolution (100 m – 3000 m AGL) at a sub-30-minute temporal 

resolution. Thus, the resolution of the dataset is sufficient to capture the temporal and vertical extent of the NLLJ events occurring 

at the HUBC site. The dataset from BELT is visually depicted in Figure 2, where an events plot depicts the temporal distribution 

of data availability. The grey lines indicate the areas where the BELT daily file was available from the MDE record, while the red 

lines indicate days that are unavailable because of instrument failure or scheduled maintenance. Only 25 files were unavailable 115 

during the study period of May – September of 2017 – 20121, making for an optimal observational dataset to analyze the 

Summertime Mid-Atlantic NLLJ. The HUBC site is located in between the U.S. Appalachian Mountains and the Chesapeake Bay 

and then the Atlantic Ocean. The mountainous region is about 200 km east with a peak elevation of about 2 km. HUBC resides in 

the Piedmont geographic region which spans the space between the mountainous terrain to the west and the coastal plains to the 

east. This zone creates two boundaries for a latitudinal flow regime with orographic to the west and thermal to the east.  120 

 

This strategic selection of the training period ensures that the model is exposed to a wide array of conditions typical of the NLLJ 

season, thereby improving its ability to generalize and detect NLLJs accurately. However, the presence of data gaps, as indicated 

by the red vertical bars, may present challenges to the comprehensive characterization of NLLJs, as such gaps could potentially 

coincide with periods of NLLJ events. While unfortunate, the marked seasons and days without data serve as an important reminder 125 

Figure 2: Occurrences of NLLJs (black lines) captured by algorithm from the Beltsville, MD RWP. (red lines) Data that were not 
available in this study while (grey lines) were available. The green box denotes the year where the training dataset originates.  
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of the limitations inherent in observational datasets. Future work should also consider incorporating additional datasets, potentially 

using data synergy techniques to fill the gaps and provide a more continuous and comprehensive picture of the NLLJ occurrences 

and extent using all available observational datasets in our study region (e.g., aerosol and ozone lidars, sondes, ground-based 

spectrometers, and radiometers). Moreover, based on the surrounding temporal and environmental context, the algorithm could be 

trained to predict the likelihood of NLLJ events on days when data are missing. This predictive ability would be invaluable for 130 

atmospheric research and could significantly enhance our capacity to anticipate and respond to the implications of NLLJ events on 

weather patterns and climate dynamics in the Mid-Atlantic region. 

3 Nocturnal Low-Level Jet Isolation 

Several previous works have been published regarding identifying low-level jets in wind profiles. These methods have employed 

peak detection of wind speed maximums in single profiles with threshold criteria on coherent height, speed, direction, and duration. 135 

These methods are robust in their objective of identifying continuous low-level wind maxima (De Jong et al., 2024; Tuononen et 

al., 2017; Baas et al., 2009). Our overall goal is the complete a fully automated system to be used on the network of wind profiles 

that is adept at identifying, classifying, and characterizing, low-level wind maxima and thus we report our exploration of supervised 

machine learning for this task. The conceptual model of the detection method presented here relies on single measured points in 

vertical and temporal space that with the multiple dimensions of the dataset [wind speed (SPD), wind direction (DIR), radial 140 

velocity (RAD 1-5), and signal-to-noise ratio (SNR 1- 5)].  

  

3.1 Training Dataset 

The training dataset for this experiment was hand-selected from NLLJ events during 2021, while the validation dataset was selected 

from previously reported and depicted by Sullivan et al. (2017), Delgado et al. (2015), and Weldegaber (2009) that were captured 145 

by the same instrument and station (i.e. BELT RWP). To gather a suitable dataset for machine learning we have compiled scenarios 

expected in operation (e.g. incomplete daily files, missing data, large-scale weather systems, etc.). A manual and rudimentary 

isolation method was applied using gradient detection solely on the southerly winds (180 – 270 degrees from North) with 

maximums greater than 5 m s-1 in both time and altitude to capture the evolution and vertical extent of the NLLJ. This approach 

Figure 3: Occurrences of NLLJs (black lines) captured by algorithm from the Beltsville, MD RWP. (red lines) Data that were not 
available in this study while (grey lines) were available. The green box denotes the year where the training dataset originates. Dashed 
vertical lines indicate the sunset and sunrise time, respectively. 
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is demonstrated in Figure 3, where (A) depicts the final isolated NLLJ events from the speed and direction profile (C and D), and 150 

(B) represents the visual representation of the gradient detection in the temporal evolution. This method takes the wind speed 

evolution averaged from 0 - 2000 m and then interpolated and smoothed. The resulting time series is then used to find the first 

positive gradient and the last negative gradient, which are taken as the start and end of the NLLJ event. This process is then repeated 

for the vertical extent using each profile to find the top and bottom at each time step. We found that the manual tuning needed for 

thresholds on time constrain, continuity, and direction evolution was important for isolating NLLJs, but required attention in many 155 

different cases and thus we used the well-isolated cases from this method as a training set for the supervised machine learning 

ensemble. The training set is comprised of 50 NLLJ events that were sufficiently isolated and 50 events that contained no low-

level wind maxima that contain low-level wind maxima that we do not consider as LLJ relevant to this study for reasons of 

direction, or evolution.  

3.2 Algorithm Development 160 

The flowchart schema shown in Figure 4 illustrates the process used to execute (green) and train (orange) the supervised machine 

learning algorithm for detecting NLLJ events in vertically resolved wind profiles. The process begins with data pre-processing, 

where daily files from the RWP instrument are submitted and then standardized in both height and vertical resolution to ensure the 

uniformity of profiles. This was accomplished by re-gridding for time and altitude, coupled with the strategic filling of missing 

data points with ‘not-a-number’ (NaN) placeholders, thereby ensuring that the dataset maintained uniform dimensions across all 165 

the datasets. Following this, feature extraction is performed, extracting the critical variables (i.e., wind speed, wind direction, radial 

velocities, the averaged signal-to-noise ratios, height, and time). These were determined These parameters (or features) are then 

transformed into a single matrix where the columns indicate the features and rows indicate the indexes of each variable at a given 

time and height, in turn, creating a structured dataset ready for input into the machine learning model. The output of the model is 

then matched to the input matrix as predicted labels, which then undergo the reverse matrix transform from the data pre-processing 170 

and an image segmentation process is applied to return the largest cluster of identified points as an NLLJ event. The image 

segmentation process will not be employed in the results of this work to show its importance and demonstrate the shortcomings of 

this approach and how it can propagate through to the analysis.  

 

Figure 4: Schematic of the supervised machine learning algorithm execution (Execution Loop, left) and training (right). 
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Central to the detection process (execution loop) is the ensemble model, which integrates multiple supervised machine learning 175 

algorithms – specifically Support Vector Machine (SVM), k-nearest Neighbours (KNN), and Radom Forest (RF) that are available 

and open-source in Python from Sci-kit Learn package (Pedregosa et al., 2011). Each model in this ensemble contributes uniquely 

to the overall predictive capability by leveraging different mathematical principles. The SVM works by identifying a hyperplane 

in high-dimensional space that best separates the data points of different classes to maximize the distance between the hyperplane 

and the nearest data points from each class, known as support vectors (Cortes and Vapnik, 1995). The KNN operates on a different 180 

principle, classifying a data point based on the majority class among the “k” nearest neighbours in the feature space, with the 

Euclidean distance used as the metric for determining proximity, where the algorithm then assigns the class most common among 

the nearest neighbours (Cover and Hart, 1967). The RF model is itself an ensemble of decision trees, each trained on a randomly 

selected subset of the dataset, in terms of samples and features. Each decision tree in the random forest individually classifies the 

data by making splits based on criteria such as information gain, entropy, and minimization of Gini impurity. The final 185 

classification by the RF is determined by the majority vote of the decision trees, ensuring that the model captures a broad array of 

patterns in the data (Breiman, 2001). By integrating the insights gained from each model’s approach into a two-thirds majority 

voting system we have found that this approach yields a suitable method of isolating NLLJ features in wind profiles.  

4 Results & Discussion 

The results of our testing and subsequent analysis discussion, detail the algorithm's efficacy and limitations. We illustrate its 190 

proficient detection of south-westerly NLLJ events while also acknowledging deficiencies in capturing the complete structural 

nuances of these atmospheric features. The findings underscore the necessity for future model refinement, with a specific focus on 

training set optimization and the importance of implementing image segmentation techniques to improve representation of model 

outputs. Furthermore, we present a preliminary analysis of the morphology and statistical attributes of the Mid-Atlantic NLLJs 

isolated by our methods. We utilize the Beltsville, MD RWP data to introduce a general representation of the Mid-Atlantic NLLJ, 195 

derived from a composite analysis of wind profiles, to serve as a foundational tool for our future research and that of others studying 

this phenomenon.  

 

As previously shown in Figure 2, we have identified 90 warm-season (May- September) NLLJ events using the Beltsville, MD 

RWP dataset from 2017 – 2021. Zhang et al. (2006) and Ryan, (2004) established much of the Mid-Atlantic NLLJ frequency 200 

analysis which they based on wind profile observations with an older version of the RWP instrument used in this study stationed 

at Fort Meade, MD (~10 km from Beltsville, MD). They established statistics that defined the south-westerly Mid-Atlantic NLLJ 

as a predominantly summertime nocturnal boundary layer phenomenon. As previously shown in Figure 2, we have identified 90 

warm-season (May – September) NLLJ events using the Beltsville, MD RWP datasets over a 5-year period (2017 - 2021), where 

Ryan (2004) reported 80 summer-season events over 5 years (1998-2002).  205 
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4.1 Algorithm Evaluation 

The process of evaluating the performance of the algorithm is complex due to the absence of an absolute ground truth for NLLJ 

detection. The training dataset, or truth labels, represents our best attempt at programmatically isolating NLLJs, yet this process is 

challenging because it lacks a definitive standard for what constitutes a true NLLJ activity located to every measurement point of 

the wind profile datasets. To address this complexity, the evaluation approach involves two critical stages following the training 210 

phase. The first stage entails comparing the algorithm’s results against the gradient method (see section 3.1), which serves as a 

quantitative benchmark. The second stage involves a qualitative visual inspection by a trained observer, providing an additional 

layer of evaluation that helps mitigate the challenges posed by the absence of a standardized metric for NLLJ detection. The 

flowchart from Figure 4 (orange) provides a visual representation of the training process, beginning with the selection of the best 

estimators. This selection process involves a search routine for hyperparameters that score the highest in each model, see Figure 5 215 

for results of the best estimators. Once the best estimators are identified, they are combined into an ensemble model, which is then 

fully trained on the remaining unseen portion of the training dataset and evaluated against the supplied truth labels. The final stage 

involves applying this trained model to previously reported and depicted NLLJs from previous research studies, such as those by 

conducted by Sullivan et al. (2017), Delgado et al. (2015), and Weldegaber (2009), all of which used the same instrumentation in 

the same study area. 220 

 

Figure 5 illustrates a comparison of confusion matrices from training the machine learning algorithms, where the individual 

algorithm matrices show results from ~16 daily files from the training dataset, and the ensemble matrix shows results from ~64 

daily files. Each confusion matrix provides a breakdown of the model's performance by showing the counts of true negatives (top 

left quadrant: green), true positives (bottom right quadrant; green), false positives (top right quadrant; orange), and false negatives 225 

(bottom left quadrant: orange). Overall, each shows a strong ability to correctly determine non-NLLJ activity, relatively balanced 

performance on false-negatives and false-positives, and relatively consistent abilities in correct prediction of true-positives. We 

attribute these results to the implementation of rigorous cross-validation and tuning of hyperparameters in a two-stage process (see 

Figure 4 individual and ensemble model training). This was done to address the spareness of NLLJ features in the training dataset. 

Note that these scores are based on the truth-labels supplied, which themselves are imperfect isolations of NLLJ features (see 230 

Figure 2). With this in mind, we reserved our final judgment for visual inspection of performance with Mid-Atlantic NLLJs 

depicted in previous literature for validation of testing results. 

 

Figure 5: Model training confusion matrices: (green) shows correctly labelled points by the algorithms while (orange) shows 
incorrectly labelled. Top-left indicates true-positive labels, bottom-right indicates true-negative; while bottom-left indicated 
false-positive, and top-right indicates false-negative.  
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Figure 6 illustrates the results of this inspection from the observations of BELT on June 12, 2015 (Sullivan et al., 2017), August 

03, 2007, and June 12, 2008 (Delgado et al., 2015; Weldegaber, 2009) The figure is organized into three key panels for each event: 235 

isolated NLLJ activity (panels A1, B1, C1), horizontal wind speed (panels A2, B2, C2), and wind direction (panels A3, B3, C3). 

These panels plot the data against altitude and time, with sunrise and sunset times indicated by dashed vertical lines. In panels A1, 

B1, and C1, the algorithm effectively demonstrates its capability to detect the characteristic wind speed maximums and 

corresponding wind direction shifts indicative of NLLJ events. These panels highlight the algorithm’s proficiency in identifying 

the vertical structure and temporal evolution of these jets, capturing key phases such as the onset, peak, and dissipation of the NLLJ 240 

events. However, as noted by the circles and dashed boxes in Figure 1, the algorithm does have certain limitations. 

 

On June 12, 2015, the wind speed shows a well-defined NLLJ structure, with wind speeds peaking in the early morning. The 

corresponding wind direction data for the same date transitions from southerly in the early hours to westerly later in the day, a 

directional shift that the model effectively captures. The capability of the model to detect these patterns is crucial. It suggests that 245 

the model can identify the presence of an NLLJ and its evolution over time. On June 14, 2008, the initial wind speed data might 

suggest that the NLLJ event concluded by 15 UTC, however, the wind direction gradients reveal the transition to a westerly-

dominated regime, thus indicating the end of the NLLJ event at 12 UTC. The wind direction data from this date indicate a 

significant shift, with winds starting from a southerly direction and transitioning to a westerly direction as the day progresses. This 

shift to westerly-dominated high wind speeds indicates the kind of directional change the model can discern, echoing the findings 250 

of Rabenhorst et al. (2014) regarding the transitional phases of Appalachian Downslope Winds.  

 

The circles indicate instances where the algorithm may have falsely identified NLLJ activity, suggesting potential issues of 

overestimation. This overestimation could be attributed to imperfections in the training dataset, which may cause the model to be 

overly sensitive to features that do not necessarily correspond to genuine NLLJ events. On the other hand, the dashed boxes 255 

highlight regions where the algorithm struggles to accurately identify NLLJ activity. For example, in the events observed on June 

12, 2015, and August 03, 2007, the algorithm appears to have difficulty accurately representing the lower boundary of the NLLJ. 

This difficulty is likely due to a less pronounced NLLJ signal in the vertical profile, making it challenging for the model to 

distinguish the NLLJ from surrounding atmospheric conditions. The consistent issue of missed lower-level structures across 

different test cases suggests that modifications to the training set could significantly enhance the model’s performance. The 260 

presence of outlier points in the visualized data further underscores the necessity for additional post-processing steps, such as 

image segmentation (Figure 4), to refine the model output and reduce the occurrence of false positives. The dashed box in the June 

14, 2008, observation marks an area where the core of the NLLJ was not identified by the algorithm. This oversight seems to result 

from a sharp increase in wind speed coupled with only a slight directional shift, leading to a case of false negatives. That 

withstanding, the isolated NLLJ activity aligns well with the analysis discussions from the literature, validating the potential for 265 

supervised-machine learning to be proficient in this task of discerning NLLJs from the broader atmospheric flow. The level of 

accuracy achieved is sufficient to support robust long-term statistical analysis, which is critical for advancing our understanding 

of NLLJs and their impact on regional atmospheric composition. 
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  270 

Figure 6: Evaluation of NLLJ isolation algorithm with reference events from literature illustrating the evolution of the NLLJ event 
reported on (A) June 12, 2015 (Sullivan et al., 2017); August 03, 2007 and Jun 12, 2008 (Delgado et al., 2015; Weldegauber, 2009), where 
panel 1 shows the isolated NLLJ, panel 2 shows the horizontal wind speed and panel 3 shows the wind direction.  
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4.2 Statistical Analysis 

To investigate the critical characteristics of the Mid-Atlantic South-Westerly NLLJ, we performed a preliminary statistical analysis 

of the 90 NLLJ events we have identified. The histograms, shown in Figure 7, provide a statistical representation of maximum 

wind speeds, core heights, and core time for each NLLJ event, as derived from the dataset of 90 NLLJ events shown in Figure 7. 

Figure 7 (A) shows the distribution of maximum wind speed of each jet event, spanning 5 m s-1 to nearly 30 m s-1. The wind 275 

speed maximum probability density curve (orange) suggests that the most probable core speeds are between 10 m s-1 and 15 m s-

1, with decreasing probability between 15 and 20 m s-1 and the least probable being between 20 and 30 m s-1.  This would suggest 

that in the most probable range exists a similar formation mechanism. 

 

The core height (Figure7: B) illustrates the height at which the maximum wind speed was measured for each NLLJ event capture. 280 

We notice that most of the maximum wind speeds occur around 500 m AGL, showing a sharp peak at this altitude range, which 

can be interpreted as the typical altitude for the core. The narrowness of this peak in the probability density curve implies a strong 

consensus for this characteristic height, aligning with the notion that the jets are confined to the edge of the stable nocturnal 

boundary layer. Note the low probability and frequency of core height being above 1000 m AGL; we attribute the presence of 

these altitudes as removable noise from the isolation due to the imperfect nature of our training dataset (see section 3.1).  285 

 

Figure 7: Histogram NLLJ characteristics from the 90 events noted in Figure 2, where: (A) is the distribution of maximum wind 
speeds, (B) is the height of the wind speed maximum and (C) is the duration of the event at the core height. 

A 

B 
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When considering the histogram for the duration of the NLLJ (Figure7: C), we encounter a more complex distribution. The duration 

of the NLLJ event is calculated by finding the elapsed time from each jets core height. The histogram and probability distribution 

suggest a multi-modal distribution, with two apparent peaks around 8 and 12 hours. This multi-modal nature may hint at the 

additional influencing factors, such as the baroclinicity of the region, which could induce variations in the timing of the jet’s 290 

maximum wind speeds.    

4.3 Mid-Atlantic NLLJ Morphology 

As a result of this isolation of NLLJ occurrence in wind profiles, we have created a general representation of the Mid-Atlantic 

NLLJ using observations. Figure 8 shows a composite plot of the NLLJ structure using the median of the 90 NLLJ datasets to 

visualize the temporal evolution as seen from the observations at Beltsville, MD. This offers a basis for future identification and 295 

analysis of the general south-westerly NLLJ. The region enclosed by the black line indicates the region in which more than 50% 

of the cases were present (see Figure 8: C), thus serving as the general structure of the Mid-Atlantic NLLJ. Outside the enclosed 

region is the variability of NLLJs found in our 90 events datasets. Figure 8 (A) describes the horizontal wind speed, which exhibits 

a shallow layer of high wind speed (~ 15 m s-1) concentrated around 500 m AGL; this is noted as the NLLJ’s core. This general 

NLLJ structure lasts from just after sunset (0 hours) to almost 11 hours after sunset. The vertical extent is shown to be persistent 300 

Figure 8: Composite Vertical Profiles of Nocturnal Low-Level Jet (NLLJ) Characteristics: (A) Average Wind Speed (B) Average 
Wind Direction, and (C) Event Count. 

A 

B 
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around 1500 m AGL until the arrival of the horizontal wind speed maximum (NLLJ core) around 4 hours after sunset, at which 

point the vertical structure of the NLLJ begins to decay.  

 

The panel B of Figure 8, which illustrates wind direction, shows a clear transition between the dominance of the meridional (South 

to North; Southerly) and zonal (West to East; Westerly) winds and is indicative of the dynamic atmospheric processes that govern 305 

the behavior of the Mid-Atlantic NLLJ. The progression to more westerly winds across the night reflects the diurnal wind shift and 

underscores the influence of large-scale atmospheric circulation patterns on the NLLJ. This shift in wind direction is often related 

to the Coriolis force acting on the regional air mass over the night. As the land cools after sunset, the pressure gradients adjust, and 

the NLLJ develops, initially following the temperature gradient. As the night progresses, the Coriolis force begins to turn the flow 

toward the right in the northern hemisphere, resulting in the NLLJ acquiring a more westerly component.  310 

 

The vertical dependence of the oscillation between wind vectors, as observed in panel B of Figure 8, indeed underscores the 

manifestation of inertial oscillation theory in the behaviour of the Mid-Atlantic NLLJ. This oscillation between wind vectors at 

different altitudes signifies the vertical shear, which is characteristic of the NLLJ structure. The presence of wind shear is significant 

for various atmospheric processes, such as the development of turbulence, the dispersion of aerosols, and the vertical transport of 315 

momentum and heat within the atmosphere; notably, strong wind shear associated with NLLJs can induce turbulent downbursts, 

thereby affecting aviation safety, efficiency of wind energy generation, and surface level air quality. The works of Roots et al. 

(2023) and Sullivan et al. (2017) both noted the increase of surface-level ozone from a polluted ozone reservoir in the residual 

layer during the arrival of the NLLJ core, which, as shown in Figure 8, is the maximum point of the horizontal speed and balance 

between the zonal and meridional wind vectors. 320 

 

Collectively, these panels deliver a cohesive understanding of the NLLJ's vertical and temporal structure. They demonstrate a 

pronounced nocturnal intensification in wind speed at low-level altitudes, accompanied by a veering wind direction, which 

indicates the inertial oscillation's influence on the jet's formation. Furthermore, the event count substantiates the observed 

morphology, confirming that the algorithm effectively captures the climatological presence of the NLLJ in the dataset. The 325 

variability outside the core zone may be attributed to synoptic-scale influences that modulate NLLJ behavior. Understanding this 

variability is essential for improving weather prediction models, particularly for events sensitive to low-level jet dynamics. 

5 Conclusions  

The study successfully applied machine learning (ML) algorithms to detect and characterize Nocturnal Low-Level Jets (NLLJs) 

using Radar Wind Profiler (RWP) data. 330 

- This study has investigated the usage of supervised machine-learning for detection of NLLJ events in the Mid-Atlantic 

region which was quantitatively and qualitatively evaluated and shown its potential for useful atmospheric analysis. 

- Statistical analysis of 90 NLLJ events show key patterns in wind speed, core height, and event duration that agree with 

previous literature on the theory and case studies of NLLJs in the Mid-Atlantic. 

- The morphology composite (Figure 8) provides a clear visualization of the vertical and temporal structure of NLLJs in 335 

the Mid-Atlantic region, offering a useful reference for understanding the typical characteristics and evolution. 
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Further work is needed to attribute whether the interannual variability observed, within specific years with more frequency of 

events, underscores the connection between NLLJ occurrences and broader synoptic patterns that drive regional dynamics. 

Identifying these patterns has profound implications for the future study of NLLJs, necessitating an extended analysis over a longer 

period and across a broader observational network. This would be critical for comprehensively understanding the atmospheric 340 

forces at play in NLLJ formation and thus when implemented into atmospheric models, enhancing the accuracy.  

 

The presence of data gaps within the observational period presents a challenge yet serves as a crucial reminder of the inherent 

limitations of empirical datasets. Addressing these gaps by incorporating additional datasets and employing data synergy 

techniques will be imperative in future studies to create a more continuous and complete picture of NLLJ occurrences. As presented 345 

in Figure 7, the statistical analysis has yielded a quantitative representation of the critical characteristics defining the Mid-Atlantic 

NLLJ. The distribution of maximum wind speeds and core heights clearly indicates a similar atmospheric mechanism driving these 

jets, with most NLLJ cores residing around 500 m AGL. The bi-modal nature of the core timing distribution suggests additional 

factors, such as regional baroclinicity, may influence the timing of NLLJ maxima, indicating deviations from classical inertial 

oscillation predictions. These findings are pivotal for enhancing our understanding of NLLJ behaviors and refining their 350 

representation in atmospheric models. The morphological analysis of the NLLJ, informed by the composite plots in Figure 7, has 

established a general representation of the Mid-Atlantic NLLJ's structure. This representation, highlighting a pronounced nocturnal 

intensification of wind speed and a distinct oscillation pattern in wind direction, is instrumental in defining the typical NLLJ profile. 

The observed variability outside the core zone highlights the influence of large-scale atmospheric processes on NLLJ behavior, 

emphasizing the need for further investigation into these external factors. 355 

 

The continued study of these low-level wind phenomena is crucial for weather prediction and the strategic management of air 

quality, particularly in understanding the transport and dispersion of pollutants along the Mid-Atlantic region of the US. This 

research serves as a stepping stone for future investigations into the complex dynamics of low-level mesoscale phenomena and 

their broader climatic and environmental implications. Accurately identifying and characterizing NLLJs is vital for validating and 360 

refining regional climate models, thus enhancing our predictive capabilities regarding future climate scenarios. This work 

contributes significantly to boundary layer studies, offering a detailed examination of NLLJ phenomena and providing valuable 

insights for future research. This study's integration of machine learning within the field of atmospheric science marks a promising 

step toward more advanced meteorological analyses and the future of climate prediction. Future studies should integrate similar 

techniques to understand the genesis mechanisms of low-level wind phenomena from large observational datasets to enhance our 365 

understanding of regional pollutant distribution and mesoscale transport of moisture, momentum, and mass. Furthermore, there is 

a clear opportunity to expand this research to encompass other geographic regions and atmospheric phenomena, thereby testing 

the adaptability and versatility of the methodology.  
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