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Abstract. Air quality sensor (AQS) networks are useful for mapping PM2.5 in urban environments, but quantitative 

assessment of the observed spatial and temporal variation is currently under-developed. This study introduces a new 

metric - the Concentration Similarity Index (CSI) - to facilitate a quantitative and time-averaged comparison of the 

concentration-time profiles of PM2.5 measured by each sensor within an air quality sensor network. Following development 10 

on a dataset with minimal unexplained variation and robust tests, the CSI function is ensured used to represent an unbiased 

and fair depiction of the air quality variation within an area covered by a monitoring network. The measurement data is used 

to derive a CSI value for every combination of sensor pairs in the network, which can then be compared with others in the 

network, yielding valuable information on spatial variation in PM2.5. This new method is applied to two separate AQS 

networks, in Dungarvan and in Cork City, Ireland. In Dungarvan yielded there was a lower mean CSI value (x̄CSI, 15 

Dungarvan = 0.61, x̄CSI, Cork = 0.71), indicating lower overall similarity between locations in the network., possibly due to the 

town’s coastal location giving rise to higher variation within the network. In both networks, the average diurnal plots for 

each sensor exhibit an evening peak in PM2.5 concentration due to emissions from residential solid fuel burning, however, 

there is considerable variation in the size of this peak. Clustering techniques applied to the CSI matrices identify two 

different location types in each network; locations in central or residential areas which experience more pollution from solid 20 

fuel burning and locations on the edge of the urban areas which experience cleaner air. The difference in mean PM2.5 

between these two location types was 6 μg m-3 in Dungarvan, and 2 μg m-3 in Cork, for clusters 1 and 2, respectively. 

Furthermore, the examination of isolated data periods winter and summer months (January and May) indicates higher PM2.5 

levels during periods of increased residential solid fuel burning act as a major driver for greater differences (lower similarity 

indices) between locations in both networks, with differences in mean seasonal CSI values exceeding 0.25 and differences in 25 

mean seasonal PM2.5 exceeding 7 μg m-3. These findings underscore the importance of including wintertime PM data in 

analyses as the differences between locations is enhanced during periods when solid fuel burning activities are at a peak. 

Additionally, the CSI method facilitates the assessment of the representativeness of the PM2.5 measured at regulatory air 

quality monitoring locations with respect to population exposure, showing here that location type is more important than 

physical proximity in terms of similarity and spatial representativeness assessments. Applying the CSI in this manner can 30 

allow for the placement of monitoring infrastructure to be optimised. The results indicate that the population exposure to 
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PM2.5 in Dungarvan is moderately represented (x̄CSI  = 0.63) by the current regulatory monitoring location, and the regulatory 

monitoring location assessed in Cork represented the city-wide PM2.5 levels well (x̄CSI = 0.76). The findings of this work 

underscore the influence of solid fuel combustion as a local contributor to PM2.5 and the variation it can cause between the 

measurements at different monitoring locations in a network while also highlighting the importance of including wintertime 35 

PM data for accurate comparisons. The CSI method developed here could be a valuable tool for quantitative comparisons of 

air quality within a monitoring network, offering insights for further regulatory monitoring and exposure assessments. 

1 Introduction 

Air pollution affects the environment, quality of life and is a major cause of premature death and disease(Cesaroni et al., 

2013; Lelieveld et al., 2015; Pedersen et al., 2013; Raaschou-Nielsen et al., 2013). The category of air pollutant with the 40 

largest impact on human mortality and health is fine particulate matter, i.e. atmospheric particles with an aerodynamic 

diameter of 2.5 micrometres or less (PM2.5) (Pope et al., 2020; Pope and Dockery, 2012; Samoli et al., 2013). In many 

regions around the world, air quality monitoring and management have become critical endeavours to mitigate the 

detrimental effects of air pollution, and especially PM2.5, on citizens and the environment.  

Over the years, technological advances have provided valuable tools to enhance our understanding of air pollution, and low-45 

cost air quality sensors (AQS) are emerging as promising instruments for collecting real-time air quality data at an improved 

spatial and temporal resolutions (Kumar et al., 2015; Munir et al., 2019). When used in networks, air quality sensors offer 

immense potential for enhancing and supplementing regulatory monitoring and assessment (Malings et al., 2020). However, 

further work needs to be carried out to assess the effectiveness of sensor networks and how to make best use of the data for 

gaining further insights into air pollution within a locality, because the data quality obtained with such low- cost devices 50 

does not meet the standards for regulatory monitoring. Careful consideration must be given to the quality of the data 

provided by sensors and the requirement for calibration must be assessed (Diez et al., 2022). Recent studies have shown that 

the performance and calibration of a PM2.5 sensor is dependent on the type of sensor and often on the measurement location, 

suggesting the need for site-specific and individual calibrations to correct for the absolute level of PM2.5
 
 (Kaur and Kelly, 

2023; Sayahi et al., 2019; Wang et al., 2015; Zamora et al., 2020). When these factors are considered and accounted for, 55 

AQS networks offer an unprecedented opportunity to gain further insights into the complex dynamics of air pollution in 

localised areas, such as urban environments, industrial zones, and residential neighbourhoods  (Crawford et al., 2021; 

Frederickson et al., 2022; Heimann et al., 2015; Hodoli et al., 2023; O’Regan et al., 2022).  

Assessing Information on the spatial variation of air quality is of paramount importantce because air pollution is not 

homogenous and can exhibit significant variations across different areas even on a local scale  (Frederickson et al., 2022, 60 

2023; Kassomenos et al., 2014; Wang et al., 2018). The variability of air pollution can be influenced by a multitude of 

factors such as traffic patterns, industrial activities, meteorological conditions, and local topography. Consequently, relying 

on single monitoring locations or limited data resolution can provide an incomplete picture and inadequate understanding of 
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local air quality in a certain area (Li et al., 2019). Understanding these variations is crucial for targeted interventions and 

policy decisions aimed at improving air quality and safeguarding public health. Spatial analysis, facilitated by sensor 65 

networks allows for a more accurate and nuanced understanding of how air quality, and therefore exposure to pollution, 

varies across a population centre. 

In a recent study, we used data collected by a PM2.5 sensor network in the city of Cork, Ireland, to estimate the contribution 

of local pollution sources as separate and distinct from regional or transported air pollution (Byrne et al., 2023). The results 

highlighted the very localised nature of PM2.5 caused by residential solid fuel burning during winter, which is a significant 70 

problem in many towns and cities in Ireland and elsewhere (Dall’Osto et al., 2013; Kourtchev et al., 2011; Lin et al., 2018, 

2019; Ovadnevaite et al., 2021; Wenger et al., 2020; Zhang et al., 2021).  

In this work, we propose a new approach for assessing the spatial profile of air quality using an AQS network. The method 

yields a time-averaged concentration similarity index (CSI) for quantitative assessment of the similarity between the 

complete data series produced by different sensors within the network. The CSI is built on the premise that sensors exposed 75 

to similar ambient conditions and pollutant sources will produce comparable PM2.5 temporal trends. Conversely, sensors 

subject to different conditions might display divergent PM2.5 concentration trends. The motivation for the development of an 

assessment method based on the temporal variation over an extended period is the realisation that the annual average is often 

an poor incomplete representation of true population exposure, which is experienced from hour to hour and day to day. If 

hourly or daily PM2.5 variability is high,It it is therefore not always adequate to merely compare annual averages of PM2.5 80 

levels in different locations in order to compare the exposures to PM2.5 exposure experienced by the local populations in the 

respective locations. While the annual average and hourly/daily values are often well correlated, numerous studies have 

found positive associations between short-term exposure to particulate matter and increased morbidity and mortality due to 

respiratory and cardiovascular diseases (Fajersztajn et al., 2017; Orellano et al., 2020; Weinmayr et al., 2010). This method 

aims to translate this idea into a quantifiable metric by calculating the time-averaged degree of similarity between two sensor 85 

datasets. MAfter method development and testing, the CSI analysis is performed applied on to an AQS network in the town 

of Dungarvan in Ireland to identify areas that may be experiencing persistently elevated or very localised PM2.5 pollution 

compared to others. Clustering techniques are used to group sensors based on the similarity of their PM2.5 measurements. The 

CSI method is also retrospectively applied to the data collected in the Cork City network to investigate the transferability of 

the method between sensor networks and to explore any differences between the locations. 90 

2 Methodology 

2.1 Data collection, preprocessing, and calibration 

The collection, preprocessing, and calibration of the data collected by the PM2.5 sensor networks in Dungarvan and Cork 

City was carried out using the Julia programming language (Bezanson et al., 2017). Since low-cost AQS are not of 

regulatory standard, great care needs to be taken with quality assessment and quality control of the data. In particular, the 95 
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degree to which changes or differences in PM2.5 measurements between devices can be trusted needs to be considered. The 

methodology proposed here addresses these inherent issues to deliver an approach for assessing the spatial 

representativeness of any monitoring location, i.e. what is the extent of the geographical area that the location meaningfully 

represents area, in air quality monitoring terms, and to facilitate comparison to different types ofwhat environment types type 

is it comparable to, regardless of geographical distance to the location.? 100 

2.1.1 Dungarvan PM2.5 sensor network 

The Dungarvan sensor network consisted of 18 solar powered Clarity Node-S devices (Clarity Movement Co., USA) which 

utilise the Plantower PM6003 sensor to measure PM2.5 within the range 1-1000 μg m-3 and at a resolution of 1 μg m-3 

(Clarity Movement Co., 2023; Node-S technical sheet, 2023). By default, the Node-S devices take measurements every 

15 minutes, allowing sufficient data upload and battery sleep time in between sampling periods. However, this can be 105 

adjusted to higher or lower frequencies. The highest sampling frequency interval achievable during winter without 

significantly affecting the battery performance was 8 minutes.  

The Clarity Node-S devices were typically attached to street light poles between 2 and 4 metres above the ground. The 

sensors were positioned in a range of different environments including urban background, residential, coastal, and roadside 

locations (Figure S1). Many of these locations were a mix of the different environments. The majority of devices were 110 

operational from 1 November 2022 to 31 May 2023, however three devices (AP7, AY9N, AY93) with the Clarity Wind 

Module were only deployed from 12 January 2023. Measurements were taken over a continuous period covering different 

meteorological seasons (mainly Winter and Spring/early Summer), thus ensuring temporal variations in PM2.5 concentrations 

were captured comprehensively. 

Prior to and after deployment in Dungarvan, the Clarity Node-S devices were co-located on the roof of the Ellen Hutchins 115 

Building, University College Cork (51.895136, -8.516146) to compare their performance. Details of the three co-location 

periods are outlined in Table S1. Although some devices were not available for all three co-location periods, the three 

periods combined provide a comparison between the sensors across different seasons. This co-location dataset enabled the 

CSI method to be developed on measurements that in theory should be equal and the function could then be modified, if 

necessary, to allow for sensor behaviour, uncertainties, errors, and potential limitations.  120 

The raw sensor data from the co-location periods and field deployment, underwent a series of preprocessing steps to mitigate 

potential sources of error in the measurement and ensure data quality and consistency. Data points outside of the operational 

range of the sensors (> 1000 μg m-3) were identified and removed, although instances of these were minimal. The 8-minute 

data were averaged to produce hourly measurements. Missing data points could potentially affect the temporal continuity of 

the data; however, the data coverage was overall very good for the co-location and measurement campaign periods. On 125 

average, the devices had an hourly measurement coverage of 87 % for the field measurement campaign. This corresponds to 

an average of 4443 hourly measurements per device for the campaign period.  
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Assessing the consistency of measurements across the sensor network was paramount. Although the PM2.5 readings were 

very well correlated when the devices were co-located (Table S2), a data harmonisation procedure was performed to ensure 

the uniformity of sensor measurements, which is a prerequisite for the subsequent development of the Concentration 130 

Similarity Index. Since there was no reference-grade PM2.5 data available during the co-location periods, the PM2.5 

concentrations from each sensor were scaled to a common reference point, represented by the mean of all data points across 

the whole co-location dataset (Figure S2). The data series for each sensor was then individually compared with the 

calculated mean dataset and subsequently harmonised to the common reference point using a simple linear regression 

approach. The equations resulting from this harmonisation procedure were applied to the measurements collected from all 135 

devices during the subsequent field measurement campaign. While this procedure did not convert the measured PM2.5 to 

reference-equivalent concentrations, it minimised sensor output variability and facilitated a more equitable comparison 

between sensor measurements (Table S2).  

2.1.2 Cork City PM2.5 sensor network 

The Cork City sensor network consisted of 16 PurpleAir PA-II-SD units which each contain two Plantower PMS5003 140 

sensors to measure PM2.5 within the effective range 0-500 μg m-3, with a maximum range of 1000 μg m-3, and at a resolution 

of 1 μg m-3 (PMS5003 series data manual, 2022). In this study, data recorded by the devices in the network for the periods 

01 January 2021 to 31 May 2021 and 1 September 2021 to 31 December 2021 were collated and analysed. However, four 

devices were found to have limited data capture for the specified periods (< 50 %) and were therefore omitted from the 

analysis. The 12 sensors used in this analysis had an average data capture of 85 % for the specified periods; their locations 145 

are shown in Fig. S3. 

Due to logistical constraints, it was not possible to co-locate all of the PurpleAir devices together to assess variability in 

PM2.5 concentrations. However, low inter-sensor and inter-unit variability was exhibited by four co-located PurpleAir 

devices in our previous study on the Cork City network, where all inter-sensor and inter-unit comparisons yielded R2 values 

greater than 0.98 (Byrne et al., 2023). Moreover, the PurpleAir PM2.5 concentrations measuredments using the four 150 

PurpleAir devices were highly correlated (R2 = 0.92) with hourly values of PM2.5 concentrations obtained using a Met-One 

(USA) Beta-Attenuation Monitor (BAM-1020). The comparison yielded a low offset (0.3 μg m-3), although sensor 

measurements tended to be higher thatn the reference measurements (slope = 0.57) and . a A co-location dataset was then 

used to derive calibration factors incorporating the effects of temperature and relative humidity. The data processing 

procedures for obtaining the PM2.5 concentrations reported here are identical to those reported by Byrne et al. (2023). 155 

The Cork City dataset spans a similar measurement period to the Dungarvan dataset to allow for comparable results due to 

the known seasonality of PM2.5 pollution in Ireland (Ovadnevaite et al., 2021). Although the year 2021 included some 

periods of COVID-19 pandemic restrictions, such measures mainly affected NO2 concentrations and were not shown to have 

a significant impact on PM levels in Ireland (Environmental Protection Agency (EPA), 2020). 
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2.1.3 Meteorological measurements 160 

Meteorological data was analysed in each location. For Cork City, data collected at Cork Airport by Ireland’s National 

Meteorological Service, Met Éireann, was accessed from the website https:/www.met.ie. The airport weather station is 

located approximately 5.5 km from Cork city centre. 

There is no weather station located nearby Dungarvan that provides hourly measurements, however three of the Clarity 

Node-S devices were fitted with Clarity Wind Modules (AP7, AY93, AY9N), which provide high time-resolution 165 

measurements of wind speed and direction (Clarity Movement Co., USA.). Due to technical difficulties, device AY9N did 

not capture wind direction measurements, however its wind speed is included. The Wind Module contains a solid-state 2-

axis ultrasonic anemometer which provides wind speed measurements with a range of 0 – 60.00 m s-1, and a resolution of 

0.01 m s-1 along with wind direction at a resolution of 0.1°, over a range of 0 – 359.9° (Wind Module technical sheet, 2024). 

These measurements have not been validated against reference meteorological data; however, they are included for 170 

indicative purposes. 

2.2 Development of the Concentration Similarity Index 

The Concentration Similarity Index (CSI) derived here quantifies the degree of likeness between PM2.5 concentration profiles 

from two sensors for a defined period of time and forms the basis for assessing the spatial disparities in PM2.5 measurements 

within sensor networks. The methodology proposed was developed through multiple iterations in order to adjust and 175 

improve the procedure. An overview of the development is described, showing the evolution towards the final method.  

2.2.1 Original function application 

The first phase of development was based directly on the work carried out by Piersanti et al. (2015), who used a 

concentration similarity function to assess the spatial representativeness of PM2.5 and O3 monitoring stations in the Italian air 

quality monitoring network. By comparing point measurements to a dataset of modelled hourly air pollutant data covering 180 

Italy with a 4 × 4 km2 grid cell resolution Using modelled hourly air pollutant data covering Italy with a 4 × 4 km2 grid cell 

resolution, Piersanti et al. (2015) produced maps showing how representative certain sites in the Italian monitoring 

infrastructure were. The application proposed here compares point measurement to point measurement as opposed to point 

measurement to comparing modelled grid cell data, however the underlying principle of comparing two concentration-time 

profiles to produce a single indication of similarity between them still applies. The function value fsite(x, y) used by Piersanti 185 

et al. (2015) to assess the spatial coverage of point measurements is given in Eq. (1)(1): 
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𝑓𝑠𝑖𝑡𝑒(𝑥, 𝑦) =  
∑ 𝑓𝑙𝑎𝑔
𝑁𝑡
𝑖=1

𝑁𝑡
, 𝑤ℎ𝑒𝑟𝑒 𝑓𝑙𝑎𝑔 =

{
 
 

 
 1,

|𝐶(𝑋𝑠𝑖𝑡𝑒 , 𝑌𝑠𝑖𝑡𝑒 , 𝑡𝑖) −  𝐶(𝑥, 𝑦, 𝑡𝑖)|

𝐶(𝑋𝑠𝑖𝑡𝑒 , 𝑌𝑠𝑖𝑡𝑒 , 𝑡𝑖)
  < 0.2      

0,
|𝐶(𝑋𝑠𝑖𝑡𝑒 , 𝑌𝑠𝑖𝑡𝑒 , 𝑡𝑖) −  𝐶(𝑥, 𝑦, 𝑡𝑖)|

𝐶(𝑋𝑠𝑖𝑡𝑒 , 𝑌𝑠𝑖𝑡𝑒 , 𝑡𝑖)
 > 0.2     

 

(1) 

 

Where, C(x, y, ti) represents the surface concentration from the modelled data in a grid point at time ti, C(Xsite, Ysite, ti) 190 

represents the point modelled data measurement of a specific monitoring site of interest at time ti, and Nt is the total number 

of time steps. The study defined a modelled grid cell  point at the site of interest measurement as representative of a 

surrounding grid cell area if the condition fsite(x, y) > 0.9 is true.  

In the first step of our approach, this function was applied to the hourly average PM2.5 data obtained from the co-located 

Clarity Node-S units by comparing two sensor data series at a time., with tThe concentration at the reference point of interest 195 

and surrounding grid cell modelled concentration inputs were substituted for sensor PM concentration values from any given 

sensor A and sensor B pair, C(A, ti) and C(B, ti). Over a total of 1565 co-located hours, the mean number of comparable data 

points per C(A, ti), C(B, ti) pair was 654, due to devices being present at different stages during the co-location periods 

(Table S1). 

It might be expected that theIn theory, the function value comparing two sensor data series would be 1, given that the 200 

measurements were collected in the same location and were known to all represent the same air parcel at each point in time. 

However, it was found that the function was not comprehensive enough to allow for an acceptable comparison of the sensor 

data. While in theory, the results for all sensor pairs should be 1, t The results showed discrepancies between some device 

pairs, because the function value deviated significantly from 1 in many cases (Table 1) and was as low as 0.51 in some cases, 

with an overall mean of 0.82.  205 
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Table 1: Function values, fsite(x, y), for hourly averaged PM2.5 measured by a range of co-located Clarity Node-S devices. Device 

labels in the columns were set as C(Xsite, Ysite, t) and device labels in the rows were set at C(x, y, ti). 

 
A3 A4 A8H A8Z A9 AQ AZ A7 A6P AJ3 AP7 AQV ARF AW6 AWF AY9N AY93 AYG 

A3 1 0.83 0.88 0.8 0.8 0.86 0.88 0.87 0.87 0.99 0.67 0.9 0.8 0.99 0.8 0.61 0.8 0.98 

A4 0.84 1 0.81 0.89 0.83 0.87 0.89 0.87 0.87 0.98 0.8 0.9 0.9 0.97 0.85 0.72 0.79 0.99 

A8H 0.86 0.79 1 0.79 0.78 0.87 0.89 0.83 0.78 0.76 0.66 0.85 0.72 0.92 0.71 0.62 0.72 0.73 

A8Z 0.82 0.91 0.81 1 0.78 0.88 0.89 0.85 0.84 0.97 0.87 0.88 0.9 0.97 0.86 0.81 0.73 0.98 

A9 0.76 0.82 0.8 0.76 1 0.75 0.8 0.78 0.78 0.78 0.69 0.77 0.74 0.67 0.78 0.62 0.76 0.69 

AQ 0.88 0.87 0.9 0.87 0.77 1 0.94 0.88 0.86 0.97 0.87 0.97 0.84 1 0.81 0.81 0.75 0.94 

AZ 0.89 0.88 0.89 0.88 0.8 0.94 1 0.91 0.9 0.97 0.8 0.97 0.82 0.99 0.82 0.75 0.84 0.93 

A7 0.87 0.87 0.86 0.83 0.82 0.88 0.91 1 0.89 0.98 0.68 0.91 0.81 0.99 0.8 0.63 0.74 0.96 

A6P 0.87 0.86 0.79 0.82 0.77 0.87 0.92 0.89 1 0.89 0.77 0.9 0.83 0.75 0.82 0.8 0.78 0.89 

AJ3 0.99 0.97 0.76 0.97 0.75 0.97 0.98 0.98 0.89 1 0.72 0.88 0.91 0.76 0.82 0.77 0.81 0.89 

AP7 0.71 0.85 0.63 0.88 0.65 0.86 0.86 0.74 0.77 0.71 1 0.75 0.81 0.54 0.8 0.83 0.75 0.8 

AQV 0.9 0.89 0.86 0.86 0.75 0.96 0.96 0.91 0.88 0.88 0.77 1 0.85 0.77 0.8 0.76 0.82 0.85 

ARF 0.82 0.9 0.72 0.91 0.74 0.86 0.85 0.83 0.85 0.9 0.8 0.84 1 0.74 0.82 0.81 0.81 0.92 

AW6 0.96 0.94 0.92 0.94 0.65 1 0.99 0.98 0.72 0.72 0.5 0.73 0.7 1 0.69 0.51 0.49 0.7 

AWF 0.8 0.88 0.7 0.86 0.76 0.82 0.82 0.81 0.82 0.82 0.81 0.8 0.83 0.73 1 0.81 0.77 0.86 

AY9N 0.62 0.76 0.59 0.81 0.6 0.79 0.75 0.65 0.78 0.77 0.81 0.74 0.8 0.55 0.8 1 0.72 0.8 

AY93 0.76 0.76 0.67 0.65 0.72 0.69 0.74 0.65 0.78 0.84 0.75 0.8 0.81 0.55 0.77 0.75 1 0.82 

AYG 0.99 0.99 0.72 0.99 0.67 0.95 0.95 0.98 0.87 0.87 0.78 0.83 0.9 0.75 0.84 0.79 0.76 1 

2.2.2 Function parameter optimisation and introduction of PM limit 210 

Analysis of the results obtained from direct application of the original function showed that the conditions set out by it were 

too strict to apply to the sensor data given the variations that can occur in AQS measurements., especially bearing in mind 

that t The areas of the entire sensor networks discussed here could be within the original single grid cell size analysed by 

Piersanti et al. (2015). Therefore, overall pollution dynamics would vary significantly, in part because of hyper-local effects, 

and pollution averaging effects would be more pronounced when assessing larger areas. Moreover, the high hourly PM2.5 215 

variation and very localised effects exhibited in a typical Irish winter PM2.5 profile is not suited to the original function 

(Byrne et al., 2023). While the original application contains a mathematical function examining the difference between two 

pollutant concentrations and is independent of specifications regarding area size and pollution dynamics, the threshold values 

can be adapted to reflect the specific application of the function.Thus, a A second threshold value, a PM mass concentration 

limit, PMlim, was introduced to the function, with different relative concentration limits for the upper and lower PM values, 220 
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Clim, upper and Clim, lower, respectively. Treating larger and smaller PM2.5 values differently when assessing the similarity 

between two data series is useful in capturing the nuanced relationships and patterns in the data. It allows for the real-world 

significance of the data to be reflected, acknowledging the varying implications of PM2.5 measurements based on the 

magnitude. Higher PM2.5 values can indicate a pollution episode or specific local pollution sources, while lower values can 

represent background levels. Therefore, treating lower PM2.5 values with more leniency in the similarity assessment 225 

recognises that minor fluctuations in low hourly concentrations might not be as concerning as similar deviations in higher 

concentrations and the health-related considerations associated with these high concentrations.  

Another potential advantage of the PM limit concerns the varying degrees of accuracy of the AQS measurements. Allowing 

the leeway introduced here in assessing the similarity of lesser measurement values considers potential measurement 

uncertainties with these devices. However, it is important to note that this approach is not accommodating sensor limitations 230 

at the expense of accuracy but rather it is a strategy to ensure that the assessment remains faithful to the underlying air 

quality dynamics while accounting for the potential deficiencies in measurement equipment.  

The differentiation between higher and lower PM values in the concentration similarity assessment is a strategic choice 

which acknowledges the complexity of PM2.5 data, the varying significance of concentration levels, and the limitations of 

sensors. It allows for a more accurate representation of similarities while considering real world implications and 235 

measurement uncertainties and minimises the potential biases that could arise from an indiscriminate approach, thus ensuring 

an impartial and unbiased evaluation.  

When the function is applied to a pair of sensors, the resulting CSI can differ slightly depending on which sensor was 

classified as C(x, y, ti) or C(Xsite, Ysite, ti), or sensor A or sensor B, in Equation (1) when computing the difference at each 

timestep. Due to the nature of the function, the denominator value of the relative difference calculation, the concentration of 240 

sensor A at a given timestep, is what makes the difference. To counteract this and to avoid the possibility of large 

discrepancies between the CSI values for a sensor pair depending on which sensor is taken as A or B, the function was 

modified to have the geometric mean, or the square root of the product, of C(A, ti) and C(B, ti) used as the denominator. This 

ensured symmetry in the function so that the CSI values were identical regardless of which sensor was classified as A or B in 

a sensor pair.  245 

Equation (2)(2) shows the next form of the concentration similarity function (function notation has been modified to be more 

suitable for this application). 
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𝐶𝑆𝐼𝐴,𝐵 = 
∑ 𝑓
𝑁𝑡
𝑖=1

𝑁𝑡
, 𝑤ℎ𝑒𝑟𝑒 𝑓

=

{
 
 
 
 

 
 
 
 1  𝑖𝑓  

|𝐶(𝐵, 𝑡𝑖) −  𝐶(𝐴, 𝑡𝑖)|

√𝐶(𝐴, 𝑡𝑖)  ×  𝐶(𝐵, 𝑡𝑖) 
  < 𝐶𝑙𝑖𝑚,𝑢𝑝𝑝𝑒𝑟  0.2  𝑎𝑛𝑑  𝐶(𝐴, 𝑡𝑖) 𝑜𝑟 𝐶(𝐵, 𝑡𝑖) >  𝑃𝑀𝑙𝑖𝑚  15 𝜇𝑔 𝑚

−3

0  𝑖𝑓  
|𝐶(𝐵, 𝑡𝑖) −  𝐶(𝐴, 𝑡𝑖)|

√𝐶(𝐴, 𝑡𝑖)  ×  𝐶(𝐵, 𝑡𝑖) 
 > 𝐶𝑙𝑖𝑚,𝑢𝑝𝑝𝑒𝑟  0.2  𝑎𝑛𝑑  𝐶(𝐴, 𝑡𝑖) 𝑜𝑟 𝐶(𝐵, 𝑡𝑖) ><  𝑃𝑀𝑙𝑖𝑚15 𝜇𝑔 𝑚

−3

1  𝑖𝑓  
|𝐶(𝐵, 𝑡𝑖) −  𝐶(𝐴, 𝑡𝑖)|

√𝐶(𝐴, 𝑡𝑖)  ×  𝐶(𝐵, 𝑡𝑖) 
  < 𝐶𝑙𝑖𝑚,𝑙𝑜𝑤𝑒𝑟  0.7  𝑎𝑛𝑑  𝐶(𝐴, 𝑡𝑖) 𝑜𝑟 𝐶(𝐵, 𝑡𝑖) <> 𝑃𝑀𝑙𝑖𝑚15 𝜇𝑔 𝑚

−3

0  𝑖𝑓  
|𝐶(𝐵, 𝑡𝑖) −  𝐶(𝐴, 𝑡𝑖)|

√𝐶(𝐴, 𝑡𝑖)  ×  𝐶(𝐵, 𝑡𝑖) 
 > 𝐶𝑙𝑖𝑚,𝑙𝑜𝑤𝑒𝑟  0.7  𝑎𝑛𝑑  𝐶(𝐴, 𝑡𝑖) 𝑜𝑟 𝐶(𝐵, 𝑡𝑖)  <  𝑃𝑀𝑙𝑖𝑚15 𝜇𝑔 𝑚

−3

 

(2) 250 

Where C(A, ti) and  C(B, ti) are the PM2.5 measurements from devices A and B at time, ti. Clim, lower and Clim, upper are the 

threshold values defining the acceptable level of difference between two concentrations, and PMlim is the PM mass 

concentration threshold value.   

2.2.3 Development and testing of the modified equation 

The PM limit and associated concentration similarity limits introduced were chosen by iteratively testing the similarity 255 

function on the co-location data using different limits. Each co-located sensor pair was tested with different PMlim values 

(5, 10, 15, 20 μg m-3) and with Clim values ranging from 0.1 to 2.0 in steps of 0.1 for both the upper and lower limits. This 

produced a Clim vs CSI comparison for each A-B pair for data above and below the corresponding PMlim value. It was clear 

that larger PM value comparisons (> 15 μg m-3) tended to produce higher CSI values than lower PM values as expected. The 

Clim value for each sensor comparison which gave a minimum CSI value of 0.95 was recorded with the overall mean of these 260 

Clim values above and below each PMlim value taken forward. The mean Clim pair values were then applied to the co-location 

measurements with the respective PMlim values to give final CSI values for each sensor pair, highlighting how the PM2.5 

concentration profile of each sensor compares to that of all the other sensors. The highest mean CSI value for all co-located 

A-B pairs was found for PMlim = 15 μg m-3, Clim, upper = 0.2, and Clim, lower = 0.7. When applying these new limits, all sensor 

pairs gave CSI > 0.85, with 99 % of pairs above 0.90 with an overall CSI mean of 0.98. These final limits enabled a good 265 

comparison for the hourly co-located AQS measurements (Table 2).  

The CSI function was also applied to data obtained from the four co-located PurpleAir devices in order to make sure that the 

function was applicable across the two AQS types.  The data was harmonised by following the same procedure as the Clarity 

data, through scaling each data from each sensor to the mean data series of all four sensors. Although this co-location period 

was shorter than that of the Clarity dataset used for the function development, it still allowed for the CSI to be calculated 270 

from around 250 common data points per sensor pair. All device pairs reported a CSI close to 1.0, with a mean CSI of 0.99 

(Table S3). 
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Table 2: Concentration Similarity Indices for hourly averaged PM2.5 measured by a range of co-located Clarity Node-S devices.  

PMlim = 15 μg m-3, Clim, upper = 0.2, Clim, lower = 0.7. 275 

 
A3 A4 A8H A8Z A9 AQ AZ A7 A6P AJ3 AP7 AQV ARF AW6 AWF AY9N AY93 AYG 

A3 1 0.97 0.99 0.96 0.92 0.99 1 0.99 0.99 1 0.96 1 0.97 1 0.96 0.94 0.99 1 

A4 
 

1 0.97 0.99 0.95 0.98 0.99 0.99 0.99 1 0.99 0.99 0.99 1 0.98 0.97 0.97 1 

A8H 
  

1 0.96 0.92 0.99 1 0.99 0.99 0.97 0.94 0.99 0.96 0.98 0.96 0.94 0.97 0.98 

A8Z 
   

1 0.94 0.97 0.99 0.98 0.98 1 0.98 0.98 1 1 0.98 0.96 0.97 1 

A9 
    

1 0.92 0.92 0.94 0.95 0.97 0.96 0.95 0.97 0.92 0.97 0.95 0.96 0.96 

AQ 
     

1 1 1 0.99 1 0.97 1 0.97 1 0.96 0.97 1 1 

AZ 
      

1 0.99 0.99 1 0.97 1 0.98 1 0.96 0.95 1 1 

A7 
       

1 0.99 1 0.95 0.99 0.98 1 0.96 0.94 0.97 1 

A6P 
        

1 0.99 0.97 0.99 0.99 0.96 0.97 0.97 0.99 1 

AJ3 
         

1 0.98 0.98 0.99 0.95 0.99 0.98 1 0.99 

AP7 
          

1 0.96 0.99 0.85 0.99 0.99 0.97 0.98 

AQV 
           

1 0.98 0.98 0.97 0.96 0.99 0.99 

ARF 
            

1 0.96 0.98 0.99 0.99 1 

AW6 
             

1 0.92 0.87 0.9 0.97 

AWF 
              

1 0.98 0.97 0.98 

AY9N 
               

1 0.97 0.99 

AY93 
                

1 0.99 

AYG 
                 

1 

 

The function described in Eq. 2 was further tested by comparing one the sensors, A6P, to numerous sets of synthetic data 

created from that each sensor’s measurements to assess the impact of a range of scenarios. Comparing the A6P a sensor 

dataset to itself establishes a baseline for the comparison where the CSI is 1 and any subsequent adjustments to the data to 

create the synthetic data can be explored, resulting in a new CSI. The first scenario investigated changes in CSI when 280 

outliers are present in the data. To explore this, the A6P sensor data was changed so a certain number of data points could be 

considered outliers (n = 1, 10, 500, 1000). To classify a data point as an An outlier data point was created by, the selected 

data point was increased increasing a value by 100 μg m-3
 in order to ensure discrepancy between it and the original value. 

The function was then tested in a scenario where the data was scaled linearly so the mean remained constant, but the 

variance of the data was increased, and it was also tested in a scenario where the entire data was merely offset by 5, 10, 15, 285 

and 20 μg m-3. The final test scenario involved the introduction of noise to the dataset, representing impactful variations in 

the data. Gaussian noise with various values of the standard deviation was added to the data. The CSI results for the 

synthetic data tests were also compared to the results when the R2 was found between any two given datasets. Low variations 
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were found during all synthetic data analyses with the resulting CSI values having standard deviations ≤ 0.05 across the 

individual devices for each test. As an example, the The effects of these tests on the CSI results for A6P are shown in Table 290 

3, where 4406 data points were included in the calculations.  

It is clear that in the case of the linearly scaled data with higher variability but the same overall mean, the CSI is impacted 

(CSI = 0.52), because even when the variance standard deviation is increased by just a factor of 1.5 the CSI is significantly 

reduced, indicating that such a dataset is dissimilar to the original. In comparison, the R2 is not an accurate reflection of the 

same change, as it does not deviate from 1.  Offsetting the data by different degrees also shows a major effect change in the 295 

CSI (CSI < 0.55). which means that such a dataset is deemed dissimilar by the method. However, this is not reflected well in 

the R2 values, which do not deviate from 1. Tthe CSI method is quite robust with respect to outliers. , whereas the R2 is more 

sensitive (0.94) when 10 outliers are introduced to the dataset, which is approximately 0.2 % of the total data points. The R2 

is significantly reduced (0.45) with 500 outliers (~ 11 % of the total data points), whereas the CSI is only slightly impacted 

(0.89). As the method yields a time-averaged result, low numbers of outliers do not hugely affect the index for a given sensor 300 

pair. So, two datasets that are generally similar, but where one experiences some outliers, will be deemed similar by the 

method. The development and analysis of the similarity index function in this way provided a basis for what to consider 

when applying the function to the field data. The R2 also shows a more limited response when larger amounts of Gaussian 

noise are added, resulting in a value of 0.96 when the standard deviation of the noise is 4 μg m-3, while the CSI is adjusted to 

0.7.  From a health-impact and exposure point of view, increased variation and higher offset represent very different 305 

exposure scenarios, whereas a large difference in the occasional hourly average in an otherwise similar exposure regime does 

not. The CSI offers a more appropriate comparison between hourly measurements collected at two locations. 

Table 3: Influence of data outliers and other factors on CSI determined in test scenarios with device A6P. 

Number 

of 

outliers  

CSI R2 

Standard 

Deviation 

factor 

increase 

(μg m-3) 

CSI R2 

PM2.5  

positive 

offset 

(μg m-3) 

CSI R2 

PM2.5  

negative 

offset 

(μg m-3) 

CSI R2 

Standard 

Deviation 

of added 

noise 

(μg m-3)  

CSI R2 

0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 

1 1 1 1.5 0.52 1 5 0.54 1 5 0.34 1 1 0.96 1 

10 1 0.94 2 0.29 1 10 0.05 1 10 0.02 1 4 0.70 0.96 

500 0.89 0.45 4 0.10 1 15 0.01 1 15 0.01 1 10 0.36 0.77 

1000 0.77 0.38    20 0.01 1 20 0.004 1    
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2.3 Application to sensor networks and analysis of spatial trends 310 

The CSI methodology developed above was subsequently applied to the Dungarvan and Cork City sensor networks to 

evaluate the similarity and spatial variations in PM2.5. A systematic pairwise comparison approach was employed, wherein 

each sensor was individually compared to every other sensor within the network.  

Hierarchical clustering and fuzzy c-means (FCM) clustering were both performed on the CSI results, to identify groupings 

based on each sensors’ relationship to other sensors in the network which can then be reflected spatially. Cluster analysis is a 315 

valuable unsupervised analysis technique used to identify natural groupings in a dataset by classifying the data into distinct 

groups, or clusters, without needing pre classified or labelled data to train the algorithm. It systematically works to separate 

the data by minimising within group variation and maximizing between group variation. Cluster analysis is often used in air 

quality analysis, including describing pollution diurnal variation, identifying distinct diurnal patterns, pollution source 

identification, and identifying spatial patterns in particle compositions (Austin et al., 2012, 2013; Flemming et al., 2005).  320 

Hierarchical clustering does not separate the data into a defined number of clusters in a single step, but rather consists of a 

series of separations which typically goes from a single cluster containing all of the data, to n clusters each containing an 

individual sample (when the data is an n × m matrix for n samples and m data points in each sample) (Everitt et al., 2011). 

The procedure typically includes a dendrogram showing the tree-like structure of the nested clusters. This type of clustering 

gives an advantage over partition-based algorithms, whereby the user is not required to specify the number of clusters.  325 

Fuzzy c-means clustering is an example of a partitional clustering technique, where the number of clusters must be 

predefined. However, another distinctive feature separating it from hierarchical clustering is that it is a soft clustering 

method. In hard (i.e. non-fuzzy) clustering, each point belongs exclusively to a single cluster, whereas in soft clustering, the 

output is a membership score or probability likelihood of a data point belonging to each of the pre-defined clusters (Gentle et 

al., 1991). The assignment of a member to a group is a distribution over all available clusters. The partition that gives the 330 

closest hard clustering to the fuzzy output can be obtained by assigning each object to the cluster in which it has the largest 

membership score. However, the information achieved with soft clustering can be particularly useful when dealing with 

datasets exhibiting overlapping patterns or uncertainties in classification as opposed to directly partitioning into hard clusters 

(Gentle et al., 1991). 

With both clustering techniques, the quality of cluster assignments can be assessed with various evaluation metrics to choose 335 

the optimal number of clusters. As the “true” cluster classifications are not known here, validation must be performed using 

the clustering algorithm itself. To assess the quality of the hierarchical clustering assignments, the Silhouette metric was 

used along with the Calinski-Harabasz index to assess the FCM assignments (Caliñski and Harabasz, 1974; Rousseeuw, 

1987). The Silhouette score, ranging from -1 to +1, can be calculated for each member of a cluster and then the mean 

Silhouette score from all members indicates an overall assignment quality for members of that cluster, with a high score 340 

closer to 1 indicating higher quality clusters, and a low or negative score indicating poorer cluster assignments. The Calinski-
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Harabasz index also quantifies the quality of cluster assignments with higher scores indicating better quality. The metrics 

were used to test for the optimal number of clusters for each algorithm. 

Both clustering approaches were selected to provide further understanding of the inherent spatial structures concealed within 

the CSI results. Hierarchical clustering offers the hierarchical representation of clusters, aiding in the identification of nested 345 

relationships, while FCM allows for a more flexible approach to the cluster assignments when the number of clusters is not 

known a priori. 

3. Results and Discussion 

3.1 Dungarvan PM2.5 sensor network 

Analysis of the harmonised data obtained from the sensors in the Dungarvan PM2.5 network was conducted to determine CSI 350 

values and assess the spatial variation of air pollution across the town. Although the PM2.5 concentrations are not as accurate 

as those collected by reference instrumentation, any relative differences between the sensors and between individual sensor 

data trends can be regarded as genuine due to the low inter-sensor variation observed after data harmonisation procedures, 

where the standard deviation of the mean PM2.5 co-located measurements was 1.7 μg m-3. 

The temporal and spatial trends of PM2.5 across the Dungarvan sensor network are reflected in the average diurnal plots 355 

obtained for each sensor, Fig. 1. These diurnal profiles all show large evening peaks in PM2.5, which are typical for towns 

and cities in Ireland affected by residential solid fuel burning during winter evenings (Dall’Osto et al., 2014; Healy et al., 

2010; Wenger et al., 2020). However, there are clear disparities in some of the average evening peak values between the 

sensors. One group of sensors has maximum values above 35 μg m-3 (A3, A4, A8H, A9, AQ, A7, AW6, AQV), while the 

sensors with maxima below 35 μg m-3 can be further divided into three smaller groups. Sensors labelled AJ3, AWF, and AZ 360 

all have a maximum PM2.5 concentration around 30 μg m-3; sensors AY9N, AY93, ARF, A8Z, AYG, and A6P all have 

maxima in the 20-26 μg m-3 range, while AP7 has a significantly lower evening peak than all other devices. 

Most sensors exhibited the diurnal maximum around the same time of day, between 18:00 and 20:00, however AP7 and 

ARF, showed a slightly delayed peak from 20:00 to 22:00. AP7 had the lowest peak concentration and did not exhibit the 

sharp rise and subsequent decrease associated with evening solid fuel burning that the other sensors showed. AP7 was 365 

located on the south-western edge of the town, and since the predominant wind direction is south westerly, did not 

experience registermeasure as much local pollution as other from the town to the East as the other locations in the eEastern 

part ofin the network. 

Summary statistics obtained for the 18 sensors in the Dungarvan network are listed in Table 4. Unsurprisingly, most of the 

devices with diurnal maxima > 35 μg m-3 have the highest mean, median, and maximum values. Out of this subset of 370 

devices, AQV has the lowest overall mean (15 μg m-3), but still has a relatively high standard deviation (22 μg m-3), 

indicating the PM2.5 values tend to vary widely but are lower on average. This could be indicative of fluctuating particle 

concentrations, consistent with intermittent pollution sources such as residential solid fuel burning. 
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The wind speed and direction recorded at sites AP7 and AY93 showed some variation (Figure S4a, Figure S4b), however 

wind speeds measured at all three sites showed a moderate correlation with all R2 values above 0.65. The measured wind 375 

direction at the AP7 and AY93 sites reported a moderate correlation (R2 = 0.63). Both sites measured winds emanating from 

a broad range of directions. Both locations reported, generally southerly winds 53 % of the time, and south westerly winds 

30 % of the time. The temporal variations of wind speed measured at the three sites are detailed in Fig. S5. Little diurnal 

variation is seen between devices AY93 and AY9N, however it is clear that AP7 tended to experiencewards slightly lower 

wind speeds than AY93 and AY9N during the measurement campaign. Nevertheless, this difference did not exceed 1 m s-1 380 

in any of the temporal variation assessments and all three sites reported the same overall trends in wind speed. The variations 

in wind measurements between the sites indicate some slight local meteorological differences.; however, the overall 

meteorological field is not likely to differ greatly between the three sites. 

 

Figure 1: Diurnal profiles for hourly averaged measurements of PM2.5 in the Dungarvan sensor network (September 2022 to May 385 
2023). 

Table 4: Summary statistics of hourly average PM2.5 concentrations obtained for all sensors in the Dungarvan sensor network 

(September 2022 to May 2023). 

ID 

Mean Median 
Standard 

Deviation 

Maximum 

hourly value 

Maximum 

diurnal value 

Hour of 

maximum 

diurnal value 

μg m-3 μg m-3 μg m-3 μg m-3 μg m-3  

AP7 11 7 12 153 12 21 
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AY9N 12 7 14 136 23 19 

A8Z 13 7 16 274 25 19 

A6P 13 8 18 311 26 19 

AY93 13 8 15 176 22 19 

AZ 14 7 18 286 30 19 

ARF 14 8 18 243 26 20 

AYG 14 8 16 259 24 19 

AQV 15 8 22 281 44 19 

AJ3 16 9 19 270 33 18 

AWF 16 9 17 189 31 19 

A3 18 9 27 412 45 19 

A9 18 9 27 409 45 19 

A8H 19 9 28 482 40 18 

AQ 19 10 28 480 48 18 

A4 21 12 27 370 52 18 

A7 21 12 27 361 45 18 

AW6 21 11 26 319 51 18 

3.1.1 Concentration Similarity Index 

The matrix of CSI values obtained for the Dungarvan sensor network is shown in Table 5. The results can be analysed in a 390 

number of ways. Firstly, the indices for one sensor can be used to assess how similar or dissimilar the measurements are to 

all other sensors in the network, thus providing information on the spatial representativeness of that particular location. 

Secondly, the indices of all sensors can be looked at together to elucidate any potential relationship between sensor 

measurement locations. 

The minimum CSI value (0.85) determined during the co-location deployment can act as the lower limit for when two sensor 395 

locations can be considered very similar. The reported CSI values for Dungarvan sensors ranged from 0.48 (ARF vs A7) to 

0.79 (AYG vs AWF) with a mean of 0.61, indicating a significant difference in air quality representation between locations 

across the town. The device with the lowest mean of its CSI values with respect to the other locations was A4 (0.55), and 

although device ARF was only slightly above this (0.57), it reported a larger range of CSI values, including the lowest of the 

entire dataset. AJ3, AQV, and AYG all shared the highest mean CSI values (0.66).  400 

To further investigate the effect of solid fuel burning on local air quality, the CSI function was applied to data from two 

isolated months – January and May 2023. The purpose of this assessment was to evaluate the extent to which residential 

solid fuel burning dictates the CSI between two sensors, given that one month (January) will have higher PM2.5 levels with 

measurements heavily influenced by solid fuel burning, and the other will not (May). For both months, all sensors had data 
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capture above 65 % and the mean capture was 94 % for January and 92 % for May. The January mean CSI from all 405 

comparisons was 0.51, and the May mean CSI was 0.84 (Table S4, Table S5). The large discrepancy between the mean CSI 

for January and May is most likely due to the higher variation typically seen in wintertime PM2.5 (sJanuary = 25 μg m-3, sMay = 

9 μg m-3) due to residential solid fuel burning (Figure 1). This highlights the importance of seasonality when assessing the 

spatial representativeness of monitoring network locations. 

  410 
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Table 5: Concentration Similarity Indices for the hourly averaged PM2.5 concentrations measured by Clarity Node-S devices in the 

Dungarvan sensor network. 

 
A3 A4 A8H A8Z A9 AQ AZ A7 A6P AJ3 AP7 AQV ARF AW6 AW

F 

AY9

N 

AY9

3 

AYG 

A3 1 0.56 0.64 0.56 0.58 0.67 0.58 0.62 0.64 0.59 0.53 0.61 0.5 0.63 0.55 0.59 0.6 0.57 

A4 
 

1 0.53 0.52 0.55 0.53 0.56 0.58 0.53 0.57 0.55 0.58 0.49 0.54 0.55 0.56 0.55 0.55 

A8H 
  

1 0.58 0.6 0.61 0.59 0.57 0.61 0.61 0.57 0.64 0.54 0.61 0.56 0.61 0.62 0.61 

A8Z 
   

1 0.62 0.55 0.69 0.54 0.62 0.65 0.71 0.66 0.6 0.56 0.62 0.66 0.62 0.67 

A9 
    

1 0.53 0.6 0.57 0.58 0.63 0.6 0.63 0.52 0.58 0.6 0.61 0.58 0.6 

AQ 
     

1 0.58 0.57 0.6 0.59 0.5 0.62 0.49 0.63 0.53 0.56 0.58 0.56 

AZ 
      

1 0.58 0.63 0.68 0.68 0.71 0.6 0.62 0.66 0.62 0.61 0.74 

A7 
       

1 0.57 0.58 0.53 0.6 0.48 0.62 0.55 0.56 0.57 0.55 

A6P 
        

1 0.72 0.62 0.66 0.58 0.63 0.64 0.65 0.68 0.71 

AJ3 
         

1 0.64 0.76 0.6 0.64 0.76 0.67 0.7 0.78 

AP7 
          

1 0.64 0.67 0.52 0.64 0.65 0.63 0.69 

AQV 
           

1 0.59 0.65 0.72 0.65 0.68 0.77 

ARF 
            

1 0.56 0.59 0.62 0.61 0.63 

AW6 
             

1 0.61 0.6 0.62 0.62 

AW

F 

              
1 0.66 0.68 0.79 

AY9

N 

               
1 0.59 0.67 

AY9

3 

                
1 0.72 

AYG 
                 

1 

3.1.2 Clustering 

Clustering techniques were employed on the CSI matrix to uncover any inherent spatial relationships between different 

locations in the network. Hierarchical clustering produced a dendrogram showing the hierarchical relationship between the 415 

sensor locations and was used to identify clusters (Figure 2). The highest mean Silhouette score was found with 2 clusters 
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(Figure S6). However, it was not a high Silhouette score (0.19), indicating that the quality of the cluster assignments was 

low. The highest Calinski-Harabasz index corresponded to the assignment of members to 2 clusters when applying the FCM 

clustering  (Figure S75).  

From both the dendrogram (Figure 2) and the FCM membership weights (Figure 3), it is clear that devices A4 through to AQ 420 

are grouped together in one cluster (Cluster 1), and devices AQV to AP7 are grouped in another cluster (Cluster 2). This split 

is very similar to the easily visualised groupings shown in the diurnal profile maxima (Figure 1), with the only difference 

being device AQV. The devices in Cluster 1 are also those with the highest mean PM2.5 for the measurement period. The 

mean CSI for each sensor mostly corresponds to the cluster assignments, with Cluster 1 devices having a mean CSI equal to 

or below 0.6, and all devices in Cluster 2 have a mean CSI above 0.6, except for device ARF.  Interestingly, this grouping 425 

also appears to have spatial importance too, as shown in Fig. 4. Cluster 2 devices are mainly located around the edge of the 

town and generally experience cleaner air (x̄ PM2.5 = 13 μg m-3, s PM2.5 = 27 μg m-3), while Cluster 1 devices are located in 

central and residential areas (x̄ PM2.5 = 19 μg m-3, s PM2.5 = 17 μg m-3), which are more polluted during winter months.  

 

Figure 2: Dendrogram output from hierarchical clustering of the CSI data from the Dungarvan sensor network. 430 
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Figure 3: Membership weights from FCM clustering of the CSI data from the Dungarvan sensor network. 

 

Figure 4: Dungarvan AQS locations with two cluster groups indicated. Cluster 1 devices (red triangle markers) are mainly located 435 
in central and residential areas, while cluster 2 devices (blue cross markers) are mainly located on the edge of the town. 

(Map obtained from Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, 

and the GIS User Community) 
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3.2 Cork City PM2.5 sensor network 

The same approach as above was used to analyse the data collected by the Cork City AQS network. In this case, the 440 

corrected measurements are indicative of the actual PM2.5 experienced in each location. The diurnal plots for each sensor in 

the Cork City network are similar to those observed in Dungarvan, with a sizeable evening peak in PM2.5 concentrations 

(19:00-21:00) due to emissions from residential solid fuel burning. Again, there is considerable variation in the peak 

concentration of PM2.5 (Figure 5). Device MTU showed the lowest diurnal average maximum of 9 μg m-3. This device is 

located on the western side of the city and has few upwind pollution sources contributing to air pollution at the location as 445 

the prevailing wind direction is from the South-West. Devices CCC12 and CCC9 both showed the highest diurnal average 

maximum, 17 μg m-3. CCC12 is located northeast of the city, and so likely experiences urban PM2.5 sources up-wind from it 

or has strong localised sources. Similarly, CCC9 is located to the east of the city, in a residential area. Table 6 contains 

summary statistics for each of the sensors in the Cork City network. Some devices had very high PM2.5 maxima, e.g. 201 μg 

m-3 for CCC11, which were more than double the maxima of other devices, e.g., CCC8 which had the lowest overall 450 

maximum of 47 μg m-3. Device MTU had the lowest diurnal maximum value, indicating that this location is the least 

affected by local emissions from solid fuel burning. However, it measured a significant overall PM2.5 maximum of 99 μg m-3 

and significant spikes in pollution were occasionally observed, likely due to meteorological conditions or specific localised 

effects. When looking at all of the parameters listed in Table 6, CCC11 stands out. This sensor has the highest maximum 

hourly average PM2.5 concentration in the network, but the standard deviation (8 μg m-3) is in the middle of the range, 455 

indicating that the location had relatively stable PM2.5 levels throughout the measurement period with less variation than 

other devices but was still susceptible to occasional spikes in PM2.5.  

The meteorological data retrieved from Cork Airport, which is approximately 4 – 11 km from each device in the Cork City 

sensor network, was investigated for the measurement period in 2021. While data obtained from the airport site indicates the 

meteorological conditions on a synoptic scale, the local weather experienced at individual locations within the city are 460 

additionally shaped by factors such as street canyon effects and local topography. Consequently, the wind direction 

measured at the airport site cannot be assumed to mirror that of all devices in the network. Wind speeds measured at the 

airport generally surpass those within the city as it is situated at a higher elevation than the city. However, the broader 

regional wind patterns are expected to exert a predominant influence on the overall meteorological conditions across the city 

and therefore the relationship with meteorological conditions and local PM2.5 levels can be investigated. The Cork Airport 465 

site recorded southerly winds 59 % of the time, and south westerly winds 39 % of the time (Figure S8).  
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Figure 5: Diurnal PM2.5 profiles for all AQS in the Cork City network (January to May and September to December 2021). 

Table 6: Summary statistics of hourly averaged PM2.5 obtained for all sensors in the Cork City network (January to May and 

September to December 2021). 470 

Device Label 

Mean Median 
Standard 

Deviation 
Maximum 

Maximum 

diurnal value 

Hour of 

maximum 

diurnal value 

μg m-3 μg m-3 μg m-3 μg m-3 μg m-3  

MTU 6 4 6 99 9 21 

CCC8 7 5 6 47 10 19 

CCC3 8 5 7 61 10 21 

CCC5 8 5 10 181 14 19 

CCC 8 6 7 71 11 20 

CCC11 8 6 8 201 13 19 

CCC1 8 6 8 92 11 20 

CCC2 8 6 8 122 13 20 

UCC 9 6 8 108 13 20 

CCC4 9 7 8 97 16 19 

CCC9 10 7 10 158 17 19 

CCC12 10 7 10 117 17 20 
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3.2.1 Concentration Similarity Index 

The matrix of CSI values obtained for the Cork City sensor network is shown in Table 7. The values range from 0.52 

(CCC12 vs MTU and CCC9 vs MTU) to 0.85 (CCC2 vs CCC11) with a mean of 0.71. The high maximum CSI indicates a 

high degree of similarity between those locations in the network, and overall, the Cork City locations show a higher degree 475 

of similarity compared to those in Dungarvan. 

The isolated CSI results for the months of January and May 2021 were also assessed for Cork City. The average data 

coverage during both periods was 92 %. The mean CSI value in January (0.55) was considerably lower than that observed in 

May (0.82), Table S6, Table S7. This result is similar to that found for the Dungarvan network, again indicating that the 

large difference in mean scores between the two months can be attributed to higher wintertime PM2.5 variation by residential 480 

solid fuel burning (sJanuary = 15 μg m-3, sMay = 3 μg m-3). 

Table 7: Concentration Similarity Indices for the hourly averaged PM2.5 concentrations measured by PurpleAir devices in the 

Cork City AQS network. 

 CCC1 CCC2 CCC3 CCC4 CCC5 CCC7 CCC8 CCC9 CCC11 CCC12 MTU UCC 

CCC1 1 0.73 0.76 0.68 0.65 0.71 0.66 0.64 0.76 0.67 0.66 0.76 

CCC2  1 0.79 0.82 0.65 0.77 0.68 0.73 0.85 0.78 0.61 0.79 

CCC3   1 0.73 0.76 0.8 0.8 0.65 0.82 0.7 0.76 0.8 

CCC4    1 0.63 0.73 0.64 0.76 0.82 0.78 0.56 0.77 

CCC5     1 0.65 0.74 0.7 0.66 0.6 0.69 0.71 

CCC7      1 0.68 0.65 0.78 0.7 0.66 0.73 

CCC8       1 0.7 0.67 0.6 0.67 0.74 

CCC9        1 0.72 0.74 0.52 0.8 

CCC11         1 0.79 0.61 0.84 

CCC12          1 0.52 0.77 

MTU           1 0.62 

UCC            1 

3.2.2 Clustering 

The two clustering algorithms were applied to investigate the CSI results of the Cork City network. The Silhouette Scores for 485 

each number of assigned clusters (2 to 5) were low, with 2 clusters showing the highest mean score (Figure S96). Similarly, 

with the FCM analysis, 2 clusters showed the highest score with the Calinski-Harabasz indices (Figure S107). 

The dendrogram produced from the hierarchical clustering and the membership weights for 2 clusters from FCM clustering 

are shown in Fig. 6 and Fig. 7, respectively. It is clear that devices MTU, CCC5, and CCC8 are all grouped together in one 

branch, Cluster 2, with the remainder of the devices in the other branch. The one assignment difference between the two 490 
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clustering methods is CCC3, which has a higher membership weight towards Cluster 2 with the FCM method but does not 

branch with that cluster in the dendrogram. However, its membership weight is close to 0.5. CCC1 also shows a membership 

weight close to 0.5, however it is showing a higher weight towards Cluster 1, as per the hierarchical clustering results. 

Devices in Cluster 2, except for CCC3, all have the lowest mean CSI value.  

Similar to the Dungarvan results, there appears to be a spatial component to the cluster groupings, with devices in Cluster 2 495 

being mainly on the western side of the city, Fig. 8. However, the contrast in cluster PM2.5 mean values is not as stark with 

the Cork City clusters as with those in Dungarvan. Cluster 1 had a mean PM2.5 of 9 μg m-3, while Cluster 2 had a mean PM2.5 

of 7 μg m-3. Interestingly, device CCC7, located in a commuter town on the western side of the city boundary, is grouped in 

Cluster 1, along with devices mainly in urban residential type sites, instead of being grouped with other devices on the 

western edge of the city. This indicates it has a more comparable CSI profile to the urban residential sites than the locations 500 

closer to it, further emphasising the importance of location type over physical proximity.  

 

Figure 6: Dendrogram output from hierarchical clustering of the CSI data from the Cork sensor network. 
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Figure 7: Membership weights from FCM clustering of the CSI data from the Cork sensor network. 505 

 

Figure 8: Cock City AQS locations with 2 cluster groups indicated. Cluster 1 devices (red triangle markers) are located in the city 

centre and east/northeast, while Cluster 2 devices (yellow circle markers) are mainly located on the western side of the city. 

(Map obtained from Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, 

and the GIS User Community) 510 
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3.3 Application of the CSI to assess representativeness of air quality monitoring locations 

One key benefit of the CSI metric for AQS networks is that one sensor can be singled out and its overall degree of similarity 

to measurements from other locations can be determined. This analysis can be used to assess the spatial representativeness of 

a given location in the AQS network by quantitively exploring how similar its PM2.5 profile is to other locations. If a network 

sensor is co-located with a reference instrument, then the CSI values for that sensor can be used to provide a measure of the 515 

representativeness of the designated monitoring location and how well it informs the assessment of population exposure to 

air pollution. 

In Dungarvan, the device A6P was co-located with a PM2.5 instrument (Osiris, Turnkey) deployed as part of the national air 

quality monitoring network. The instrument is not a reference instrument but is certified to provide indicative measurements 

of PM2.5 (National Ambient Air Quality Monitoring Network, 2023; Osiris, 2024). A6P had a mean CSI of 0.63, the fifth 520 

highest of the mean CSI values across all devices. The similarity indices for A6P are included in Table 5 and represented 

spatially in Fig. 9. All CSI values are below the minimum threshold of 0.85 for two Clarity S-node devices in the Dungarvan 

network to be considered very similar. The most similar devices are found to the north-east  and south of this location, AQV 

AJ3 and AY93AYG. Interestingly, the similarity of PM profiles does not decrease with increasing distance from A6P. 

Devices on the furthest western (AZ, A8Z, AP7) and eastern (AWF, AY9N) edges of the town are within 0.6 to 0.7, yet 525 

devices A4, A7, AQ, and A9 are all at or below 0.6 despite being physically closer to A6P. This suggests that the location 

type is more important when it comes to assessing the similarity of locations within Irish towns as opposed to physical 

proximity, as A4, A7, AQ, and A9 are all fully surrounded by residential areas, whereas the other mentioned devices are in 

more open areas.  

 530 
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Figure 9: Dungarvan AQS locations with CSI results indicated in coloured circles (blue = lowest CSI, yellow = highest CSI), and 

A6P location indicated with red pin marker. (Map obtained from Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, 

Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community) 

One of the devices in the Cork City senor network, UCC, was co-located alongside a reference instrument (BAM-1020) at 535 

the national air quality monitoring location on UCC campus. The CSI values for device labelled UCC are shown in Fig. 13, 

showing how similar the measurements at this site are compared to the rest of the locations in the sensor network. The CSI 

scale on the map has been adjusted for these values. Similar to the Dungarvan case, there are devices which show among the 

highest high similarity (CCC4, CCC2, CCC12, CCC1) with UCC which are not located nearby.  
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 540 

Figure 10: Cork AQS locations with UCC CSI results indicated in coloured circles (blue = lowest CSI, yellow = highest CSI), and 

UCC location indicated with red pin marker. (Map obtained from Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, 

Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community) 

4 Conclusion 

A robust framework for comparing data series from individual air quality sensors in a network has been established and a 545 

new metric, the Concentration Similarity Index (CSI), has been developed, optimised, and tested on a co-location dataset. 

The CSI allows one to consider the monitoring network in terms of the similarity of the concentration-time profile of PM2.5 

at one location to those at the other locations in the same network. The harmonised dataset with minimal unexplained inter-

sensor variation underpins the development of the CSI method, along with robust tests to ensure that the function represents 

an unbiased and fair depiction of the inter-sensor relationships after deployment in a monitoring network.  550 

The CSI method has been used to analyse data generated by PM2.5 sensor networks in two locations in Ireland, the coastal 

town of Dungarvan and the city of Cork. Clustering techniques are applied to the CSI matrix and comparable similarity 

trends between locations drives the distinctions made with the clustering algorithm. The resulting groupings can provide 

several insights into the PM2.5 profile at each location, including the likelihood of similarity in pollution sources, spatial 

patterns, and temporal trends. An interesting contrast in the CSI results from the two monitoring networks was obtained from 555 

the clustering analysis. In Dungarvan, the locations generated clusters that were well reflected when comparing the 

individual diurnal profiles and specifically the diurnal maximum values, indicating that this factor has a major influence 
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when relating the concentration-time profiles at each location to one another in this network. However, for the Cork City 

network results, this was not as apparent. The clusters were not aligned based on diurnal peaks but rather the differentiating 

factor was more nuanced. Both clusters contained locations with a mix of higher and lower diurnal maxima and overall 560 

maxima. However, both network groupings reflect that devices may report dissimilar CSI results to other devices located 

nearby, and that considering location specifications or types, such as residential areas, is more important than physical 

proximity when it comes to understanding and quantifying the similarities between locations.  

The CSI function was also applied to two separate months in the network datasets, with January chosen to represent a period 

of higher PM2.5 levels due to solid fuel burning emissions, and May chosen to represent a period with lower PM2.5 565 

concentrations due to reduced solid fuel burning. In both locations, the mean CSI for the network comparisons was higher in 

May than in January, indicating that higher PM2.5 levels is a major driver for lower similarity indices between sensor 

locations. Combining this with the findings of our previous study, we provide further evidence that high levels of localised 

PM2.5 cause distinct disparities in exposure to poor air quality in different locations. Furthermore, to properly assess the 

burden of PM2.5 experienced by a population and to accurately compare the measurements at two locations, the wintertime 570 

PM data must be included in the assessment.  

The similarity of PM2.5 measured at designated sites in the national air quality monitoring network compared to the rest of 

locations in the sensor networks was analysed to give an estimation of the representativeness of the air pollution measured at 

the designated monitoring site. The national monitoring site location in Dungarvan was shown to be moderately 

representative of the other AQS network locations in the town, with CSI values ranging from 0.53 to 0.72. The CSI values 575 

for the Cork City comparison ranged from 0.62 to 0.84, also showing a fair representation of the air pollution experienced in 

the rest of the network. The CSI function was also tested via synthetic datasets which showed that a positive offset of just 5 

μg m-3 resulted in almost halving the CSI, which was a lower CSI than most of the sensor comparisons in both network 

locations. So, while a CSI of 0.85 was used as a limit for two sensor measurement sets being very similar, CSI values 

between 0.6 and 0.7 are still moderately similar. In general, the CSI values in Cork City for the reference site comparison 580 

were higher (mean = 0.75) than that of Dungarvan (mean = 0.63), indicating less similarity between the reference site and 

devices in the Dungarvan network compared to Cork City.  

While the function was developed and tested on multiple sensor pairs, and further validated with additional co-located pairs, 

validation with co-located PM2.5 measurements of the PMlim, Clim,upper, and Clim,lower parameters for specific applications is 

recommended to ensure the index represents the dataset accurately. Co-location assessments are also recommended to ensure 585 

minimal inter-sensor variation. This Nonetheless, the differentiation between higher and lower PM values in the 

concentration similarity assessment is a strategic choice which acknowledges the complexity of PM2.5 data, the varying 

significance of concentration levels, and the limitations of sensors. It allows for a more accurate representation of similarities 

while considering real world implications and measurement uncertainties and minimises the potential biases that could arise 

from an indiscriminate approach, thus ensuring an impartial and unbiased evaluation.  590 
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The analysis and application of the CSI function displays the potential for AQS networks to be used in conjunction with a 

regulatory monitoring system. This study has shown here isthe potential for the application of sensor networks to assess the 

need for more regulatory monitoring in an area, and to identify locations that are being poorly represented by the current 

system. Furthermore, the CSI method can be used to optimise a sensor network by carrying out short term sensor 

deployments and identifying areas of similarity or dissimilarity and thus assessing where the best locations for sensors are 595 

based on the similarity in exposure to air pollution.  
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