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Abstract. Air quality sensor (AQS) networks are useful for mapping PM2.5 in urban environments, but quantitative 

assessment of the observed spatial and temporal variation is currently under-developed. This study introduces a new 

metric - the Concentration Similarity Index (CSI) - to facilitate a quantitative and time-averaged comparison of the 

concentration-time profiles of PM2.5 measured by each sensor within an air quality sensor network. Following development 10 

on a dataset with minimal unexplained variation and robust tests, the CSI function is ensured to represent an unbiased and 

fair depiction of the air quality variation within an area covered by a monitoring network. The measurement data is used to 

derive a CSI value for every combination of sensor pairs in the network, which can then be compared with others in the 

network, yielding valuable information on spatial variation in PM2.5. This new method is applied to two separate AQS 

networks in Dungarvan and Cork City, Ireland. Dungarvan yielded a lower mean CSI, indicating lower overall similarity 15 

between locations in the network, possibly due to the town’s coastal location giving rise to higher variation within the 

network. In both networks, the average diurnal plots for each sensor exhibit an evening peak in PM2.5 concentration due to 

emissions from residential solid fuel burning, however, there is considerable variation in the size of this peak. Clustering 

techniques applied to the CSI matrices identify two different location types in each network; locations in central or 

residential areas which experience more pollution from sold fuel burning and locations on the edge of the urban areas which 20 

experience cleaner air. Furthermore, the examination of isolated data periods (January and May) indicates higher PM2.5 

levels during periods of increased residential solid fuel burning act as a major driver for greater differences (lower similarity 

indices) between locations in both networks. Additionally, the CSI method facilitates the assessment of the 

representativeness of the PM2.5 measured at regulatory air quality monitoring locations with respect to population exposure, 

showing here that location type is more important than physical proximity in terms of similarity assessment. Applying the 25 

CSI in this manner can allow for the placement of monitoring infrastructure to be optimised. The findings of this work 

underscore the influence of solid fuel combustion as a local contributor to PM2.5 and the variation it can cause between the 

measurements at different monitoring locations in a network while also highlighting the importance of including wintertime 

PM data for accurate comparisons. The CSI method developed here could be a valuable tool for quantitative comparisons of 

air quality within a monitoring network, offering insights for further regulatory monitoring and exposure assessments.  30 
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1 Introduction 

Air pollution affects the environment, quality of life and is a major cause of premature death and disease (Lelieveld et al., 

2015; Cesaroni et al., 2013; Raaschou-Nielsen et al., 2013; Pedersen et al., 2013). The category of air pollutant with the 

largest impact on human mortality and health is fine particulate matter, i.e. atmospheric particles with an aerodynamic 35 

diameter of 2.5 micrometres or less (PM2.5)  (Pope et al., 2020; Samoli et al., 2013; Pope and Dockery, 2012). In many 

regions around the world, air quality monitoring and management have become critical endeavours to mitigate the 

detrimental effects of air pollution, and especially PM2.5, on citizens and the environment.  

Over the years, technological advances have provided valuable tools to enhance our understanding of air pollution, and low-

cost air quality sensors (AQS) are emerging as promising instruments for collecting real-time air quality data at an improved 40 

spatial and temporal resolutions (Kumar et al., 2015; Munir et al., 2019). When used in networks, air quality sensors offer 

immense potential for enhancing and supplementing regulatory monitoring and assessment (Malings et al., 2020). However, 

further work needs to be carried out to assess the effectiveness of sensor networks and how to make best use of the data for 

gaining further insights into air pollution within a locality. Careful consideration must be given to the quality of the data 

provided by sensors and the requirement for calibration must be assessed (Diez et al., 2022). Recent studies have shown that 45 

the performance and calibration of a PM2.5 sensor is dependent on the type of sensor and often on the measurement location, 

suggesting the need for site-specific and individual calibrations (Wang et al., 2015; Zamora et al., 2020; Kaur and Kelly, 

2023; Sayahi et al., 2019). When these factors are considered and accounted for, AQS networks offer an unprecedented 

opportunity to gain further insights into the complex dynamics of air pollution in localised areas, such as urban 

environments, industrial zones, and residential neighbourhoods (Hodoli et al., 2023; Heimann et al., 2015; Crawford et al., 50 

2021; O’Regan et al., 2022; Frederickson et al., 2022).  

Assessing the spatial variation of air quality is of paramount importance because air pollution is not homogenous and can 

exhibit significant variations across different areas even on a local scale (Kassomenos et al., 2014; Wang et al., 2018; 

Frederickson et al., 2023, 2022). The variability of air pollution can be influenced by a multitude of factors such as traffic 

patterns, industrial activities, meteorological conditions, and local topography. Consequently, relying on single monitoring 55 

locations or limited data resolution can provide an incomplete picture and inadequate understanding of local air quality in a 

certain area (Li et al., 2019). Understanding these variations is crucial for targeted interventions and policy decisions aimed 

at improving air quality and safeguarding public health. Spatial analysis, facilitated by sensor networks allows for a more 

accurate and nuanced understanding of how air quality, and therefore exposure to pollution, varies across a population 

centre. 60 

In a recent study, we used data collected by a PM2.5 sensor network in the city of Cork, Ireland, to estimate the contribution 

of local pollution sources as separate and distinct from regional or transported air pollution (Byrne et al., 2023). The results 

highlighted the very localised nature of PM2.5 caused by residential solid fuel burning during winter, which is a significant 
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problem in many towns and cities in Ireland and elsewhere (Dall’osto et al., 2013; Ovadnevaite et al., 2021; Wenger et al., 

2020; Kourtchev et al., 2011; Lin et al., 2018; Zhang et al., 2021; Lin et al., 2019).  65 

In this work, we propose a new approach for assessing the spatial profile of air quality using an AQS network. The method 

yields a time-averaged concentration similarity index (CSI) for quantitative assessment of the similarity between the 

complete data series produced by different sensors within the network. The CSI is built on the premise that sensors exposed 

to similar ambient conditions and pollutant sources will produce comparable PM2.5 temporal trends. Conversely, sensors 

subject to different conditions might display divergent PM2.5 concentration trends. The motivation for the development of an 70 

assessment method based on the temporal variation over an extended period is the realisation that the annual average is a 

poor representation of true population exposure, which is experienced from hour to hour and day to day. It is therefore not 

adequate to merely compare annual averages of PM2.5 levels in different locations in order to compare the exposures to PM2.5 

experienced by the populations in the respective locations. This method aims to translate this idea into a quantifiable metric 

by calculating the time-averaged degree of similarity between two sensor datasets. Method development and testing is 75 

performed on an AQS network in the town of Dungarvan in Ireland to identify areas that may be experiencing persistently 

elevated or very localised PM2.5 pollution compared to others. Clustering techniques are used to group sensors based on the 

similarity of their PM2.5 measurements. The CSI method is also retrospectively applied to the data collected in the Cork City 

network to investigate the transferability of the method between sensor networks and to explore any differences between the 

locations. 80 

2 Methodology 

2.1 Data collection, preprocessing, and calibration 

The collection, preprocessing, and calibration of the data collected by the PM2.5 sensor networks in Dungarvan and Cork 

City was carried out using the Julia programming language (Bezanson et al., 2017). Since low-cost AQS are not of 

regulatory standard, great care needs to be taken with quality assessment and quality control of the data. In particular, the 85 

degree to which changes or differences in PM2.5 measurements between devices can be trusted needs to be considered. The 

methodology proposed here addresses these inherent issues to deliver an approach for assessing the spatial 

representativeness of any monitoring location, i.e. what is the extent of the geographical area that the location meaningfully 

represents, in air quality monitoring terms, and what environment type is it comparable to regardless of geographical 

distance to the location? 90 

2.1.1 Dungarvan PM2.5 sensor network 

The Dungarvan sensor network consisted of 18 solar powered Clarity Node-S devices (Clarity Movement Co., USA) which 

utilise the Plantower PM6003 sensor to measure PM2.5 within the range 1-1000 μg m-3 and at a resolution of 1 μg m-3 

(Clarity Movement Co., 2023; Node-S technical sheet, 2023). By default, the Node-S devices take measurements every 
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15 minutes, allowing sufficient data upload and battery sleep time in between sampling periods. However, this can be 95 

adjusted to higher or lower frequencies. The highest sampling frequency achievable during winter without significantly 

affecting the battery performance was 8 minutes.  

The Clarity Node-S devices were typically attached to street light poles between 2 and 4 metres above the ground. The 

sensors were positioned in a range of different environments including urban background, residential, coastal, and roadside 

locations (Figure S1). Many of these locations were a mix of the different environments. The majority of devices were 100 

operational from 1 November 2022 to 31 May 2023, however three devices (AP7, AY9N, AY93) were only deployed from 

12 January 2023. Measurements were taken over a continuous period covering different meteorological seasons (mainly 

Winter and Spring/early Summer), thus ensuring temporal variations in PM2.5 concentrations were captured 

comprehensively. 

Prior to and after deployment in Dungarvan, the Clarity Node-S devices were co-located on the roof of the Ellen Hutchins 105 

Building, University College Cork (51.895136, -8.516146) to compare their performance. Details of the three co-location 

periods are outlined in Table S1. Although some devices were not available for all three co-location periods, the three 

periods combined provide a comparison between the sensors across different seasons. This co-location dataset enabled the 

CSI method to be developed on measurements that in theory should be equal and the function could then be modified, if 

necessary, to allow for sensor behaviour, uncertainties, errors, and potential limitations.  110 

The raw sensor data from the co-location periods and field deployment, underwent a series of preprocessing steps to mitigate 

potential sources of error in the measurement and ensure data quality and consistency. Data points outside of the operational 

range of the sensors (> 1000 μg m-3) were identified and removed, although instances of these were minimal. The 8-minute 

data were averaged to produce hourly measurements. Missing data points could potentially affect the temporal continuity of 

the data; however, the data coverage was overall very good for the co-location and measurement campaign periods. On 115 

average, the devices had an hourly measurement coverage of 87 % for the field measurement campaign. This corresponds to 

an average of 4443 hourly measurements per device for the campaign period.  

Assessing the consistency of measurements across the sensor network was paramount. Although the PM2.5 readings were 

very well correlated when the devices were co-located (Table S2), a data harmonisation procedure was performed to ensure 

the uniformity of sensor measurements, which is a prerequisite for the subsequent development of the Concentration 120 

Similarity Index. Since there was no reference-grade PM2.5 data available during the co-location periods, the PM2.5 

concentrations from each sensor were scaled to a common reference point, represented by the mean of all data points across 

the whole co-location dataset (Figure S2). The data series for each sensor was then individually compared with the 

calculated mean dataset and subsequently harmonised to the common reference point using a simple linear regression 

approach. The equations resulting from this harmonisation procedure were applied to the measurements collected from all 125 

devices during the subsequent field measurement campaign. While this procedure did not convert the measured PM2.5 to 

reference-equivalent concentrations, it minimised sensor output variability and facilitated a more equitable comparison 

between sensor measurements (Table S2).  
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2.1.2 Cork City PM2.5 sensor network 

The Cork City sensor network consisted of 16 PurpleAir PA-II-SD units which each contain two Plantower PMS5003 130 

sensors to measure PM2.5 within the effective range 0-500 μg m-3, with a maximum range of 1000 μg m-3, and at a resolution 

of 1 μg m-3 (PMS5003 series data manual, 2022). In this study, data recorded by the devices in the network for the periods 

01 January 2021 to 31 May 2021 and 1 September 2021 to 31 December 2021 were collated and analysed. However, four 

devices were found to have limited data capture for the specified periods (< 50 %) and were therefore omitted from the 

analysis. The 12 sensors used in this analysis had an average data capture of 85 % for the specified periods; their locations 135 

are shown in Fig. S3. 

Due to logistical constraints, it was not possible to co-locate all of the PurpleAir devices together to assess variability in 

PM2.5 concentrations. However, low inter-sensor and inter-unit variability was exhibited by four co-located PurpleAir 

devices in our previous study on the Cork City network (Byrne et al., 2023). Moreover, the PM2.5 concentrations measured 

using the four PurpleAir devices were highly correlated with hourly values of PM2.5 obtained using a Met-One (USA) Beta-140 

Attenuation Monitor (BAM-1020) and a co-location dataset was used to derive calibration factors incorporating the effects 

of temperature and relative humidity. The data processing procedures for obtaining the PM2.5 concentrations reported here 

are identical to those reported by Byrne et al. (2023). 

The Cork City dataset spans a similar measurement period to the Dungarvan dataset to allow for comparable results due to 

the known seasonality of PM2.5 pollution in Ireland (Ovadnevaite et al., 2021). Although the year 2021 included some 145 

periods of COVID-19 pandemic restrictions, such measures mainly affected NO2 concentrations and were not shown to have 

a significant impact on PM levels in Ireland (Environmental Protection Agency (EPA), 2020). 

2.2 Development of the Concentration Similarity Index 

The Concentration Similarity Index (CSI) derived here quantifies the degree of likeness between PM2.5 concentration profiles 

from two sensors for a defined period of time and forms the basis for assessing the spatial disparities in PM2.5 measurements 150 

within sensor networks. The methodology proposed was developed through multiple iterations in order to adjust and 

improve the procedure. An overview of the development is described, showing the evolution towards the final method.  

2.2.1 Original function application 

The first phase of development was based directly on the work carried out by Piersanti et al. (2015), who used a 

concentration similarity function to assess the spatial representativeness of PM2.5 and O3 monitoring stations in the Italian air 155 

quality monitoring network. By comparing point measurements to a dataset of modelled hourly air pollutant data covering 

Italy with a 4 × 4 km2 grid cell resolution, Piersanti et al. (2015) produced maps showing how representative certain sites in 

the Italian monitoring infrastructure were. The application proposed here compares point measurement to point measurement 

as opposed to point measurement to modelled grid cell data, however the underlying principle of comparing two 
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concentration-time profiles to produce a single indication of similarity between them still applies. The function value 160 

fsite(x, y) used by Piersanti et al. (2015) to assess the spatial coverage of point measurements is given in Eq. (1): 

𝑓𝑠𝑖𝑡𝑒(𝑥, 𝑦) =  
∑ 𝑓𝑙𝑎𝑔
𝑁𝑡
𝑖=1

𝑁𝑡
, 𝑤ℎ𝑒𝑟𝑒 𝑓𝑙𝑎𝑔 =

{
 
 

 
 1,

|𝐶(𝑋𝑠𝑖𝑡𝑒 , 𝑌𝑠𝑖𝑡𝑒 , 𝑡𝑖) −  𝐶(𝑥, 𝑦, 𝑡𝑖)|

𝐶(𝑋𝑠𝑖𝑡𝑒 , 𝑌𝑠𝑖𝑡𝑒 , 𝑡𝑖)
  < 0.2      

0,
|𝐶(𝑋𝑠𝑖𝑡𝑒 , 𝑌𝑠𝑖𝑡𝑒 , 𝑡𝑖) −  𝐶(𝑥, 𝑦, 𝑡𝑖)|

𝐶(𝑋𝑠𝑖𝑡𝑒 , 𝑌𝑠𝑖𝑡𝑒 , 𝑡𝑖)
 > 0.2     

 

(1) 

 

Where, C(x, y, ti) represents the surface concentration from the modelled data at time ti, C(Xsite, Ysite, ti) represents the point 165 

measurement of a specific monitoring site at time ti, and Nt is the total number of time steps. The study defined a point 

measurement as representative of a grid cell area if the condition fsite(x, y) > 0.9 is true.  

In the first step of our approach, this function was applied to the hourly average PM2.5 data obtained from the co-located 

Clarity Node-S units by comparing two sensor data series at a time, with the reference and modelled concentration inputs 

substituted for sensor PM concentration values, C(A, ti) and C(B, ti). Over a total of 1565 co-located hours, the mean number 170 

of comparable data points per C(A, ti), C(B, ti) pair was 654, due to devices being present at different stages during the co-

location periods (Table S1). 

It might be expected that the function value comparing two sensor data series would be 1, given that the measurements were 

collected in the same location and were known to all represent the same air parcel at each point in time. However, it was 

found that the function was not comprehensive enough to allow for an acceptable comparison of the sensor data. While in 175 

theory, the results for all sensor pairs should be 1, the results showed discrepancies between some device pairs, because the 

function value deviated significantly from 1 in many cases (Table 1) and was as low as 0.51 in some cases, with an overall 

mean of 0.82.  
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 180 

Table 1: Function values, fsite(x, y), for hourly averaged PM2.5 measured by a range of co-located Clarity Node-S devices. Device 

labels in the columns were set as C(Xsite, Ysite, t) and device labels in the rows were set at C(x, y, ti). 

 
A3 A4 A8H A8Z A9 AQ AZ A7 A6P AJ3 AP7 AQV ARF AW6 AWF AY9N AY93 AYG 

A3 1 0.83 0.88 0.8 0.8 0.86 0.88 0.87 0.87 0.99 0.67 0.9 0.8 0.99 0.8 0.61 0.8 0.98 

A4 0.84 1 0.81 0.89 0.83 0.87 0.89 0.87 0.87 0.98 0.8 0.9 0.9 0.97 0.85 0.72 0.79 0.99 

A8H 0.86 0.79 1 0.79 0.78 0.87 0.89 0.83 0.78 0.76 0.66 0.85 0.72 0.92 0.71 0.62 0.72 0.73 

A8Z 0.82 0.91 0.81 1 0.78 0.88 0.89 0.85 0.84 0.97 0.87 0.88 0.9 0.97 0.86 0.81 0.73 0.98 

A9 0.76 0.82 0.8 0.76 1 0.75 0.8 0.78 0.78 0.78 0.69 0.77 0.74 0.67 0.78 0.62 0.76 0.69 

AQ 0.88 0.87 0.9 0.87 0.77 1 0.94 0.88 0.86 0.97 0.87 0.97 0.84 1 0.81 0.81 0.75 0.94 

AZ 0.89 0.88 0.89 0.88 0.8 0.94 1 0.91 0.9 0.97 0.8 0.97 0.82 0.99 0.82 0.75 0.84 0.93 

A7 0.87 0.87 0.86 0.83 0.82 0.88 0.91 1 0.89 0.98 0.68 0.91 0.81 0.99 0.8 0.63 0.74 0.96 

A6P 0.87 0.86 0.79 0.82 0.77 0.87 0.92 0.89 1 0.89 0.77 0.9 0.83 0.75 0.82 0.8 0.78 0.89 

AJ3 0.99 0.97 0.76 0.97 0.75 0.97 0.98 0.98 0.89 1 0.72 0.88 0.91 0.76 0.82 0.77 0.81 0.89 

AP7 0.71 0.85 0.63 0.88 0.65 0.86 0.86 0.74 0.77 0.71 1 0.75 0.81 0.54 0.8 0.83 0.75 0.8 

AQV 0.9 0.89 0.86 0.86 0.75 0.96 0.96 0.91 0.88 0.88 0.77 1 0.85 0.77 0.8 0.76 0.82 0.85 

ARF 0.82 0.9 0.72 0.91 0.74 0.86 0.85 0.83 0.85 0.9 0.8 0.84 1 0.74 0.82 0.81 0.81 0.92 

AW6 0.96 0.94 0.92 0.94 0.65 1 0.99 0.98 0.72 0.72 0.5 0.73 0.7 1 0.69 0.51 0.49 0.7 

AWF 0.8 0.88 0.7 0.86 0.76 0.82 0.82 0.81 0.82 0.82 0.81 0.8 0.83 0.73 1 0.81 0.77 0.86 

AY9N 0.62 0.76 0.59 0.81 0.6 0.79 0.75 0.65 0.78 0.77 0.81 0.74 0.8 0.55 0.8 1 0.72 0.8 

AY93 0.76 0.76 0.67 0.65 0.72 0.69 0.74 0.65 0.78 0.84 0.75 0.8 0.81 0.55 0.77 0.75 1 0.82 

AYG 0.99 0.99 0.72 0.99 0.67 0.95 0.95 0.98 0.87 0.87 0.78 0.83 0.9 0.75 0.84 0.79 0.76 1 

2.2.2 Function parameter optimisation and introduction of PM limit 

Analysis of the results obtained from direct application of the original function showed that the conditions set out by it were 

too strict to apply to the sensor data given the variations that can occur in AQS measurements, especially bearing in mind 185 

that the entire sensor network could be within the original single grid cell size analysed by Piersanti et al. (2015). Moreover, 

the high hourly PM2.5 variation and very localised effects exhibited in a typical Irish winter PM2.5 profile is not suited to the 

original function (Byrne et al., 2023). Thus, a PM mass concentration limit, PMlim, was introduced to the function, with 

different relative concentration limits for the upper and lower PM values, Clim, upper and Clim, lower, respectively. Treating larger 

and smaller PM2.5 values when assessing the similarity between two data series is useful in capturing the nuanced 190 

relationships and patterns in the data. It allows for the real-world significance of the data to be reflected, acknowledging the 

varying implications of PM2.5 measurements based on the magnitude. Higher PM2.5 values can indicate a pollution episode or 

specific local pollution sources, while lower values can represent background levels. Therefore, treating lower PM2.5 values 

https://doi.org/10.5194/amt-2024-38
Preprint. Discussion started: 4 April 2024
c© Author(s) 2024. CC BY 4.0 License.



8 

 

with more leniency in the similarity assessment recognises that minor fluctuations in low hourly concentrations might not be 

as concerning as similar deviations in higher concentrations and the health-related considerations associated with these high 195 

concentrations.  

Another potential advantage of the PM limit concerns the varying degrees of accuracy of the AQS measurements. Allowing 

the leeway introduced here in assessing the similarity of lesser measurement values considers potential measurement 

uncertainties with these devices. However, it is important to note that this approach is not accommodating sensor limitations 

at the expense of accuracy but rather it is a strategy to ensure that the assessment remains faithful to the underlying air 200 

quality dynamics while accounting for the potential deficiencies in measurement equipment.  

The differentiation between higher and lower PM values in the concentration similarity assessment is a strategic choice 

which acknowledges the complexity of PM2.5 data, the varying significance of concentration levels, and the limitations of 

sensors. It allows for a more accurate representation of similarities while considering real world implications and 

measurement uncertainties and minimises the potential biases that could arise from an indiscriminate approach, thus ensuring 205 

an impartial and unbiased evaluation.  

When the function is applied to a pair of sensors, the resulting CSI can differ slightly depending on which sensor was 

classified as sensor A or sensor B in Equation (1) when computing the difference at each timestep. Due to the nature of the 

function, the denominator value of the relative difference calculation, the concentration of sensor A at a given timestep, is 

what makes the difference. To counteract this and to avoid the possibility of large discrepancies between the CSI values for a 210 

sensor pair depending on which sensor is taken as A or B, the function was modified to have the geometric mean, or the 

square root of the product, of C(A, ti) and C(B, ti) used as the denominator. This ensured symmetry in the function so that the 

CSI values were identical regardless of which sensor was classified as A or B in a sensor pair.  

Equation (2) shows the next form of the concentration similarity function (function notation has been modified to be more 

suitable for this application). 215 

𝐶𝑆𝐼𝐴,𝐵 = 
∑ 𝑓
𝑁𝑡
𝑖=1

𝑁𝑡
, 𝑤ℎ𝑒𝑟𝑒 𝑓 =

{
 
 
 
 

 
 
 
 1  𝑖𝑓  

|𝐶(𝐵, 𝑡𝑖) −  𝐶(𝐴, 𝑡𝑖)|

√𝐶(𝐴, 𝑡𝑖)  ×  𝐶(𝐵, 𝑡𝑖) 
  < 0.2  𝑎𝑛𝑑  𝐶(𝐴, 𝑡𝑖) 𝑜𝑟 𝐶(𝐵, 𝑡𝑖) >  15 𝜇𝑔 𝑚

−3

0  𝑖𝑓  
|𝐶(𝐵, 𝑡𝑖) −  𝐶(𝐴, 𝑡𝑖)|

√𝐶(𝐴, 𝑡𝑖)  ×  𝐶(𝐵, 𝑡𝑖) 
 > 0.2  𝑎𝑛𝑑  𝐶(𝐴, 𝑡𝑖) 𝑜𝑟 𝐶(𝐵, 𝑡𝑖) <  15 𝜇𝑔 𝑚−3

1  𝑖𝑓  
|𝐶(𝐵, 𝑡𝑖) −  𝐶(𝐴, 𝑡𝑖)|

√𝐶(𝐴, 𝑡𝑖)  ×  𝐶(𝐵, 𝑡𝑖) 
  < 0.7  𝑎𝑛𝑑  𝐶(𝐴, 𝑡𝑖) 𝑜𝑟 𝐶(𝐵, 𝑡𝑖)  > 15 𝜇𝑔 𝑚−3

0  𝑖𝑓  
|𝐶(𝐵, 𝑡𝑖) −  𝐶(𝐴, 𝑡𝑖)|

√𝐶(𝐴, 𝑡𝑖)  ×  𝐶(𝐵, 𝑡𝑖) 
 > 0.7  𝑎𝑛𝑑  𝐶(𝐴, 𝑡𝑖) 𝑜𝑟 𝐶(𝐵, 𝑡𝑖)  <  15 𝜇𝑔 𝑚

−3

 

(2) 

Where C(A, ti) and  C(B, ti) are the PM2.5 measurements from devices A and B at time, ti. 
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2.2.3 Development and testing of the modified equation 

The PM limit and associated concentration similarity limits introduced were chosen by iteratively testing the similarity 220 

function on the co-location data using different limits. Each co-located sensor pair was tested with different PMlim values 

(5, 10, 15, 20 μg m-3) and with Clim values ranging from 0.1 to 2.0 in steps of 0.1 for both the upper and lower limits. This 

produced a Clim vs CSI comparison for each A-B pair for data above and below the corresponding PMlim value. It was clear 

that larger PM value comparisons (> 15 μg m-3) tended to produce higher CSI values than lower PM values as expected. The 

Clim value for each sensor comparison which gave a minimum CSI value of 0.95 was recorded with the overall mean of these 225 

Clim values above and below each PMlim value taken forward. The mean Clim pair values were then applied to the co-location 

measurements with the respective PMlim values to give final CSI values for each sensor pair, highlighting how the PM2.5 

concentration profile of each sensor compares to that of all the other sensors. The highest mean CSI value for all A-B pairs 

was found for PMlim = 15 μg m-3, Clim, upper = 0.2, and Clim, lower = 0.7. When applying these new limits, all sensor pairs gave 

CSI > 0.85, with 99 % of pairs above 0.90 with an overall CSI mean of 0.98. These final limits enabled a good comparison 230 

for the hourly co-located AQS measurements (Table 2).  

The CSI function was also applied to data obtained from the four co-located PurpleAir devices in order to make sure that the 

function was applicable across the two AQS types.  The data was harmonised by following the same procedure as the Clarity 

data, through scaling each data from each sensor to the mean data series of all four sensors. Although this co-location period 

was shorter than that of the Clarity dataset used for the function development, it still allowed for the CSI to be calculated 235 

from around 250 common data points per sensor pair. All device pairs reported a CSI close to 1.0, with a mean CSI of 0.99 

(Table S3). 
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Table 2: Concentration Similarity Indices for hourly averaged PM2.5 measured by a range of co-located Clarity Node-S devices.  240 
PMlim = 15 μg m-3, Clim, upper = 0.2, Clim, lower = 0.7. 

 
A3 A4 A8H A8Z A9 AQ AZ A7 A6P AJ3 AP7 AQV ARF AW6 AWF AY9N AY93 AYG 

A3 1 0.97 0.99 0.96 0.92 0.99 1 0.99 0.99 1 0.96 1 0.97 1 0.96 0.94 0.99 1 

A4 
 

1 0.97 0.99 0.95 0.98 0.99 0.99 0.99 1 0.99 0.99 0.99 1 0.98 0.97 0.97 1 

A8H 
  

1 0.96 0.92 0.99 1 0.99 0.99 0.97 0.94 0.99 0.96 0.98 0.96 0.94 0.97 0.98 

A8Z 
   

1 0.94 0.97 0.99 0.98 0.98 1 0.98 0.98 1 1 0.98 0.96 0.97 1 

A9 
    

1 0.92 0.92 0.94 0.95 0.97 0.96 0.95 0.97 0.92 0.97 0.95 0.96 0.96 

AQ 
     

1 1 1 0.99 1 0.97 1 0.97 1 0.96 0.97 1 1 

AZ 
      

1 0.99 0.99 1 0.97 1 0.98 1 0.96 0.95 1 1 

A7 
       

1 0.99 1 0.95 0.99 0.98 1 0.96 0.94 0.97 1 

A6P 
        

1 0.99 0.97 0.99 0.99 0.96 0.97 0.97 0.99 1 

AJ3 
         

1 0.98 0.98 0.99 0.95 0.99 0.98 1 0.99 

AP7 
          

1 0.96 0.99 0.85 0.99 0.99 0.97 0.98 

AQV 
           

1 0.98 0.98 0.97 0.96 0.99 0.99 

ARF 
            

1 0.96 0.98 0.99 0.99 1 

AW6 
             

1 0.92 0.87 0.9 0.97 

AWF 
              

1 0.98 0.97 0.98 

AY9N 
               

1 0.97 0.99 

AY93 
                

1 0.99 

AYG 
                 

1 

 

The function described in Eq. 2 was further tested by comparing one sensor, A6P, to numerous sets of synthetic data created 

from that sensor’s measurements to assess the impact of a range of scenarios. Comparing the A6P data to itself establishes a 

baseline for the comparison where the CSI is 1 and any subsequent adjustments to the data to create the synthetic data can be 245 

explored, resulting in a new CSI. The first scenario investigated changes in CSI when outliers are present in the data. To 

explore this, the A6P data was changed so a certain number of data points could be considered outliers (n = 1, 10, 500, 

1000). To classify a data point as an outlier, the selected data point was increased by 100 μg m-3
 in order to ensure 

discrepancy between it and the original value. The function was then tested in a scenario where the mean remained constant 

but the variance of the data was increased, and it was also tested in a scenario where the entire data was merely offset by 5, 250 

10, 15, and 20 μg m-3. The effects of these tests on the CSI results for A6P are shown in Table 3. It is clear that in the case of 

data with higher variability but the same overall mean, the CSI is impacted, because even when the variance is increased by 

just a factor of 1.5 the CSI is significantly reduced, indicating that such a dataset is dissimilar to the original. Offsetting the 
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data by different degrees also shows a major effect which means that such a dataset is deemed dissimilar by the method. 

However, the method is quite robust with respect to outliers. As the method yields a time-averaged result, low numbers of 255 

outliers do not hugely affect the index for a given sensor pair. So, two datasets that are generally similar, but where one 

experiences some outliers, will be deemed similar by the method. The development and analysis of the similarity index 

function in this way provided a basis for what to consider when applying the function to the field data. 

Table 3: Influence of data outliers and other factors on CSI determined in test scenarios. 

Number of 

outliers  
CSI 

Standard 

Deviation factor 

increase 

(μg m-3) 

CSI 

PM2.5  positive 

offset 

(μg m-3) 

CSI 

PM2.5  

negative 

offset 

(μg m-3) 

CSI 

0 1 0 1 0 1 0 1 

1 1 1.5 0.52 5 0.54 5 0.34 

10 1 2 0.29 10 0.05 10 0.02 

500 0.89 4 0.10 15 0.01 15 0.01 

1000 0.77   20 0.01 20 0.004 

2.3 Application to sensor networks and analysis of spatial trends 260 

The CSI methodology developed above was subsequently applied to the Dungarvan and Cork City sensor networks to 

evaluate the similarity and spatial variations in PM2.5. A systematic pairwise comparison approach was employed, wherein 

each sensor was individually compared to every other sensor within the network.  

Hierarchical clustering and fuzzy c-means (FCM) clustering were both performed on the CSI results, to identify groupings 

based on each sensors’ relationship to other sensors in the network which can then be reflected spatially. Cluster analysis is a 265 

valuable unsupervised analysis technique used to identify natural groupings in a dataset by classifying the data into distinct 

groups, or clusters, without needing pre classified or labelled data to train the algorithm. It systematically works to separate 

the data by minimising within group variation and maximizing between group variation. Cluster analysis is often used in air 

quality analysis, including describing pollution diurnal variation, identifying distinct diurnal patterns, pollution source 

identification, and identifying spatial patterns in particle compositions (Austin et al., 2012; Flemming et al., 2005; Austin et 270 

al., 2013).  

Hierarchical clustering does not separate the data into a defined number of clusters in a single step, but rather consists of a 

series of separations which typically goes from a single cluster containing all of the data, to n clusters each containing an 

individual sample (when the data is an n × m matrix for n samples and m data points in each sample) (Everitt et al., 2011). 

The procedure typically includes a dendrogram showing the tree-like structure of the nested clusters. This type of clustering 275 

gives an advantage over partition-based algorithms, whereby the user is not required to specify the number of clusters.  
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Fuzzy c-means clustering is an example of a partitional clustering technique, where the number of clusters must be 

predefined. However, another distinctive feature separating it from hierarchical clustering is that it is a soft clustering 

method. In hard (i.e. non-fuzzy) clustering, each point belongs exclusively to a single cluster, whereas in soft clustering, the 

output is a membership score or probability likelihood of a data point belonging to each of the pre-defined clusters (Gentle et 280 

al., 1991). The assignment of a member to a group is a distribution over all available clusters. The partition that gives the 

closest hard clustering to the fuzzy output can be obtained by assigning each object to the cluster in which it has the largest 

membership score. However, the information achieved with soft clustering can be particularly useful when dealing with 

datasets exhibiting overlapping patterns or uncertainties in classification as opposed to directly partitioning into hard clusters 

(Gentle et al., 1991). 285 

With both clustering techniques, the quality of cluster assignments can be assessed with various evaluation metrics to choose 

the optimal number of clusters. As the “true” cluster classifications are not known here, validation must be performed using 

the clustering algorithm itself. To assess the quality of the hierarchical clustering assignments, the Silhouette metric was 

used along with the Calinski-Harabasz index to assess the FCM assignments (Caliñski and Harabasz, 1974; Rousseeuw, 

1987). The Silhouette score, ranging from -1 to +1, can be calculated for each member of a cluster and then the mean 290 

Silhouette score from all members indicates an overall assignment quality for members of that cluster, with a high score 

closer to 1 indicating higher quality clusters, and a low or negative score indicating poorer cluster assignments. The Calinski-

Harabasz index also quantifies the quality of cluster assignments with higher scores indicating better quality. The metrics 

were used to test for the optimal number of clusters for each algorithm. 

Both clustering approaches were selected to provide further understanding of the inherent spatial structures concealed within 295 

the CSI results. Hierarchical clustering offers the hierarchical representation of clusters, aiding in the identification of nested 

relationships, while FCM allows for a more flexible approach to the cluster assignments when the number of clusters is not 

known a priori. 

3. Results and Discussion 

3.1 Dungarvan PM2.5 sensor network 300 

Analysis of the harmonised data obtained from the sensors in the Dungarvan PM2.5 network was conducted to determine CSI 

values and assess the spatial variation of air pollution across the town. Although the PM2.5 concentrations are not as accurate 

as those collected by reference instrumentation, any relative differences between the sensors and individual sensor data 

trends can be regarded as genuine due to the low inter-sensor variation observed after data harmonisation procedures. 

The temporal and spatial trends of PM2.5 across the Dungarvan sensor network are reflected in the average diurnal plots 305 

obtained for each sensor, Fig. 1. These diurnal profiles all show large evening peaks in PM2.5, which are typical for towns 

and cities in Ireland affected by residential solid fuel burning during winter evenings (Healy et al., 2010; Dall’Osto et al., 

2014; Wenger et al., 2020). However, there are clear disparities in some of the average evening peak values between the 
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sensors. One group of sensors has maximum values above 35 μg m-3 (A3, A4, A8H, A9, AQ, A7, AW6, AQV), while the 

sensors with maxima below 35 μg m-3 can be further divided into three smaller groups. Sensors labelled AJ3, AWF, and AZ 310 

all have a maximum PM2.5 concentration around 30 μg m-3; sensors AY9N, AY93, ARF, A8Z, AYG, and A6P all have 

maxima in the 20-26 μg m-3 range, while AP7 has a significantly lower evening peak than all other devices. 

Most sensors exhibited the diurnal maximum around the same time of day, between 18:00 and 20:00, however AP7 and 

ARF, showed a slightly delayed peak from 20:00 to 22:00. AP7 had the lowest peak concentration and did not exhibit the 

sharp rise and subsequent decrease associated with evening solid fuel burning that the other sensors showed. AP7 was 315 

located on the south-western edge of the town and since the predominant wind direction is south westerly, did not experience 

as much local pollution as the other locations in the network. 

Summary statistics obtained for the 18 sensors in the Dungarvan network are listed in Table 4. Unsurprisingly, most of the 

devices with diurnal maxima > 35 μg m-3 have the highest mean, median, and maximum values. Out of this subset of 

devices, AQV has the lowest overall mean (15 μg m-3), but still has a relatively high standard deviation (22 μg m-3), 320 

indicating the PM2.5 values tend to vary widely but are lower on average. This could be indicative of fluctuating particle 

concentrations, consistent with intermittent pollution sources such as residential solid fuel burning. 

 

Figure 1: Diurnal profiles for hourly averaged measurements of PM2.5 in the Dungarvan sensor network (September 2022 to May 

2023). 325 
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Table 4: Summary statistics of hourly average PM2.5 concentrations obtained for all sensors in the Dungarvan sensor network 

(September 2022 to May 2023). 

ID 

Mean Median 
Standard 

Deviation 

Maximum 

hourly value 

Maximum 

diurnal value 

Hour of 

maximum 

diurnal value 

μg m-3 μg m-3 μg m-3 μg m-3 μg m-3  

AP7 11 7 12 153 12 21 

AY9N 12 7 14 136 23 19 

A8Z 13 7 16 274 25 19 

A6P 13 8 18 311 26 19 

AY93 13 8 15 176 22 19 

AZ 14 7 18 286 30 19 

ARF 14 8 18 243 26 20 

AYG 14 8 16 259 24 19 

AQV 15 8 22 281 44 19 

AJ3 16 9 19 270 33 18 

AWF 16 9 17 189 31 19 

A3 18 9 27 412 45 19 

A9 18 9 27 409 45 19 

A8H 19 9 28 482 40 18 

AQ 19 10 28 480 48 18 

A4 21 12 27 370 52 18 

A7 21 12 27 361 45 18 

AW6 21 11 26 319 51 18 

3.1.1 Concentration Similarity Index 

The matrix of CSI values obtained for the Dungarvan sensor network is shown in Table 5. The results can be analysed in a 330 

number of ways. Firstly, the indices for one sensor can be used to assess how similar or dissimilar the measurements are to 

all other sensors in the network, thus providing information on the spatial representativeness of that particular location. 

Secondly, the indices of all sensors can be looked at together to elucidate any potential relationship between sensor 

measurement locations. 

The minimum CSI value (0.85) determined during the co-location deployment can act as the lower limit for when two sensor 335 

locations can be considered very similar. The reported CSI values for Dungarvan sensors ranged from 0.48 (ARF vs A7) to 

0.79 (AYG vs AWF) with a mean of 0.61, indicating a significant difference in air quality representation between locations 
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across the town. The device with the lowest mean of its CSI values with respect to the other locations was A4 (0.55), and 

although device ARF was only slightly above this (0.57), it reported a larger range of CSI values, including the lowest of the 

entire dataset. AJ3, AQV, and AYG all shared the highest mean CSI values (0.66).  340 

To further investigate the effect of solid fuel burning on local air quality, the CSI function was applied to data from two 

isolated months – January and May 2023. The purpose of this assessment was to evaluate the extent to which residential 

solid fuel burning dictates the CSI between two sensors, given that one month (January) will have higher PM2.5 levels with 

measurements heavily influenced by solid fuel burning, and the other will not (May). For both months, all sensors had data 

capture above 65 % and the mean capture was 94 % for January and 92 % for May. The January mean CSI from all 345 

comparisons was 0.51, and the May mean CSI was 0.84 (Table S4, Table S5). The large discrepancy between the mean CSI 

for January and May is most likely due to the higher variation typically seen in wintertime PM2.5 due to residential solid fuel 

burning. This highlights the importance of seasonality when assessing the spatial representativeness of monitoring network 

locations. 

  350 
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Table 5: Concentration Similarity Indices for the hourly averaged PM2.5 concentrations measured by Clarity Node-S devices in the 

Dungarvan sensor network. 

 
A3 A4 A8H A8Z A9 AQ AZ A7 A6P AJ3 AP7 AQV ARF AW6 AW

F 

AY9

N 

AY9

3 

AYG 

A3 1 0.56 0.64 0.56 0.58 0.67 0.58 0.62 0.64 0.59 0.53 0.61 0.5 0.63 0.55 0.59 0.6 0.57 

A4 
 

1 0.53 0.52 0.55 0.53 0.56 0.58 0.53 0.57 0.55 0.58 0.49 0.54 0.55 0.56 0.55 0.55 

A8H 
  

1 0.58 0.6 0.61 0.59 0.57 0.61 0.61 0.57 0.64 0.54 0.61 0.56 0.61 0.62 0.61 

A8Z 
   

1 0.62 0.55 0.69 0.54 0.62 0.65 0.71 0.66 0.6 0.56 0.62 0.66 0.62 0.67 

A9 
    

1 0.53 0.6 0.57 0.58 0.63 0.6 0.63 0.52 0.58 0.6 0.61 0.58 0.6 

AQ 
     

1 0.58 0.57 0.6 0.59 0.5 0.62 0.49 0.63 0.53 0.56 0.58 0.56 

AZ 
      

1 0.58 0.63 0.68 0.68 0.71 0.6 0.62 0.66 0.62 0.61 0.74 

A7 
       

1 0.57 0.58 0.53 0.6 0.48 0.62 0.55 0.56 0.57 0.55 

A6P 
        

1 0.72 0.62 0.66 0.58 0.63 0.64 0.65 0.68 0.71 

AJ3 
         

1 0.64 0.76 0.6 0.64 0.76 0.67 0.7 0.78 

AP7 
          

1 0.64 0.67 0.52 0.64 0.65 0.63 0.69 

AQV 
           

1 0.59 0.65 0.72 0.65 0.68 0.77 

ARF 
            

1 0.56 0.59 0.62 0.61 0.63 

AW6 
             

1 0.61 0.6 0.62 0.62 

AW

F 

              
1 0.66 0.68 0.79 

AY9

N 

               
1 0.59 0.67 

AY9

3 

                
1 0.72 

AYG 
                 

1 

3.1.2 Clustering 

Clustering techniques were employed on the CSI matrix to uncover any inherent spatial relationships between different 

locations in the network. Hierarchical clustering produced a dendrogram showing the hierarchical relationship between the 355 

sensor locations and was used to identify clusters (Figure 2). The highest mean Silhouette score was found with 2 clusters 
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(Figure S4). However, it was not a high Silhouette score (0.19), indicating that the quality of the cluster assignments was 

low. The highest Calinski-Harabasz index corresponded to the assignment of members to 2 clusters when applying the FCM 

clustering  (Figure S5).  

From both the dendrogram (Figure 2) and the FCM membership weights (Figure 3), it is clear that devices A4 through to AQ 360 

are grouped together in one cluster (Cluster 1), and devices AQV to AP7 are grouped in another cluster (Cluster 2). This split 

is very similar to the easily visualised groupings shown in the diurnal profile maxima (Figure 1), with the only difference 

being device AQV. The devices in Cluster 1 are also those with the highest mean PM2.5 for the measurement period. The 

mean CSI for each sensor mostly corresponds to the cluster assignments, with Cluster 1 devices having a mean CSI equal to 

or below 0.6, and all devices in Cluster 2 have a mean CSI above 0.6, except for device ARF.  Interestingly, this grouping 365 

also appears to have spatial importance too, as shown in Fig. 4. Cluster 2 devices are mainly located around the edge of the 

town and generally experience cleaner air, while Cluster 1 devices are located in central and residential areas, which are 

more polluted during winter months.  

 

Figure 2: Dendrogram output from hierarchical clustering of the CSI data from the Dungarvan sensor network. 370 
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Figure 3: Membership weights from FCM clustering of the CSI data from the Dungarvan sensor network. 

 

Figure 4: Dungarvan AQS locations with two cluster groups indicated. Cluster 1 devices (red triangle markers) are mainly located 375 
in central and residential areas, while cluster 2 devices (blue cross markers) are mainly located on the edge of the town. 

(Map obtained from Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, 

and the GIS User Community) 
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3.2 Cork City PM2.5 sensor network 

The same approach was used to analyse the data collected by the Cork City AQS network. In this case, the corrected 380 

measurements are indicative of the actual PM2.5 experienced in each location. The diurnal plots for each sensor in the Cork 

City network are similar to those observed in Dungarvan, with a sizeable evening peak in PM2.5 concentrations (19:00-21:00) 

due to emissions from residential solid fuel burning. Again, there is considerable variation in the peak concentration of PM2.5 

(Figure 5). Device MTU showed the lowest diurnal average maximum of 9 μg m-3. This device is located on the western side 

of the city and has few upwind pollution sources contributing to air pollution at the location as the prevailing wind direction 385 

is from the South-West. Devices CCC12 and CCC9 both showed the highest diurnal average maximum, 17 μg m-3. CCC12 

is located northeast of the city, and so likely experiences urban PM2.5 sources up-wind from it or has strong localised 

sources. Similarly, CCC9 is located to the east of the city, in a residential area. Table 6 contains summary statistics for each 

of the sensors in the Cork City network. Some devices had very high PM2.5 maxima, e.g. 201 μg m-3 for CCC11, which were 

more than double the maxima of other devices, e.g., CCC8 which had the lowest overall maximum of 47 μg m-3. Device 390 

MTU had the lowest diurnal maximum value, indicating that this location is the least affected by local emissions from solid 

fuel burning. However, it measured a significant overall PM2.5 maximum of 99 μg m-3 and significant spikes in pollution 

were occasionally observed, likely due to meteorological conditions or specific localised effects. When looking at all of the 

parameters listed in Table 6, CCC11 stands out. This sensor has the highest maximum hourly average PM2.5 concentration in 

the network, but the standard deviation (8 μg m-3) is in the middle of the range, indicating that the location had relatively 395 

stable PM2.5 levels throughout the measurement period with less variation than other devices but was still susceptible to 

occasional spikes in PM2.5.  

 

Figure 5: Diurnal PM2.5 profiles for all AQS in the Cork City network (January to May and September to December 2021). 
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Table 6: Summary statistics of hourly averaged PM2.5 obtained for all sensors in the Cork City network (January to May and 400 
September to December 2021). 

Device Label 

Mean Median 
Standard 

Deviation 
Maximum 

Maximum 

diurnal value 

Hour of 

maximum 

diurnal value 

μg m-3 μg m-3 μg m-3 μg m-3 μg m-3  

MTU 6 4 6 99 9 21 

CCC8 7 5 6 47 10 19 

CCC3 8 5 7 61 10 21 

CCC5 8 5 10 181 14 19 

CCC 8 6 7 71 11 20 

CCC11 8 6 8 201 13 19 

CCC1 8 6 8 92 11 20 

CCC2 8 6 8 122 13 20 

UCC 9 6 8 108 13 20 

CCC4 9 7 8 97 16 19 

CCC9 10 7 10 158 17 19 

CCC12 10 7 10 117 17 20 

3.2.1 Concentration Similarity Index 

The matrix of CSI values obtained for the Cork City sensor network is shown in Table 7. The values range from 0.52 

(CCC12 vs MTU and CCC9 vs MTU) to 0.85 (CCC2 vs CCC11) with a mean of 0.71. The high maximum CSI indicates a 

high degree of similarity between those locations in the network, and overall, the Cork City locations show a higher degree 405 

of similarity compared to those in Dungarvan. 

The isolated CSI results for the months of January and May 2021 were also assessed for Cork City. The average data 

coverage during both periods was 92 %. The mean CSI value in January (0.55) was considerably lower than that observed in 

May (0.82), Table S6, Table S7. This result is similar to that found for the Dungarvan network, again indicating that the 

large difference in mean scores between the two months can be attributed to higher wintertime PM2.5 variation by residential 410 

solid fuel burning. 
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Table 7: Concentration Similarity Indices for the hourly averaged PM2.5 concentrations measured by PurpleAir devices in the 

Cork City AQS network. 

 CCC1 CCC2 CCC3 CCC4 CCC5 CCC7 CCC8 CCC9 CCC11 CCC12 MTU UCC 

CCC1 1 0.73 0.76 0.68 0.65 0.71 0.66 0.64 0.76 0.67 0.66 0.76 

CCC2  1 0.79 0.82 0.65 0.77 0.68 0.73 0.85 0.78 0.61 0.79 

CCC3   1 0.73 0.76 0.8 0.8 0.65 0.82 0.7 0.76 0.8 

CCC4    1 0.63 0.73 0.64 0.76 0.82 0.78 0.56 0.77 

CCC5     1 0.65 0.74 0.7 0.66 0.6 0.69 0.71 

CCC7      1 0.68 0.65 0.78 0.7 0.66 0.73 

CCC8       1 0.7 0.67 0.6 0.67 0.74 

CCC9        1 0.72 0.74 0.52 0.8 

CCC11         1 0.79 0.61 0.84 

CCC12          1 0.52 0.77 

MTU           1 0.62 

UCC            1 

3.2.2 Clustering 415 

The two clustering algorithms were applied to investigate the CSI results of the Cork City network. The Silhouette Scores for 

each number of assigned clusters (2 to 5) were low, with 2 clusters showing the highest mean score (Figure S6). Similarly, 

with the FCM analysis, 2 clusters showed the highest score with the Calinski-Harabasz indices (Figure S7). 

The dendrogram produced from the hierarchical clustering and the membership weights for 2 clusters from FCM clustering 

are shown in Fig. 6 and Fig. 7, respectively. It is clear that devices MTU, CCC5, and CCC8 are all grouped together in one 420 

branch, Cluster 2, with the remainder of the devices in the other branch. The one assignment difference between the two 

clustering methods is CCC3, which has a higher membership weight towards Cluster 2 with the FCM method but does not 

branch with that cluster in the dendrogram. However, its membership weight is close to 0.5. CCC1 also shows a membership 

weight close to 0.5, however it is showing a higher weight towards Cluster 1, as per the hierarchical clustering results. 

Devices in Cluster 2, except for CCC3, all have the lowest mean CSI value.  425 

Similar to the Dungarvan results, there appears to be a spatial component to the cluster groupings, with devices in Cluster 2 

being mainly on the western side of the city, Fig. 8. Interestingly, device CCC7, located in a commuter town on the western 

side of the city boundary, is grouped in Cluster 1, along with devices mainly in urban residential type sites, instead of being 

grouped with other devices on the western edge of the city. This indicates it has a more comparable CSI profile to the urban 

residential sites than the locations closer to it, further emphasising the importance of location type over physical proximity.  430 
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Figure 6: Dendrogram output from hierarchical clustering of the CSI data from the Cork sensor network. 

 

Figure 7: Membership weights from FCM clustering of the CSI data from the Cork sensor network. 
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 435 

Figure 8: Cock City AQS locations with 2 cluster groups indicated. Cluster 1 devices (red triangle markers) are located in the city 

centre and east/northeast, while Cluster 2 devices (yellow circle markers) are mainly located on the western side of the city. 

(Map obtained from Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, 

and the GIS User Community) 

3.3 Application of the CSI to assess representativeness of air quality monitoring locations 440 

One key benefit of the CSI metric for AQS networks is that one sensor can be singled out and its overall degree of similarity 

to measurements from other locations can be determined. This analysis can be used to assess the spatial representativeness of 

a given location in the AQS network by quantitively exploring how similar its PM2.5 profile is to other locations. If a network 

sensor is co-located with a reference instrument, then the CSI values for that sensor can be used to provide a measure of the 

representativeness of the designated monitoring location and how well it informs the assessment of population exposure to 445 

air pollution. 

In Dungarvan, the device A6P was co-located with a PM2.5 instrument (Osiris, Turnkey) deployed as part of the national air 

quality monitoring network. The instrument is not a reference instrument but is certified to provide indicative measurements 

of PM2.5 (National Ambient Air Quality Monitoring Network , 2023; Osiris, 2024). The similarity indices for A6P are 

included in Table 5 and represented spatially in Fig. 9. All CSI values are below the minimum threshold of 0.85 for two 450 

Clarity S-node devices in the Dungarvan network to be considered very similar. The most similar devices are found to the 

north and south of this location, AQV and AY93. Interestingly, the similarity of PM profiles does not decrease with 

increasing distance from A6P. Devices on the furthest western (AZ, A8Z, AP7) and eastern (AWF, AY9N) edges of the 
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town are within 0.6 to 0.7, yet devices A4, A7, AQ, and A9 are all below 0.6 despite being physically closer to A6P. This 

suggests that the location type is more important when it comes to assessing the similarity of locations within Irish towns as 455 

opposed to physical proximity, as A4, A7, AQ, and A9 are all fully surrounded by residential areas, whereas the other 

mentioned devices are in more open areas.  

 

Figure 9: Dungarvan AQS locations with CSI results indicated in coloured circles (blue = lowest CSI, yellow = highest CSI), and 

A6P location indicated with red pin marker. (Map obtained from Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, 460 
Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community) 

One of the devices in the Cork City senor network, UCC, was co-located alongside a reference instrument (BAM-1020) at 

the national air quality monitoring location on UCC campus. The CSI values for device labelled UCC are shown in Fig. 10, 

showing how similar the measurements at this site are compared to the rest of the locations in the sensor network. The CSI 

scale on the map has been adjusted for these values. Similar to the Dungarvan case, there are devices which show among the 465 

highest similarity (CCC4, CCC2, CCC12, CCC1) with UCC which are not located nearby.  

https://doi.org/10.5194/amt-2024-38
Preprint. Discussion started: 4 April 2024
c© Author(s) 2024. CC BY 4.0 License.



25 

 

 

Figure 10: Cork AQS locations with UCC CSI results indicated in coloured circles (blue = lowest CSI, yellow = highest CSI), and 

UCC location indicated with red pin marker. (Map obtained from Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, 

Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community) 470 

4 Conclusion 

A robust framework for comparing data series from individual air quality sensors in a network has been established and a 

new metric, the Concentration Similarity Index (CSI), has been developed, optimised, and tested on a co-location dataset. 

The CSI allows one to consider the monitoring network in terms of the similarity of the concentration-time profile of PM2.5 

at one location to those at the other locations in the same network. The harmonised dataset with minimal unexplained inter-475 

sensor variation underpins the development of the CSI method, along with robust tests to ensure that the function represents 

an unbiased and fair depiction of the inter-sensor relationships after deployment in a monitoring network. 

The CSI method has been used to analyse data generated by PM2.5 sensor networks in two locations in Ireland, the coastal 

town of Dungarvan and the city of Cork. Clustering techniques are applied to the CSI matrix and comparable similarity 

trends between locations drives the distinctions made with the clustering algorithm. The resulting groupings can provide 480 

several insights into the PM2.5 profile at each location, including the likelihood of similarity in pollution sources, spatial 

patterns, and temporal trends. An interesting contrast in the CSI results from the two monitoring networks was obtained from 

the clustering analysis. In Dungarvan, the locations generated clusters that were well reflected when comparing the 

individual diurnal profiles and specifically the diurnal maximum values, indicating that this factor has a major influence 
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when relating the concentration-time profiles at each location to one another in this network. However, for the Cork City 485 

network results, this was not as apparent. The clusters were not aligned based on diurnal peaks but rather the differentiating 

factor was more nuanced. Both clusters contained locations with a mix of higher and lower diurnal maxima and overall 

maxima. However, both network groupings reflect that devices may report dissimilar CSI results to other devices located 

nearby, and that considering location specifications or types, such as residential areas, is more important than physical 

proximity when it comes to understanding and quantifying the similarities between locations.  490 

The CSI function was also applied to two separate months in the network datasets, with January chosen to represent a period 

of higher PM2.5 levels due to solid fuel burning emissions, and May chosen to represent a period with lower PM2.5 

concentrations due to reduced solid fuel burning. In both locations, the mean CSI for the network comparisons was higher in 

May than in January, indicating that higher PM2.5 levels is a major driver for lower similarity indices between sensor 

locations. Combining this with the findings of our previous study, we provide further evidence that high levels of localised 495 

PM2.5 cause distinct disparities in exposure to poor air quality in different locations. Furthermore, to properly assess the 

burden of PM2.5 experienced by a population and to accurately compare the measurements at two locations, the wintertime 

PM data must be included in the assessment.  

The similarity of PM2.5 measured at designated sites in the national air quality monitoring network compared to the rest of 

locations in the sensor networks was analysed to give an estimation of the representativeness of the air pollution measured at 500 

the designated monitoring site. The national monitoring site location in Dungarvan was shown to be moderately 

representative of the other AQS network locations in the town, with CSI values ranging from 0.53 to 0.72. The CSI values 

for the Cork City comparison ranged from 0.62 to 0.84, also showing a fair representation of the air pollution experienced in 

the rest of the network. The CSI function was also tested via synthetic datasets which showed that a positive offset of just 5 

μg m-3 resulted in almost halving the CSI, which was a lower CSI than most of the sensor comparisons in both network 505 

locations. So, while a CSI of 0.85 was used as a limit for two sensor measurement sets being very similar, CSI values 

between 0.6 and 0.7 are still moderately similar. In general, the CSI values in Cork City for the reference site comparison 

were higher (mean = 0.75) than that of Dungarvan (mean = 0.63), indicating less similarity between the reference site and 

devices in the Dungarvan network compared to Cork City. This analysis and application of the CSI function displays the 

potential for AQS networks to be used in conjunction with a regulatory monitoring system. There is potential for the 510 

application of sensor networks to assess the need for more regulatory monitoring in an area, and to identify locations that are 

being poorly represented by the current system. Furthermore, the CSI method can be used to optimise a sensor network by 

carrying out short term sensor deployments and identifying areas of similarity or dissimilarity and thus assessing where the 

best locations for sensors are based on the similarity in exposure to air pollution.  

 515 
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