
We would like to thank the anonymous reviewer for the comments that significantly 

improved the clarity and readability of the manuscript. Our point-by-point responses 

are found below in blue ink. The revised content is highlighted in yellow. 

General Comments: 

The normalization and portability of atmospheric pollutant monitoring are crucial for in-

depth research into local variations in atmospheric environment and pollution. This 

manuscript establishes a low-cost air quality monitoring device and applies it to estimate 

the hygroscopicity parameters of aerosols, comparing the results with site observation data. 

The study holds certain scientific and application value and aligns with the publication 

scope of the Atmospheric Measurement Techniques journal. However, there are some 

scientific and technical issues within the manuscript itself, suggesting major revisions 

before reconsidered. 

Specific Comments: 

1) The accuracy and error range of AQB in detecting aerosols and the application of AQB 

to estimate aerosol hygroscopicity parameters should be two separate research components 

with a sequential order. However, in this manuscript, the authors often fail to clearly 

distinguish between the two. The authors adopt a method of setting RH thresholds to 

classify AQB observation results into dry aerosols and humidified aerosols, and then 

compares and calibrates the observations of dry aerosols with EPA station data, which is a 

feasible approach. However, in Sections 3.1, 3.2, and Figures 2 and 3, the authors do not 

classify or analyze the data based on the RH threshold set by themselves. Meanwhile, as 

shown in Figure 2(b), the occurrence of RH below 50% during the observation period is 

rare. Can such a limited amount of data support the examination of the reliability of AQB 

detection? 

A: We appreciate the reviewer's insightful comments. In response to concerns, Fig R1, 

similar in configuration to Figs. 3(a-c), shows the data points at RH ≤ 50 %, which were 

applied to determine the sensitivity coefficient (α).  

 

Figure R1. The correlation of mass concentration between TW-EPA and OPC in AQB #1 (raw data) for PM2.5, 

PM10, and PM2.5-10 at RH≤ 50%. The hollow points are the two significant outliers mentioned in Table 2. 



Although these data points constitute about 5% of the total (i.e., 17 out of 356 points), a 

high correlation between the AQB and TW-EPA measurements was observed. Figure 2(b) 

shows only part of the campaign to reveal the temporal comparison between AQB and TW-

EPA data. As stated in section 2.3, the statistical distribution of MEPA to MOPC ratios at RH 

≤ 50 % was analyzed to evaluate a sensitivity coefficient (α) as the mean value ± 0.5σ (σ: 

standard deviation). The shaded area in Fig. R1 represents the distribution of α, covering 

most of the data points at RH ≤ 50 %. The same calculation but for higher RH thresholds 

(up to 60% to have more data points, 51 out of 356) summarized below shows a similar α 

range, indicating sufficient data points at RH ≤ 50 % for a conclusive α. The following 

figure is added to the supplementary as Fig. S2 to clarify this issue. In the content, Lines 

179-181 were revised as follows: “The estimated α, as summarized in Table 1, are higher 

for PM10 than for PM2.5, i.e., 2.02 ± 0.34 vs 1.26 ± 0.16, which are reasonably conclusive 

as tested with more data points selected at higher RH thresholds (Fig. S2).” 

 

Figure S2: The determined sensitivity as a function of RH thresholds for PM2.5 (red), PM10 (blue) and PM2.5-10 (green). 

The shading area is the mean value ± 0.5σ  

As to the accuracy of applied methods, the comparison analysis between fitted data and 

TW-EPA data is summarized in a new table (Table 2) added to the content as follows: 

Table 2: Performance metrics of different calibration methods for PM2.5, PM2.5-10, and PM10. 

 PM2.5 PM2.5-10 PM10 

 RH≤50% 

Onlya 

All data 

(no κ) 

All data  

(κ= 0.29) 

RH≤50% 

Onlya 

All data 

(no κ) 

All data  

(κ= 0.09) 

RH≤50% 

Onlya 

All data 

(no κ) 

All data  

(κ= 0.36) 
(PM2.5+ 

PM2.5-10)c 

applied α 1.26±0.16 1.04 1.40 12.37±1.33 10.77 13.16 2.02±0.34 1.69 2.36 — 

MAPE 

(%) 

21.3 

(12.8) 
48.8 24.8 15.9 (11.5) 37.9 31.8 

32.8 

(18.5) 
62.5 29.2 18.2 

RMSE  

(μg cm-3) 
20.5 (3.7) 29.1 11.3 4.9 (2.8) 9.4 9.1 

42.6 

(10.3) 
54.7 26.9 15.9 

R2 b .0.55 

(0.51) 
-3.49 0.32 0.31 (0.78) 0.57 0.59 

-4.18 

(-0.58) 
-4.74 -0.38 0.51 

a Only for data points at RH ≤50%. The value in parentheses is the performance result without two significant 

outliers shown in Fig. 3 

b Coefficient of determination (R2) is calculated as the proportion of variation in the calibrated dry mass 

concentration. 

c The combination of calibrated data from PM2.5 All data (κ= 0.29) and PM2.5-10 All data (κ= 0.09). 



The MAPE and RMSE for RH ≤ 50 % are 12.8 % and 3.7 μg cm-3 for PM2.5, 11.5 % and 

2.8 μg cm-3 for PM2.5-10, without considering the two significant outliers. The performance 

of AQB for PM2.5 and PM10 through different calibration methods was discussed in Section 

3.2 (Lines 172-211) as “Figures 3(a) and 3(c) show the scatter distribution of the mass 

concentrations between AQB #1 (with no calibration) and TW-EPA data for PM2.5 and 

PM10, respectively. Overall, the PM mass concentrations measured by AQB system appear 

to be higher than those reported by TW-EPA. The results reveal an apparent influence of 

ambient RH, indicating the contribution of water content. The red-shaded area represents 

a regression line with a slope corresponding to the inverse of the sensitivity coefficients (α) 

derived from data points at ambient RH ≤ 50% (17 out of 356 points, 5%). The notable 

deviation of the red shaded area from the 1:1 line towards the right side indicates the 

requirement of α > 1 corrections, contributed by the different measurement principles and 

calibration techniques, which may result from the assuming particle density and refractive 

index (RI) (dust, density: 1.65 g cm-3, RI: 1.5 + 0i). The estimated α, as summarized in 

Table 1, are higher for PM10 than for PM2.5, i.e., 2.02 ± 0.34 vs 1.26 ± 0.16, which are 

reasonably conclusive as tested with more data points selected at higher RH thresholds (Fig. 

S2). The α difference between PM2.5 and PM10 might be attributed to the complex 

composition of ambient particles, which differs from the samples used for instrument 

calibration, as well as possible sensitivity variations in OPC over time. With sensitivity 

calibration, the performance at ambient RH ≤ 50% exhibits a strong correlation with MAPE 

at 12.8%, 18.5%, and Root Mean Squared Error (RMSE) at 3.7 μg m-3, 10.3 μg m-3 for 

PM2.5 and PM10, respectively, as summarized in Table 2 excluding the two significant 

outliers (shown as hollow circles in Fig. 3). The results confirm the effectiveness of OPCs 

in capturing PM concentrations, consistent with previous real-time outdoor field studies 

(Gillooly et al., 2019; Demanega et al., 2021; Sá et al., 2022; Crilley et al., 2018). 

Additionally, the OPC sampling flow rate has an impact on measurement performance. 

AQB #1 maintained a steady rate at 3.6 ± 0.2 LPM, whereas AQB #2 exhibits two distinct 

time periods with sampling flow rates of 3.6-4.2 LPM for the first period and 3.2-3.6 LPM 

for the second period. …With the derived α, the hygroscopicities were retrieved using Eq. 

(3), resulting in  ranging from 0.18 to 0.29 for PM2.5 and 0.20 to 0.39 for PM10 (Table 1) 

during the studied period. Figures 3(d) and 3(f) show the scatter distribution of the derived 

dry concentration vs. TW-EPA concentration for PM2.5 and PM10, respectively. The results 

from the two AQB systems exhibit slight differences but are consistent overall. 

Considering both the sensitivity coefficient and hygroscopicity, the performance of AQB 

in deriving dry PM concentration is significantly improved with lower MAPE, RMSE, and 

higher R2 than the results obtained using only the sensitivity coefficient, as summarized in 

Table 2. … The lower  for PM2.5-10 might suggest a significant contribution from dust or 

other less hygroscopic species, consistent with the IC analyses in Table 3 and discussed 

further in Sect. 3.3. With the retrieved α and  for PM2.5 and PM2.5-10, Fig. 3(e) shows the 

scatter distribution between the derived dry PM2.5-10 from AQB data and TW-EPA data, 

exhibiting a MAPE of 31.8%, more significant than the 24.8% for PM2.5. … Detection 

efficiency may be influenced by notable spatial variations, aligning with the findings of 

Kaliszewski et al. (2020), which showed a reduced correlation between OPC-N3 

measurements and reference instruments for larger particles. The dry PM10 derived from 

AQB through the divided PM2.5 and PM2.5-10 analysis demonstrates better consistency with 

the reported TW-EPA data than the direct calibration method. This is evidenced by a lower 



MAPE in Fig. 3(g) (18.2%) compared to Fig. 3(f) (29.2%) and a significant improvement 

than the simple linear regression method, which has a higher MAPE at 62.5% (Table 2). 

This substantiates the importance of considering composition heterogeneity among particle 

sizes for accurate dry PM derivation.”.  

2) Introducing aerosol chemical composition observations into a thermodynamic 

equilibrium model to calculate aerosol hygroscopic growth and comparing it with optical 

observations is a common research approach. However, contrasting different field 

experiments conducted at different times (with an 8-year difference) and different 

underlying surfaces by the authors doesn't have much significance. 

A: Thank you for highlighting the concerns regarding the comparison of derived 

hygroscopicity between two different field studies conducted in different years. We 

acknowledge that the hygroscopic characteristics of ambient particles can vary spatially 

and temporally. Our comparison of the chemical composition of PM2.5 from two winter 

sampling campaigns in 2013 and 2021 revealed that the composition concentration might 

be different, but the derived hygroscopicity was consistent across these years, 

demonstrating typical ambient PM2.5 hygroscopic characteristics in Kaohsiung City during 

winter. Even though there was no intensive filter sample collection during the studied 

period, the derived mean  range under the specific assumption (solute density and 

ignorance of Kelvin effect) from AQB data was discussed for the range consistency 

compared to the results of available two winter campaigns for PM2.5 and 2013 winter 

campaign for PM2.5-10. However, the temporal resolution for the derived hygroscopicity 

from IC data is higher than that derived from AQB data since the AQB analysis required a 

longer time period to cover a comprehensive range of RH to have the particle growth 

profile. The derived hygroscopicity then represents a mean value over a longer period. To 

clarify this approach, Section 3.3 (Lines 222-235): “A similar analysis for the winter of 

2021 yielded a consistent κ range for PM2.5, as illustrated in Fig. S5. This consistency 

across distinct study periods indicates typical ambient PM2.5 hygroscopic characteristics in 

Kaohsiung City during winter, which can be applied for further discussion with the AQB 

data. For coarse particles, the more significant variability in κ for PM2.5-10 compared to 

PM2.5 can be attributed to the significant fluctuations in the soluble composition of coarse 

particles, primarily driven by substantial quantities of thenardite (Na2SO4) and halite (NaCl) 

(Tang et al., 2019). …The derived κ value for PM2.5 from IC analysis (0.14-0.27) is 

consistent with that obtained from AQB analysis (~0.22), while the κ value for PM2.5-10 

from IC analysis (0.06-0.21) is relatively higher than that from AQB analysis (~0.09) 

(Table 1 and Fig. 4(a)). The κ differences between the IC and AQB analyses could be 

attributed to the spatial and temporal variations in aerosols, as well as the different 

campaign years and locations (~20 km apart, as shown in Fig. S1). These differences might 

also be influenced by technique uncertainties, such as ammonia and nitrate sampling 

evaporation during filter sampling (Hering and Cass, 1999; Chen et al., 2021), as well as 

OPC detection uncertainties and the required parameter assumption in the calculation. 

Overall, the derived κ values from the OPC data in AQB likely reflect the mean 

hygroscopicity of both integrated fine and coarse particles. “. Additionally, the corrected 

version of Fig. S5 is shown as: 



 

Figure S5: The hygroscopicity of PM2.5 derived from AQB and IC data with an assumed particle density of 

1.2 g cm-3. The IC_2021 is from 2021 samples collected at the National Kaohsiung University of Science 

and Technology (22°46'22.4" N, 120°24'03.4" E) in Kaohsiung for the period of 8 – 18 December 2021 

(diamond: mean value; outliers: < 1st quartile Q1-1.5 interquartile range (IQR) or > 3rd quartile Q3+1.5 IQR). 

3) In Table 1, the hygroscopicity parameter kappa for PM2.5 and PM2.5-10 is smaller than 

the hygroscopicity parameter kappa for PM10, which is abnormal. PM10 is the sum of PM2.5 

and PM2.5-10, and its hygroscopicity should be intermediate between the two. 

A: The higher hygroscopicity of PM10 than those of PM2.5 and PM2.5-10 is due to a 

significantly high portion PM2.5 in PM10 observed in AQB combined with the positive 

correlation between the derived sensitivity (α) and hygroscopicity (κ), as shown in Eq. (3) 

for the ambient and dry PM mass concentration conversion.  

𝑀𝑑,𝑑𝑒𝑟𝑖𝑣𝑒𝑑 = (𝛼 × 𝑀𝑂𝑃𝐶) × [(
𝑆𝜅

1−𝑆
) ×

𝜌𝑤

𝜌𝑑
+ 1 ]

−1

    (3) 

For a given Mopc, a higher α would require a higher κ to have the same Md, derived. Because 

the estimated α for PM10 is higher than that for PM2.5, a higher κ might be expected if PM2.5 

portion is dominant in PM10. This can be evaluated through the following calculation using 

an ideal system. The equation in the following shows the derived dry PM10 concentration 

is the sum of the derived PM2.5 and the derived PM2.5-10 concentration.  

(𝛼10 ×𝑀10) × [(
𝑆𝜅10
1 − 𝑆

) ×
𝜌𝑤
𝜌𝑑

+ 1 ]
−1

= (𝛼2.5 ×𝑀2.5) × [(
𝑆𝜅2.5
1 − 𝑆

) ×
𝜌𝑤
𝜌𝑑

+ 1 ]
−1

+ (𝛼2.5−10 ×𝑀2.5−10) × [(
𝑆𝜅2.5−10
1 − 𝑆

) ×
𝜌𝑤
𝜌𝑑

+ 1 ]
−1

 

where M is Mopc for different size ranges (indicated in the subscript). By assuming X as the 

ratio of M2.5-10 to M2.5 monitored by AQB, the relationship can be rewritten in the following: 



𝛼10(1 + 𝑋) × [(
𝑆𝜅10
1 − 𝑆

) ×
𝜌𝑤
𝜌𝑑

+ 1 ]
−1

= 𝛼2.5 × [(
𝑆𝜅2.5
1 − 𝑆

) ×
𝜌𝑤
𝜌𝑑

+ 1 ]
−1

+ (𝛼2.5−10 × 𝑋) × [(
𝑆𝜅2.5−10
1 − 𝑆

) ×
𝜌𝑤
𝜌𝑑

+ 1 ]
−1

 

where the ρw and ρd are constants (assumed in this study), the sensitivity coefficients are 

given as α2.5 = 1.26, α10 = 2.02, and  α2.5-10 = 12.37 from Table 1, and hygroscopicity is 

given as a median value in derived results of PM2.5 and PM2.5-10 (κ2.5 = 0.24, and κ2.5-10 = 

0.10). The derived κ10 can be evaluated with a function of X and S in the following figure 

and is mainly affected by X. A higher κ10 than κ2.5 (0.24) is expected as X < 0.05, i.e., low 

M2.5-10/M2.5. The observed data from AQB has a higher probability of having X  ~0.04 with 

S ~0.8-0.9 which leads to a higher derived κ10 than κ2.5 (0.24).  

 

Figure R2. The distribution of the derived hygroscopicity of PM10 in the condition of given sensitivity 

coefficients (α2.5 = 1.26, α10 = 2.02, and  α2.5-10 = 12.37) and hygroscopicity (κ2.5 = 0.24, and κ2.5-10 = 0.10). The 

contour is the derived hygroscopicity of PM10, and the shading is the data point distribution of the AQB 

monitored data. 

 

Overall, the estimated higher derived κ10 is possible to happen due to a significant amount 

of data points having a low portion PM2.5-10 in PM10 observed in AQB.  

4) In Section 2.1, the author introduces the photo-ionization detector for monitoring VOCs, 

but in Figure 1 and subsequent manuscripts, the abbreviation used by the author is NMHC. 

These two abbreviations are not entirely equivalent. 

The Alphasense PID-AH2 measures volatile organic compounds (VOCs) in the air using 

photoionization detection (PID), as stated in its datasheet. This device utilizes a lamp that 

emits high-energy UV photons. When a VOC molecule absorbs a photon, it generates 

electrically charged ions, creating an electric field. The detector then monitors the resulting 

current, which is proportional to the ambient VOC concentration. Notably, the PID-AH2 

in this study uses a Krypton lamp with a photon energy of about 10.6 eV, capable of 

detecting some C2, and most C3, C4+ VOCs. In contrast, the Horiba APHA-360, a VOC 

gas analyzer used by TW-EPA, continuously analyzes THC, CH4, and non-CH4 (NMHC) 

in ambient air using a flame ionization detector and cross flow modulation. Since the 



ionization potential of methane is approximately 13.7 eV, the PID cannot detect its 

concentration, making NMHC the closest comparable data from TW-EPA for our purposes. 

Additionally, the sensitivity of the PID varies with the type of VOC detected; for example, 

toluene generates approximately twice the response of isobutylene. Consequently, as 

shown in Fig. 2(g), the sensor captures some peak NMHC concentrations, but not all 

temporal variations are detectable. To ensure consistency, the label in Fig.1 is revised as  

"VOCs". Furthermore, to avoid any potential confusion regarding the capabilities of the 

PID sensor, the following information is added in Section 2.1 (Lines 71-73): " The PID 

sensor, equipped with a Krypton lamp providing a photon energy of about 10.6 eV, cannot 

detect methane, which has a higher ionization potential of ~13.7 eV (Glockler, 1926). 

Therefore, the data of non-methane hydrocarbons (NMHC) from TW-EPA is more 

comparable to PID data in our analysis."  

 

Figure 1: The design of the AQB system. 


