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Abstract. This study investigates the chemical composition and physical properties of aerosols, which play a crucial role in 

influencing human health, cloud physics, and local climate. Our focus centers on the hygroscopicity of ambient aerosols, a key 

property reflecting the ability to absorb moisture from the atmosphere and serve as cloud condensation nuclei. Employing 10 

home-built Air Quality Box (AQB) systems equipped with low-cost sensors, we assess the ambient variability of particulate 

matter (PM) concentrations to determine PM hygroscopicity. The AQB systems effectively captured meteorological 

parameters and most pollutant concentrations, with showing high correlations observed compared towith data from the Taiwan 

Environmental Protection Administration (TW-EPA) data. With the application of κ-Köhler equation and certain assumptions, 

AQB-monitored PM concentrations are converted to dry particle mass concentration, showingprovidingconcentration, 15 

providing optical particles counter sensitivity correction and resulting in improved correlation with TW-EPA data and optical 

particles counter sensitivity correction. The derived κ values range from 0.15 to 0.29 for integrated fine particles (PM2.5) and 

0.05 to 0.13 for coarse particles (PM2.5-10), consistent with results of ionic chromatography analysis for samples from a previous 

winter campaign nearby. Moreover, the analysis of PM10 division into PM2.5 and PM2.5-10, considering composition 

heterogeneity, provided improved dry PM10 concentration as the sensitivity coefficients for PM2.5-10 were notedlynotably higher 20 

than for PM2.5. Our methodology provides a comprehensive approach to assess ambient aerosol hygroscopicity, offering with 

significant implications for atmospheric modeling, particularly in evaluating aerosol efficiency as cloud condensation nuclei 

and in radiative transfer calculations. Overall, the AQB systems proved to be effective in monitoring air quality and deriving 

key aerosol properties, contributing valuable insights into atmospheric science.  
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1 Introduction 25 

In an era of increased industrialization, individuals face growing exposure to poor air quality, elevating the risks of 

cardiovascular and respiratory diseases (Chen et al., 2017; Brook et al., 2010; Heus et al., 2010). Within the realm of air 

pollutants, atmospheric aerosols emerge as critical components, playing a vital role in Earth's climate system. They influence 

radiative balance, cloud formation, and precipitation patterns, while significantly impacting human health, visibility, and 

ecosystems (Pöschl et al., 2010; Wu et al., 2010; Brook et al., 2010; Hamanaka and Mutlu, 2018). Their ability to scatter and 30 

absorb solar radiation, coupled with their role as cloud condensation nuclei (CCNs), emphasizes their significance in shaping 

both climate dynamics and air quality (Andreae and Rosenfeld, 2008; Rosenfeld et al., 2014; Lohmann and Feichter, 2005). 

However, understanding the complex interplay between aerosols and these processes requires the physical and chemical 

properties of aerosols, including hygroscopicity. The hygroscopic growth of aerosol particles, indicating their ability to absorb 

moisture from the ambient air, alters their size distribution, mass, optical properties, and CCN activity, thereby impacting 35 

climate dynamics and air quality (Petters and Kreidenweis, 2007). While traditional methods such as hygroscopicity tandem 

differential mobility analyzers (HTDMA) and cloud condensation nuclei counters (Chan and Chan, 2005; Hung et al., 2016; 

Bian et al., 2014) have provided valuable insights into the hygroscopic properties of various aerosol types. However, their 

complexity and cost often limit their applicability for extensive, long-term measurements. 

Over the past decade, the rise in popularity of low-cost optical particle counters (OPCs) can be attributed to their simplicity, 40 

portability, and affordability (Sá et al., 2022; Crilley et al., 2018; Samad et al., 2021). OPCs provide real-time data on particle 

size distributions and mass concentrations with high temporal resolution for monitoring ambient particles. However, challenges 

arise in ensuring the accuracy of OPCs, necessitating additional constraints or calibrations for optimal performance. The 

measurement principle of OPCs relies on the dependence of Mie scattering on particle size, yet this dependence is non-

monotonic across all sizes. Additionally, particle composition influences light scattering, leading to varying scattering 45 

efficiencies (Kaliszewski et al., 2020; Formenti et al., 2021). Variations in particle density directly affect the mass 

concentration derived from the monitored number size concentration (Hagan and Kroll, 2020; Dacunto et al., 2015). A 

particularly challenging issue involves the removal of absorbed liquid water from ambient particles. Several studies have 

attempted to derive the dry mass concentration of ambient particles using OPC, employing calibration methods linked to the 

hygroscopic growth factor (HGF) under controlled relative humidity (RH) conditions. Notably, Crilley et al. (2018) improved 50 

OPC mass concentration correction by applying derived κ values of 0.38-0.41 and 0.48-0.51 for PM2.5 and PM10, respectively, 

achieving a 33 % improvement. Similarly, Antonio et al. (2018) and Jagatha et al. (2021) elevated calibration from a moderate 

to a high correlation by assuming a constant  of 0.40. Furthermore, the chemical composition and physical properties of 

aerosols exhibit high temporal-spatial variation, making the analysis and correction of observational data from a physical 

perspective crucial. The widespread adoption of low-cost sensors, attributed to their affordability, enables more extensive use 55 

as users find them more accessible (Castell et al., 2017). This increased utilization enhances spatial resolution in environmental 
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monitoring, deepening our understanding of pollution evolution. However, it is essential to emphasize that regular maintenance 

and calibration are necessary for accurate results (Concas et al., 2021; Sá et al., 2022).  

In this study, we evaluate the performance of our home-built monitoring systems through a comprehensive analysis and 

calibration by co-locating them with the Taiwan Environmental Protection Administration (TW-EPA) station. Our primary 60 

focus is on OPCs, for which we employed a physical model to elucidate the hygroscopic characteristics of ambient particles 

during the determination of dry particle mass concentrations for integrated fine particles (Dp ≤ 2.5 μm) and coarse particles 

(2.5 μm < Dp ≤ 10 μm), respectively. Additionally, we discuss various factors contributing to errors in hygroscopicity estimates, 

aiming to gain valuable insights into using low-cost sensors for extensive and prolonged monitoring applications. 

2 Methodology 65 

2.1 AQB system 

Two home-built AQB systems (AQB #1 and AQB #2) consist of multiple sensors that monitor meteorological parameters such 

as temperature (T), relative humidity (RH), and pressure (P), as well as gaseous species, and particulate matter (PM) with a 

temporal resolution of seconds as shown in Fig. 1 with sensor information summarized in Table S1. The gas sensors include 

five Alphasense amperometric B4 series sensors that measure CO, NO, NO2, Ox (O3+NO2), and SO2, a photo-ionization 70 

detector (PID-AH2, Alphasense) monitoring volatile organic compounds (VOCs), and a non-dispersive infrared CO2 sensor 

from Amphenol Advanced Sensors (T6713-5K). The PID sensor, equipped with a Krypton lamp providing a photon energy 

of about 10.6 eV, cannot detect methane, which has a higher ionization potential of ~13.7 eV (Glockler, 1926). Therefore, the 

data of non-methane hydrocarbons (NMHC) from TW-EPA is more comparable to PID data in our analysis. The PM sensor 

(OPC-N2, Alphasense), an optical particle counter, monitors the number size distribution between 0.38 and 17 μm, divided 75 

into 16 bins based on Mie scattering, with a sampling flow rate of ~ 4 mL s-1 and a refractive index of 1.5+i0 i. In addition, the 

mass concentration of PM1, PM2.5, and PM10 could be calculated from the number size distribution, assuming a particle density 

of 1.65 g cm-3. These sensors were controlled by a small single-board computer, Raspberry Pi Zero W, at a time resolution of 

3 s with data stored in a microSD card and uploaded to cloud storage via 4G LTE. The entire system is housed in a remodeled 

enclosure measuring 25 cm × 16 cm × 8 cm (L × D × H). The sampling flow rate is controlled by a fan at ~ 5.6 L min-1, 80 

corresponding to a residence time of approximately 34 s in the box. 

2.2 Calibration campaign and reference data 

The calibration of AQB sensors was carried out by co-locating them with TW-EPA Nanzi station in Kaohsiung, Taiwan 

(22°44’12” N, 120°19’42” E) from 4 to 19 February 2021 (Fig. S1). At Nanzi station, the main gaseous components, dry PM2.5 

and PM10 concentrations, and basic meteorological parameters are continuously monitored with instrumentation information 85 

summarized in Table S1. For electrochemical sensors, their performance can be influenced by environmental parameters such 
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as temperature, relative humidity, and other chemical species that have high cross-sensitivity (Concas et al., 2021; Karagulian 

et al., 2019; Mead et al., 2013). Therefore, in this study, a linear regression with a multivariate function of voltage and the 

environmental temperature was applied to retrieve concentrations for gas species. For PM, the reported values from the TW-

EPA station (using METONE BAM1020) reflect the dry-state PM concentration by controlling the measurement at RH less 90 

than 50 % (i.e., a heating device applied to reduce the sampling flow to 35 % water saturation when the ambient RH is > 50 

%). On the contrary, the optical particle counter (OPC) in AQB directly monitors ambient PM concentration. The difference 

between TW-EPA and AQB reflects the amount of absorbed liquid water in ambient conditions. A simple linear regression 

between them might not reveal the influence of hygroscopicity completely. Therefore, the -Köhler equation (Petters and 

Kreidenweis, 2007) was applied to derive the  as discussed in the following section.  95 

2.3 Sensitivity coefficients of OPCs and particle hygroscopicity 

To bridge the PM concentration gap between TW-EPA and AQB, the sensitivity correction of OPC and the conversion of 

ambient particles to dry particles are required. The sensitivity coefficient (α) was evaluated as the ratio of TW-EPA and OPC 

mass concentration for data at low RH (≤ 50 %) having limited water content, as follows: 

 𝛼 =
𝑀𝐸𝑃𝐴

𝑀𝑂𝑃𝐶
      (1) 100 

where MEPA and MOPC are PM concentrations (μg m-3) measured by TW-EPA and OPC, respectively. RH ≤ 50 % was applied 

as the threshold criteria for data selection to determine α, as the mass concentration of ambient particles might have significant 

water uptake at higher RH. The statistical distribution of all MEPA to MOPC ratios at RH ≤ 50% was analyzed to assign α as the 

mean value ± 0.5σ (σ: standard deviation) to prevent high-concentration data points from dominating the statistical result.  

The particle size growth with the water saturation ratio (S) for a given hygroscopicity () can be evaluated using κ-Köhler 105 

equation as follows (Petters and Kreidenweis, 2007): 

 𝑆 =
𝐷𝑎𝑚𝑏

3 −𝐷𝑑
3

𝐷𝑎𝑚𝑏
3 −𝐷𝑑

3(1−𝜅)
𝑒𝑥𝑝(

4𝜎𝑠 𝑎⁄ 𝑀𝑤

𝑅𝑇𝜌𝑤𝐷𝑎𝑚𝑏
)      (2) 

where Damb and Dd are the diameters (m) of the ambient and dry particulate matter, respectively, σs/a is the surface tension of 

the particle (J m-2), Mw is the molecular weight of water (g mole-1), R is the gas constant (J mole-1 K-1), and ρw is the density of 

liquid water (1.0 g cm-3). The first term is the solute effect while the second term is the Kelvin effect. As the mass is dominated 110 

by the larger particles, the Kelvin effect in Eq. 2 is assumed to be negligible for simplification. The derived dry mass 

concentration (Md, derived) from the measured ambient particles from AQB (MOPC) can be expressed as follows (Pope et al., 2010; 

Crilley et al., 2018): 
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 𝑀𝑑,𝑑𝑒𝑟𝑖𝑣𝑒𝑑 = (𝛼 × 𝑀𝑂𝑃𝐶) × [(
𝑆𝜅

1−𝑆
) ×

𝜌𝑤

𝜌𝑑
+ 1 ]

−1

    (3) 

where α is the sensitivity coefficient (Eq. 1), ρw is the density of liquid water (1.0 g cm-3), and ρd is the density of dry aerosol 115 

particles (assumed to be 1.20 g cm-3). With the determined α values (Eq. 1),  can be derived from the data points of aqueous 

particles at RH above 70 %, the deliquescence RH (DRH) verified using IC analyzed composition and with E-AIM model. 

The mean absolute percentage error (MAPE) parameter between Md,derived and MEPA was used to assess the appropriate κ value 

as follow in the following: 

 𝑀𝐴𝑃𝐸 =
∑

|𝑀𝑑,𝑑𝑒𝑟𝑖𝑣𝑒𝑑,𝑖−𝑀𝐸𝑃𝐴,𝑖|

𝑀𝐸𝑃𝐴,𝑖

𝑛
𝑖=1

𝑛
× 100 %    (4) 120 

where n is the total number of data points, was used to assess the appropriate κ value. With the restricted range of α, κ can be 

derived under the minimum MAPE. Due to the heterogeneity between particles, PM10 was divided into integrated fine particles 

(Dp ≤ 2.5 μm) and coarse particles (2.5 μm < Dp ≤ 10 μm) to evaluate the individual sensitivity coefficient and hygroscopicity.  

2.4 Composition analysis 

Hygroscopicity can also be determined using the volume fraction of the major components. Based on an earlier field campaign, 125 

the ion chromatography (IC) method was applied to quantify water soluble components for samples (both PM2.5 and PM10) 

collected at Fooyin University (22°36'09.8" N, 120°23'23.1" E) in Kaohsiung from 15 to 28 January 2013. Ambient aerosol 

samples were collected using a pair of dichotomous aerosol samplers (Model: RP-2025, R&P Co., Inc., Albany, New York) 

to collect integrated fine and coarse particles on Teflon filters with sampling flow rates of 15.0 and 16.7 L min-1
, respectively. 

The samples were categorized into daytime and nighttime. Daytime samples were collected from 08:00 to 20:00 local time 130 

(LT), and nighttime samples were collected from 20:00 to 08:00 LT the next day. The samplers were equipped with Teflon 

filters deployed for the measurement of water soluble ions (Na+, Mg2+, K+, Ca2+, NH4
+, Cl-, SO4

2-, and NO3
-) via ion 

chromatography (Model: ICS 1000, Dionex). More information on the chemical analysis method can be found in Salvador and 

Chou (2014). Additionally, a field campaign conducted in the winter of 2021, focusing only on the analysis of PM2.5 was 

applied to validate the typical hygroscopicity trend in Kaohsiung. We opted for the 2013 dataset due to its comprehensive 135 

analysis encompassing both PM2.5 and PM2.5-10.  

To derive the hygroscopicity from samplings, the ions from IC analysis were converted to chemical components via the 

following sequence: ammonium sulfate, ammonium bisulfate, ammonium nitrate (when there is residual ammonium), sodium 

nitrate, and sodium chloride. With the assumption of the hygroscopicity of insoluble components as zero and negligible 

residual ions contribution (less than 5 % of total mass), the overall hygroscopicity can be derived by the volume fraction (i) 140 

weighted hygroscopicity from individual soluble component (i species) as follows: 

 𝜅 = ∑ 𝜀𝑖𝜅𝑖𝑖 = ∑
𝑣𝑖

𝑣𝑡𝑜𝑡𝑎𝑙
𝜅𝑖𝑖      (5) 
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where κi is the hygroscopicity of i species, vtotal is the volume of particles, and vi is the volume of i species. The conversion of 

particle mass to volume is based on a density of 1.20 g cm-3. The applied hygroscopicity, molecular weight, and density for 

the related chemical species are summarized in Table S2. With the assumption that these ions dissolve completely in the 145 

aqueous phase and assuming a van't Hoff factor of 1.0, which represents the maximum estimation, the hygroscopic contributed 

by the residual ions were found to be approximately up to 1.8 % and 6.4 % of the overall κ value for PM2.5 and PM2.5-10, 

respectively. Given their limited impact on the hygroscopic behavior of the particles, the contribution of the residual ions was 

not taken into account in the calculation. Additionally, another PM2.5 IC data for samples collected at the National Kaohsiung 

University of Science and Technology (22°46'22.4" N, 120°24'03.4" E) in Kaohsiung for the period of 8 – 18 December 150 

2021smaples was also applied for further comparison (no PM10 collection for that campaign). We opted for the 2013 dataset 

for more discussion due to its comprehensive analysis encompassing both PM2.5 and PM2.5-10. a field campaign conducted in 

the winter of 2021, focusing only on the analysis of PM2.5 was applied to validate the typical hygroscopicity trend in Kaohsiung.  

Furthermore, the composition data obtained from IC analysis was applied toused in the Extended Aerosol Inorganics Model 

(E-AIM) Model III (for systems containing H+, NH4
+, Na+, SO4

2, NO3
-, Cl-, and H2O) to evaluate the characteristics of volume 155 

variation as a function of RH in the range of 30 to 90 % (Clegg et al., 1998). The partitioning of selected trace gases (HNO3, 

HCl, NH3, and H2SO4) into the vapor phase was disabled to keep a consistent quantity of applied chemical species in the 

particle phase. The growth factor, Vamb/Vd, above DRH, was applied to retrieve κ value using Eq. 2 but without the Kelvin 

effect term (Luo et al., 2020). Both the individual sample concentrations and the overall average conditions were analyzed to 

evaluate the hygroscopic behavior of the particles.  160 

3 Results and Discussion 

3.1 Performance of AQB systems 

Figure 2 shows the time series of the meteorological parameters and pollutant concentrations between calibrated AQB and 

TW-EPA data from 14 to 17 February 2021. T, RH, CO, and Ox showed a good correlation with r > 0.9, while NO, NO2, 

PM2.5, and PM10 had a moderate correlation (r ≥ 0.48). The NMHC PID sensor can only detect the peaks ofhad consistent 165 

peaks with high NMHC concentrations and cannot could not reveal temporal variation at low concentrations, resulting in a 

low correlation. Overall, the AQB system performs well in capturing the ambient variability of pollutants stated above. The 

low correlation of SO2 was due to the cross-sensitivity of this SO2 sensor, which was highly sensitive to O3 and NO2 (about -

120 % reposted reported in the Technical Specification of Alphasense). SO2 O3 and NO2 generally has lowerhave higher 

concentrations than O3 and NO2SO2 and cause a significant contribution to, which dominate the response of the SO2 sensor. 170 

However, if high SO2 concentration events occur, the SO2 sensor might reflect the variation of SO2 concentration. The PM 

concentration in Fig. 2 was calibrated by using a simple linear regression, which roughly and could reflects the trend of mass 

concentration roughly but shows with a more significant deviations at higher RH due to the additional absorbed water, which 

isas discussed in section Sect. 3.2. Most gas species showed a high correlation (r ≥ 0.95) between different AQB systems 
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except for NMHC (r = 0.675) as summarized in Table S3. Further results and discussions focus on the PM analysis using AQB 175 

#1, which has a more consistent sampling rate during the observation period, unless stated otherwise.  

3.2 Derived Hygroscopicity 

Figures 3(a) and 3(b)3(c) show the scatter distribution of the mass concentrations between AQB #1 (with no calibration) and 

TW-EPA data for PM2.5 and PM10, respectively. Overall, the PM mass concentrations measured by AQB system appears to be 

higher than that measuredthose reported by TW-EPA. The results reveal a clear correlation betweenan apparent influence of 180 

ambient RH and the ratio of ambient particles to dry particles, indicating the contribution of water content. The red-shaded 

area represents a regression line with a slope corresponding to the inverse of the sensitivity coefficients (α) derived from data 

points at ambient RH ≤ 50 % (17 out of 356 points, 5%). The significant notable deviation of the red shaded area from the 1:1 

line towards the right side indicates the requirement of α > 1 corrections, contributed by the different measurement principles 

and calibration techniques, which may result from the assuming a particle  185 

density and refractive index (RI) (dust, density: 1.65 g cm-3, RI: 1.5 + i0i). The estimated α, as summarized in Table 1, are 

higher for PM10 than for PM2.5, i.e., 2.02 ± 0.34 vs 1.26 ± 0.16, which are reasonably conclusive as tested with more data points 

selected at higher RH thresholds (Fig. S2). The deviation in  α difference between PM2.5 and PM10 might be attributed to the 

complex composition of ambient particles, which differs from the samples used for instrument calibration, as well as possible 

sensitivity variations in OPC over time. With sensitivity calibration, tThe performance in at ambient RH ≤ 50 % exhibits a 190 

strong correlation with coefficient of determination (R2) at 0.98 for PM2.5 and 0.90 for PM10MAPE at 12.8%, 18.5%, and Root 

Mean Squared Error (RMSE) at 3.7 μg m-3, 10.3 μg m-3 for PM2.5 and PM10, respectively, as summarized in Table 2 excluding 

the two significant outliers (shown as hollow circles in Fig. 3). The correlation performance is similar to other real-time outdoor 

field studies reporting R2 ranging from 0.79 to 0.99 for PM2.5 and 0.82 to 0.84 for PM10The results confirm the effectiveness 

of OPCs in capturing PM concentrations, consistent with previous real-time outdoor field studies (Gillooly et al., 2019; 195 

Demanega et al., 2021; Sá et al., 2022; Crilley et al., 2018). Additionally, the OPC sampling flow rate has an impact on 

measured measurement performance. For AQB #1, the sampling flow rate remains relatively steady at 3.6±0.2 LPM. In 

contrast,AQB #1 maintained a steady rate at 3.6 ± 0.2 LPM, whereas AQB #2 exhibits two distinct time periods with sampling 

flow rates of 3.6-4.2 LPM for the first period and 3.2-3.6 LPM for the second period. The distinctive sampling flow rates result 

in a non-linear change in α, suggesting the need to separate the data into two parts to estimate the individual α (see Fig. S2S3). 200 

With the derived α, the hygroscopicities can bewere retrieved using Eq. (3), resulting in  ranging from 0.18 to 0.29 for PM2.5 

and 0.20 to 0.380.39 for PM10 (Table 1) during the studied period. Figures 3(d) and 3(f) show the scatter distribution of the 

derived dry concentration vs. TW-EPA concentration for PM2.5 and PM10, respectively. The results obtained from the two 

AQB systems exhibit slight differences but are consistent overall. Considering both the sensitivity coefficient and 

hygroscopicity, the performance of AQB in deriving dry PM concentration is significantly improved with lower MAPE, RMSE, 205 

and higher R2 than the results obtained using only the sensitivity coefficient, as summarized in Table 2.Figures 3(c) and 3(d) 

show the scatter distribution of the derived dry concentration vs. EPA concentration under the lowest MAPE for PM2.5 and 
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PM10, respectively.  However, due to the heterogeneity of composition among different sizes, PM10 can be divided into 

integrated fine particles (PM2.5) and coarse particles (PM2.5-10, 2.5 μm < Dp ≤ 10 μm) for further analysis. The estimated α 

value for PM2.5-10, as summarized in Table 1, is approximately one order of magnitude higher than that for PM2.5. The lower  210 

for PM2.5-10 might suggest a significant contribution from dust or other less hygroscopic species, consistent with the IC analyses 

in Table 3 and discussed further in Sect. 3.3. With the retrieved α and  for PM2.5 and PM2.5-10, Figure Fig. 3(e) shows the 

scatter distribution between the derived dry PM2.5-10 from AQB data and TW-EPA data, exhibiting a MAPE of 31.8 %, more 

significant than the 24.8 % for PM2.5. The higher MAPE might result from the low particle number concentration in the coarse 

mode, with only about 0.01 to 0.1 particles per bin cm-3 in the size range of 3.0 to 10.0 μm. Detection efficiency may be 215 

influenced by notable spatial variations. This observation aligns with the findings reported in the study by, aligning with the 

findings of Kaliszewski et al. (2020), which showed a reduced correlation between OPC-N3 measurements and reference 

instruments for larger particles. The dry PM10 derived from AQB through the divided PM2.5 and PM2.5-10 analysis demonstrates 

a better consistency with the reported TW-EPA data than the direct calibration method. This is evidenced by a lower MAPE 

in Fig. 3(g) (18.2%) compared to Fig. 3(f) (29.2%) and a significant improvement than the simple linear regression method, 220 

which has a higher MAPE at 62.5% (Table 2). This substantiates the importance of considering composition heterogeneity 

among particle sizes for accurate dry PM derivation., i.e., a lower MAPE in Fig. 3(f) than that in Fig. 3(d). The derived  for 

PM2.5-10 is 0.07–0.13, lower than that of PM2.5 (0.18-0.29). The lower  for PM2.5-10 might suggest a significant contribution 

from dust or other less hygroscopic species, aligning with the IC analysis in Table 2 and discussed further in section 3.3. 

3.3 Aerosol Composition and E-AIM Model 225 

The major soluble composition and concentrations obtained from the IC analysis are summarized in Table 2Table 3, showing 

mean PM2.5 and PM2.5-10 concentrations of 67 ± 19 and 36 ± 7 μg m-3, respectively. The determined PM2.5 soluble composition 

constitutes approximately 53 % of the mass fraction and is predominantly composed of NH4
+, SO4

2-, and NO3
-. These 

components, which are formed through chemical reactions involving industrial and agricultural emissions. In contrast, ~30% 

of PM2.5-10 exhibits ~ 30 % of is soluble components, including NO3
-, SO4

2-, Na+, Cl-, NH4
+, and some alkaline earth metal ions 230 

(Ca2+ and Mg2+), and a larger more significant proportion of is insoluble components (~70 %), likely attributed to dust, metallic 

componentselements, and unanalyzed organic components. The increased sea salt content (Na+ and Cl-) is likely transported 

by the sea breeze in during the daytime, while the increased fractions of Ca2+ and Mg2+ might correspond to sand or dust 

particles (Li et al., 2022). The temporal variation of derived κ, based on the IC soluble composition analysis, ranges from 0.14 

to 0.26 for PM2.5 and 0.06 to 0.21 for PM2.5-10, as shown in Fig. S3(a)S4(a) and summarized in Table 1. A similar analysis for 235 

the winter of 2021 yielded a consistent κ range for PM2.5, as illustrated in Fig. S5. This consistency across distinct study periods 

indicates typical ambient PM2.5 hygroscopic characteristics in Kaohsiung City during winter, which can be applied for further 

discussion with the AQB data.The obtained κ value for PM2.5 is consistent with that derived from data in the winter of 2021, 

as illustrated in Fig. S4. This consistency highlights the reliability of our findings, demonstrating the robustness across distinct 
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study periods. For coarse particles, tThe more significant variability in κ for PM2.5-10 compared to PM2.5 can be attributed to 240 

the pronounced significant fluctuations in the soluble composition of coarse particles, primarily driven by substantial quantities 

of thenardite (Na2SO4) and halite (NaCl) (Tang et al., 2019). Due to the dominance of the northeast monsoon wind during the 

filter sampling period, the influence of the sea-land breeze was relatively weak to cause apparent diurnal variation in κ. The 

derived κ value for PM2.5 from IC analysis (0.14-0.27) are is consistent with that obtained from AQB analysis (~0.22), while 

the κ value for PM2.5-10 from IC analysis (0.06-0.21) is relatively higher than that from AQB analysis (~0.080.09) (Table 1 and 245 

Fig. 4(a)). The κ differences in κ between the IC and AQB analyses could be attributed to the spatial and temporal variations 

in aerosols, as well as the different campaign years and locations (~20 km apart, as shown in Fig. S1). These differences might 

also be influenced by technique uncertainties, such as ammonia and nitrate sampling evaporation during filter sampling (Hering 

and Cass, 1999; Chen et al., 2021), as well as OPC detection uncertainties and the required parameter assumption in the 

calculation. Overall, the derived κ values from the OPC data in AQB likely reflect the mean hygroscopicity of both integrated 250 

fine and coarse particles. 

The particle growth might follow the κ-Köhler equation (Eq. 2) when all soluble species are fully dissolved, typically occurring 

above the DRH. With the averaged soluble composition determined from the IC analysis, HGF as a function of RH calculated 

using E-AIM is shown in Fig. 5. For PM2.5, partial deliquescence initiates at 60 % of RH resulting inwith some residual solid 

components such as ((NH4)2SO4 and 2NH4NO3.(NH4)2SO4). Complete dissolution occurs around an RH of ~72 % as the DRH. 255 

In the case of PM2.5-10, water uptake begins at 42% RH = 42 %, leaving a residual solid composed of 3NH4NO3(NH4)2SO4, 

NH4Cl, and NaNO3.Na2SO4.H2O until reaching RH of 68 %. The daily DRH happens at 71.3 ± 4.9% and 67.1 ± 3.4% for 

PM2.5 and PM2.5-10, respectively, as shown in Figs. S3(b)S4(b) and S3(c)S4(c). In the AQB data analysis, an RH threshold of 

≤≦ 50% was applied to determine the sensitivity. At this threshold, PM2.5 particles have not yet deliquesced, and PM2.5-10 

shows minimal volume growth, indicating the applicability of the selected RH threshold for sensitivity calculation. On the 260 

other hand, a DRH threshold of RH ≥ 70 % was applied to ensure sufficient data points for κ calculation but slightly lower 

than the DRH of PM2.5. To assess the potential bias associated with the selected DRH threshold, Fig. S5 S6 shows the HGF of 

mean soluble composition as a function of RH estimated using E-AIM. With Eq. 2 (without the Kelvin effect term) and the 

assumption of volume additivity between particle and updated uptaken water, κ derived using 70 % and 75 % thresholds show 

less than a 1% of the difference for both integrated fine and coarse compositions, but 13 % and 6 % less than that estimated 265 

from the composition of PM2.5 and PM2.5-10, respectively. The κ deviation by due to the applied threshold appears negligible 

in this studied conditionstudy. The performance is similar to that obtained from the analysis of AQB data analysis. As the 

DRH threshold becomes smaller, the derived  decreases slightly but with a broader uncertainty (Fig. S6S7). However, the 

temporal composition variation for in the applied AQB data set (~ 16 days of observation) might lead to a higher variation. 

Furthermore, the 13 % lower κ for E-AIM than the composition estimation is likely due to the RH-dependent ionic activities 270 

following the Zdanovskii-Stokes-Robinson relation in E-AIM. The calculation based on Eq. 2, with volume additivity 

assumptions, might overestimate the liquid water content. Similar findings were reported by Kreidenweis et al. (2008) 

regarding the percentage difference between κ-Köhler equation-derived and E-AIM-derived water contents increasing with 
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RH. Overall, κ derived from the growth profile might be smaller than the composition estimation (associated with the cloud 

nuclei activation), likely due to the assumptions of volume additivity and the fixed van’t Hoff factor in the κ-Köhler equation.  275 

3.4 Uncertainty Discussion 

For simplicity, we derived κ from AQB data without considering the Kelvin effect and under an assumed particle density. The 

ignorance of the Kelvin effect might result in minor differences for particles larger than 100 nm under sub-saturated conditions 

(Pope et al., 2010; Topping et al., 2005; Crilley et al., 2018). To confirm the appropriateness, we assessed biases for particles 

at 0.1 and 1 µm without considering the Kelvin effect, as shown in Fig. S7S8. For particles with a κ value of 0.3 under RH 280 

ranging from 70% to 95 %, the deviation of κ due to neglecting the Kelvin effect is -10 % for 0.1 μm particles and -1 % for 1 

μm particles, decreasing with particle diameter. The growing particle diameter is overestimated under the same RH conditions 

because the positive Kelvin effect is ignored. To compensate for the deficiency in particle saturation, the balanced particle 

diameter needs to be more significant with a larger solute effect. However, the average mass-weighted mean diameter for 

PM2.5 is about 1.3 µm. Therefore, the ignorance of Kelvin's effect on thein our analysis might havehas limited influence on the 285 

derived κ. This phenomenon influence becomes more significant with increasing RH, resulting in a more considerable 

underestimation of κ values under high RH conditions. During our monitoring campaign, the surrounding RH ranged from 31 

to 92 %, and we focused on deriving κ values for integrated fine and coarse particles. Therefore, the assumption of a negligible 

Kelvin effect is proper for this study.  

Furthermore, the derived κ using Eq. (3) for AQB data or Eq. (5) for IC data is notably influenced by the assumed particle 290 

density. Assuming that the undetermined composition mainly consists of secondary organic species, having a density of 1.2 g 

cm-3, within the reported densities ranging from 0.9 to 1.6 g cm-3 depending on the formation process (Malloy et al., 2009; 

Kostenidou et al., 2007; Zelenyuk et al., 2008), along with the properties of analyzed soluble chemical species summarized in 

Table S2, the calculated densities for PM2.5 and PM2.5-10 are 1.42 ± 0.03 and 1.34 ± 0.07 g cm-3, respectively (Fig. S8S9). This 

increases densities by about 15 % and 10 % for PM2.5 and PM2.5-10, respectively. Consequently, The the derived κ from AQB 295 

data increases by approximately 17 % and 9 % for PM2.5 and PM2.5-10, respectively, while the derived κ from IC data is 

proportional to density (i.e., 15 % and 10 % for PM2.5 and PM2.5-10, respectively) as shown in Fig. 4(b). Overall, the derived κ 

exhibits consistency between the AQB and IC analysis. This bias might be intensified if components having a higher portion 

of composition with larger a higher density, such as black carbon (a non-hygroscopic species with κ ~ 0) having a high density 

of about 1.8 g cm-3 (Park et al., 2004; Shiraiwa et al., 2008) are taken into consideration. 300 

4 Conclusion 

In this study, we evaluated the performances of home-built Air Quality Box (AQB) systems equipped with low-cost sensors 

and focused on the ambient variability of particulate matter (PM) concentrations to derive the hygroscopicity of PM and the 

conversion to dry particle concentrations. The AQB systems revealed their effectiveness in capturing meteorological 
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parameters and most pollutant concentrations with high correlations (r ≥ 0.96) for temperature, relative humidity, CO, and Ox 305 

(O3 + NO2) and moderate correlations (r ≥ 0.48) for NOx and PM, as compared to TW-EPA data. In the PM analysis, PM10 

was divided into PM2.5 and PM2.5-10 to account for compositional heterogeneity among different particle sizes. Comparing the 

AQB-monitored ambient PM data and the TW-EPA data (for dry particles) at RH ≤ 50%, the derived sensitivity coefficients 

(α) for PM2.5-10 (10.58 - 12.37) were higher than those for PM2.5 (1.26 - 1.44) likely due to the significant sensitivity variation 

in the OPC over time. By considering hygroscopicity with the κ-Köhler equation and assuming a constant composition density 310 

for sensitivity-corrected AQB data, the derived dry particle mass concentrations show improved consistency with TW-EPA 

data compared to the simple linear regression approach. The derived κ values range from 0.15 to 0.29 for PM2.5 and 0.05 to 

0.13 for PM2.5-10, consistent with those from IC soluble composition analysis (0.14 to 0.27 for PM2.5 and 0.06 to 0.21 for PM2.5-

10) and primarily influenced by the proportion of soluble components, ~53% in PM2.5 and ~30% in PM2.5-10. The sensitivity 

analysis of various parameters showed that the effects of chosen deliquescence relative humidity (DRH) thresholds and Kelvin 315 

effects had a minor impact on κ values (less than 1%). Conversely, recalculating particle densities for PM2.5 (1.42 ± 0.03 g cm-

3) and PM2.5-10 (1.34 ± 0.07 g cm-3) led to higher κ values by approximately 17% and 9%, respectively, compared to the results 

assuming 1.2 g cm-3. Overall, the AQB systems are helpful in understanding the temporal and spatial variability of air quality 

by effectively monitoring pollutant concentrations and providing the capability for hygroscopicity derivation. This study also 

emphasizes the need for careful consideration of uncertainties and calibration techniques to accurately interpret low-cost sensor 320 

data in atmospheric research.In this study, we evaluated the performances of home-built Air Quality Box (AQB) systems 

equipped with low-cost sensors and focused on the ambient variability of particulate matter (PM) concentrations to derive the 

hygroscopicity of PM. The AQB systems revealed their effectiveness in capturing meteorological parameters and most 

pollutant concentrations. Notably, compared to EPA data, high correlations were observed for parameters such as temperature, 

relative humidity, CO, and Ox (O3 + NO2) (r ≥ 0.96). While NOx and PM exhibited moderate correlations (r ≥ 0.48), the 325 

NMHC sensor showed limitations in capturing temporal variations at low concentrations, and the SO2 sensor faced cross-

sensitivity challenges. Calibration of PM concentration through linear regression demonstrated general agreement with EPA 

data, although deviations at higher relative humidity indicated the influence of absorbed water. Applying the κ-Köhler equation 

and assuming constant particle density, AQB-monitored PM concentration can be converted to dry particle mass concentration, 

aligning well with EPA data after OPC sensitivity correction. The derived hygroscopicity provides the relationship between 330 

ambient relative humidity and particle water content. By dividing PM10 into PM2.5 and PM2.5-10, considering the composition 

heterogeneity, we achieved more precise dry PM10 concentrations with lower MAPE. The sensitivity coefficients (α) for PM2.5-

10 (10.58 ~ 12.37) were higher than for PM2.5 (1.26 ~ 1.44), reflecting different measurement and calibration approaches. The 

higher α in the coarse mode indicated that the detection efficiency may be influenced by notable spatial variations with the 

low particle number concentration. The derived κ from AQB data, ranging from 0.15 to 0.29 for PM2.5 and 0.05 to 0.13 for 335 

PM2.5-10, showed consistent with those from IC soluble composition analysis (0.14 to 0.27 for PM2.5 and 0.06 to 0.21 for PM2.5-

10). Variations in IC analysis were primarily influenced by the proportion of soluble components, higher in PM2.5 (~53 %) than 

in PM2.5-10 (~30 %). The lower  for PM2.5-10 than PM2.5 might suggest a significant contribution from dust or other less 
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hygroscopic species. Our analysis also considered the effects of chosen deliquescence relative humidity (DRH) thresholds and 

Kelvin effects, which were found to have a minor impact on underestimating κ values (less than 1 %). Conversely, recalculating 340 

particle densities for PM2.5 (1.42±0.03 g cm-3) and PM2.5-10 (1.34±0.07 g cm-3) led to an increase in the derived κ by 

approximately 17 % and 9 %, respectively, compared to the initial assumption of 1.2 g cm-3. Overall, the AQB systems proved 

effective in monitoring pollutant concentrations and deriving hygroscopicity, providing valuable data for understanding air 

quality dynamics. The method to assess low-cost sensors near EPA stations, might enhance our understanding of the temporal 

and spatial variability of aerosol hygroscopicity. The study also emphasizes the need for careful consideration of uncertainties 345 

and calibration techniques for accurate interpretation of AQB data in atmospheric research.  
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Tables 

Table 1: The sensitivity coefficients and the hygroscopicity for PM2.5, PM10, and PM2.5-10, respectively. 

 
Sensitivity coefficient (α) Hygroscopicity (κ) 

AQB #1 AQB #2* AQB #1 AQB #2 IC (species) IC (E-AIM) 

PM2.5 1.26 ± 0.16 1.44 ± 0.20 0.18 – 0.29 0.15– 0.24 0.14 – 0.27 0.14 – 0.26 

PM10 2.02 ± 0.34 2.20 ± 0.38 0.20 – 0.39 0.18 – 0.30   

PM2.5-10 12.37 ± 1.33 10.58 ± 2.90 0.07 – 0.13 0.05 – 0.09 0.06 – 0.21 0.08 – 0.21 

* the sensitivity of AQB #2 presents the value in the period of sampling flow rates at 3.6-4.2 LPM 485 
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Table 2: Performance metrics of different calibration methods for PM2.5, PM2.5-10, and PM10. 

 PM2.5 PM2.5-10 PM10 

 RH≤50% 

onlya 

All data 

(no κ) 

All data  

(κ = 0.29) 

RH≤50% 

onlya 

All data 

(no κ) 

All data  

(κ = 0.09) 

RH≤50% 

onlya 

All data 

(no κ) 

All data  

(κ = 0.36) 

(PM2.5+ 

PM2.5-10) c 

applied α 1.26 ± 0.16 1.04 1.40 12.37 ± 1.33 10.77 13.16 2.02 ± 0.34 1.69 2.36 — 

MAPE (%) 21.3 (12.8) 48.8 24.8 15.9 (11.5) 37.9 31.8 32.8 (18.5) 62.5 29.2 18.2 

RMSE  

(μg cm-3) 
20.5 (3.7) 29.1 11.3 4.9 (2.8) 9.4 9.1 42.6 (10.3) 54.7 26.9 15.9 

R2 b -0.55 (0.51) -3.49 0.32 0.31 (0.78) 0.57 0.59 -4.18 (-0.58) -4.74 -0.38 0.51 

a Only for data points at RH ≤50%. The value in parentheses is the performance result without two significant outliers shown in Fig. 3  

b Coefficient of determination (R2) is calculated as the proportion of variation in the calibrated dry mass concentration. 

c The combination of calibrated data from PM2.5 All data (κ= 0.29) and PM2.5-10 All data (κ= 0.09). 490 
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Table 23. The total mass concentration, the major water soluble composition and concentration (mean value and standard deviation 

in μg m-3) of winter PM2.5 and PM2.5-10 in Kaohsiung by ion chromatography. (others presented the insoluble composition) 

Ion species Total  Na+ Mg2+ K+ Ca2+ NH4
+ Cl- SO4

2- NO3
- others 

PM2.5 
67.0  

± 19.2 

0.31  

± 0.14 

0.06  

± 0.02 

0.45 

± 0.14 

0.08  

± 0.04 

8.24  

± 2.68 

1.21  

± 0.91 

13.63  

± 4.72 

11.89  

± 4.88 

31.1  

± 8.0 

PM2.5-10 
36.8  

± 7.64 

1.50  

± 0.52 

0.21  

± 0.06 

0.04 

± 0.02 

0.74  

± 0.25 

1.07  

± 0.69 

1.28  

± 0.69 

1.87  

± 1.12 

4.35  

± 1.41 

25.7 

± 6.4 

 

  495 
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Figures 

 

Figure 1: The design of the AQB system.  

  



20 

 

 500 

Figure 2: The temporal profiles of calibrated AQB data (red lines) and the TW-EPA measurement (grey lines) for (a) temperature, 

(b) relative humidity, (c) CO, (d) NO, (e) NO2, (f) Ox (≡ NO2 + O3), (g) Non-methane hydrocarbon, (h) SO2, (i) PM2.5, and (j) PM10 

during the period of 14 – 17 February 2021 (4 of 16 days in period). All the species were calibrated using linear regression. 
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 505 

Figure 3: The correlation of mass concentration between TW-EPA and OPC in AQB #1 (raw data or calibrated data): (a, d) PM2.5, 

(b, e) PM2.5-10, (c, f) PM10, and (f) separated calibration PM10, respectively. (a-c) are the raw data, while (d-g) are the calibrated 

data.(a, c) PM2.5, (b, d) PM10, (e) PM2.5-10, and (f) separated calibration PM10, respectively. (a-b) are the raw data, while (c-f) are 

the calibrated data. Marker The marker color corresponds to relative humidity. The hollow points are the two significant outliers 

under conditions of RH ≤ 50%. The shading shaded region is therepresents the data associated with the sensitivity coefficient 510 
(“α”). The value in parentheses is the MAPE in percentage. 
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Figure 4: The hygroscopicities of PM2.5 and PM2.5-10 derived based on data from AQBs and ion chromatography with the 

assumption particle density of (a) 1.2 g cm-3
 and (b) 1.42 ± 0.03 and 1.34 ± 0.07 g cm-3 for PM2.5 and PM2.5-10, respectively, for PM2.5 515 

and PM2.5-10 based on partitioning analyzed results in Kaohsiunganalyzed composition. Average The average value is shown as a 

red diamond. 
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Figure 5: The volume ratio variation of a given soluble composition as a function of RH with under thermodynamic equilibrium 520 
calculated using E-AIM at 298.15 K. (composition is the averaged IC data with a molarity ratio of Na+:NH4

+:Cl-:SO4
2-:NO3

- as 

14:458:0:142:1887:229:0:71:94 for PM2.5, and 65:59:16:19:70 for PM2.5-10.) 
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Table S1: The compared sensors in AQB and instruments of EPA for every species. 

 AQB EPA 

T, RH  Seeed (SHT31) Metone (083D) 

CO Alphasense (CO-B4) HORIBA (APMA360) 

NOx 

Alphasense (NO-B4) for NO  

Alphasense (NO2-B431) for NO2 

ECOTECH (ML9841) 

O3 Alphasense (OX-B431) ECOTECH (ML9810) 

SO2 Alphasense (SO2-B4) ECOTECH (ML9850) 

VOC Alphasense (PID-AH2) Horiba (APHA 360) 

PM Alphasense (OPC-N2) METONE (BAM1020) 
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Table S2: The hygroscopicity, molecular weight, and density of salts used in deriving hygroscopicity deriving. 

salt (NH4)2SO4 (NH4)HSO4
 NH4NO3

 NaNO3 NaCl 

hygroscopicity 0.61 0.7 0.67 0.88 1.28 

molecular weight (g mol-1) 132 115 80 85 58.5 

density (g cm-3) 1.70 1.78 1.72 2.26 2.17 

25 
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Table S3: The correlation coefficient (r) for measured parameters between two AQB systems and between 

AQB #1 and the TW-EPA Nanzi station  

r  AQB #1 vs AQB #2 AQB #1 vs TW-EPA 

T 0.958 0.948 

RH 0.949 0.932 

CO 0.995 0.976 

NO 0.976 0.624 

NO2 
0.944 0.504 

Ox (NO2+O3) 0.979 0.961 

VOC 0.675 -0.373 

SO2 0.973 0.343 

PM2.5 
0.978 0.689 

PM10 
0.967 0.483 
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Figure S1. Location of TW-EPA Nanzi station (AQB calibration campaign) site and Fooyin University (2013 

sampling campaign). (from © Google Earth 2024 and © Google Maps 2024) 
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Figure S2: The determined sensitivity as a function of RH thresholds for PM2.5 (red), PM10 (blue) and PM2.5-35 
10 (green). The shaded area represents the mean value ± 0.5σ  
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Figure S2S3: The correlation of mass concentration between TW-EPA and OPC in AQB #2: (a, ca, d) PM2.5, 

(b, db, e) PM10PM2.5-10, (ec, f) PM2.5-10PM10, and (fg) separated calibration PM10. (a, ba-c) are the raw data, 40 
while (c, fd-g) are the calibrated data. Marker The marker color corresponds to relative humidityRH. The 

shaded region corresponds torepresents the data associated with the sensitivity coefficient (“α”). The data 

show the first period (red paved/circle points) and the second period (purple paved/star points). The value 

in parentheses is the MAPE in percentage.  
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 45 

Figure S3S4: The temporal profiles of (a) derived κ by ion chromatography andfrom IC data, (b) DRH 

determined from E-AIM and (c) DRH box-plot distribution for the 2013 winter campaign period. (hollow 

circle: daytime samples; solid circle: nighttime samples; diamond: mean value; outliers: < 1st quartile Q1-

1.5 interquartile range (IQR) or > 3rd quartile Q3+1.5 IQR).   
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 50 

Figure S4S5: The hygroscopicity of PM2.5 derived by from AQBs and ion chromatographyIC data with the 

assumptionan assumed particle density of 1.2 g cm-3. The samples of yearIC_2021 is from 2021 were 

samples collected at the National Kaohsiung University of Science and Technology (22°46'22.4" N 

120°24'03.4" E) in Kaohsiung for the period of 8 – 18 December 2021. (diamond: mean value; outliers: < 1st 

quartile Q1-1.5 interquartile range (IQR) or > 3rd quartile Q3+1.5 IQR). 55 
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Figure S5S6: The volume ratio (ambient state compared to dry state) as a function of RH for (a) integrated 

fine particlesPM2.5 and (b) coarse particlesPM2.5-10 using E-AIM and, along with the fitting lines using κ-

Köhler equation (Eq. 2) with data points above the threshold as indicated in the legend. (sSample mean 

composition,  with the molarity ratio of Na+:NH4
+:Cl-:SO4

2-:NO3
- is 14:458:0:142:67:229:0:71:94 and 60 

65:59:16:19:70 for PM2.5 and PM2.5-10, respectively. There is no insoluable compositionNo insoluble 

composition is taken into account in the calculation.) 
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Figure S6S7: The mass ratio (ambient state compared to dry state) as a function of RH for (a, d) PM2.5, (b, 

de) PM10, and (c, f) PM2.5-10 using for AQB#1 and #2 data comparedcomparison. Marker The marker color 65 

corresponds to relative humidityRH. The dashed lines indicate the inverse of the sensitivity coefficient (α) 

obtained from data at RH ≤< 50 %.  
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Figure S7S8: The particle growth diameter ratio as a function of RH for particle sizes of 0.1 μm (red) and 

1.0 μm (blue) μm. Points are diameter ratio with the Kelvin effect considered at κ = 0.3 for 70-95 % of RH 70 
using Eq. 2, and solid lines are the fitting results for the points to derive κ without the Kelvin effect term. 
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Figure S8S9: The temporal profiles of mass and volume concentration of chemical species from IC analysis 

for (a, c) PM2.5 and (b, d) PM2.5-10. Column The column color corresponds to the contribution of different 75 
components. (with others are characterized as secondary organic compositions having a density of 1.2 g cm-

3). The number on the upper right corner is the mean ± 1 SD. 

 


