

1	Uncertainties in temperature statistics and fluxes determined by
2	sonic anemometer due to wind-induced vibrations of mounting arms
3	
4	Zhongming Gao ^{1,2,3} , Heping Liu ^{3,*} , Dan Li ⁴ , Bai Yang ⁵ , Von Walden ³ , Lei Li ^{1,2} , Ivan Bogoev ⁵
5	
6	¹ School of Atmospheric Sciences, Sun Yat-sen University, Southern Marine Science and
7	Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
8	² Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Sun Yat-sen
9	University, Zhuhai, Guangdong, China
10	³ Laboratory for Atmospheric Research, Department of Civil and Environmental Engineering,
11	Washington State University, Pullman, Washington, USA
12	⁴ Department of Earth and Environment, Boston University, Boston, Massachusetts, USA
13	⁵ Campbell Scientific, Inc., Logan, Utah, USA
14	
15	
16	*Corresponding to: Heping Liu (heping.liu@wsu.edu)
17	
18	
19	Abstract
20	Accurate air temperature measurements are essential in eddy covariance systems, not only
21	for determining sensible heat flux but also for applying the density effect corrections (DEC) to
22	water vapor and CO_2 fluxes. However, the influence of wind-induced vibrations of mounting
23	structures on temperature fluctuations remains a subject of investigation. This study examines 30-
24	min average temperature variances and fluxes using eddy covariance systems, combining
25	Campbell Scientific Anemometer Thermometry (CSAT3B) with closely co-located fine-wire
26	thermocouples alongside LI-COR CO ₂ /H ₂ O gas analyzers at multiple heights above a sagebrush
27	ecosystem. The variances of sonic temperature after humidity corrections (T_s) and sensible heat
28	fluxes derived from T_s are underestimated (e.g., by approximately 5% for temperature variances
29	and 4% for sensible heat fluxes at 40.2 m, respectively) as compared with those measured by a
30	fine-wire thermocouple (T_c) . Spectral analysis illustrates that these underestimated variances and

31 fluxes are caused by the lower energy levels in the T_s spectra than the T_c spectra in the low 32 frequency range (natural frequency < 0.02 Hz). This underestimated T_s spectra in the low 33 frequency range become more pronounced with increasing as wind speeds, especially when wind 34 speed exceeds 10 m s⁻¹. Moreover, the underestimated temperature variances and fluxes cause overestimated water vapor and CO₂ fluxes through DEC. Our analysis suggests that these 35 36 underestimations when using T_s are likely due to wind-induced vibrations affecting the tower and 37 mounting arms, altering the time of flight of ultrasonic signals along three sonic measurement 38 paths. This study underscores the importance of further investigations to develop corrections for 39 these errors. 40

Keywords: Eddy covariance, CO₂ fluxes, Fine-wire thermocouple, Sonic temperature; High
winds

- 43
- 44

45 1. Introduction

46 The eddy covariance (EC) technique has been widely used to measure turbulent fluxes of heat, water vapor, CO₂, and other scalars between terrestrial ecosystems and the atmosphere (Chu 47 48 et al., 2021; Lee et al., 2014; Missik et al., 2021; Tang et al., 2019; Wang et al., 2010). It is 49 instrumental in studying micrometeorological processes in the atmospheric surface layer (Eder et 50 al., 2013; Gao et al., 2018; Guo et al., 2009; Li et al., 2018; Zhang et al., 2010). Despite 51 considerable advancement in the EC technique (Burns et al., 2012; Frank et al., 2013; Fratini et al., 2012; Horst et al., 2015; Liu et al., 2001; Mauder et al., 2007; Mauder and Zeeman, 2018; 52 53 Wilczak et al., 2001), uncertainties in EC fluxes remain a great concern (Loescher et al., 2005; Massman and Clement, 2006; Peña et al., 2019), including the notable issue of the surface energy 54 55 balance closure (Mauder et al., 2020). Thus, improving the accuracy of EC flux measurements 56 and identifying the potential sources of uncertainties in these fluxes are critically important.

In most EC applications, sonic-derived air temperature after corrections is usually employed for determining sensible heat fluxes (H) (Liu et al., 2001; Schotanus et al., 1983). However, erroneous H determined by sonic anemometers have been reported especially under high wind conditions (e.g., Burns et al., 2012; Smedman et al., 2007). For instance, Smedman et al. (2007) utilizing two co-located Gill sonic anemometers (Models R2 and R3) observed that sonic-

62 determined H exhibited larger magnitudes than H measured with an alternative temperature sensor. They also noted that for wind speed exceeding 10 m s⁻¹, a correction highly dependent on wind 63 speed is essential for sonic-determined H (Smedman et al., 2007). Burns et al. (2012), employing 64 a Campbell Scientific sonic anemometer (Model CSAT3) and a co-located type-E thermocouple 65 (wire diameter of 0.254 mm), reported substantial errors for H determined from the CSAT3 sonic 66 anemometer with a firmware of version 4.0 for wind speed above 8 m s⁻¹. Such large errors in H 67 68 result from inaccurate sonic-derived temperature due to an underestimation of the speed of sound, though errors caused by sonic anemometer transducer shadowing can also cause errors in H (Frank 69 70 et al., 2013; Horst et al., 2015). Wind-induced vibrations in the tower and mounting arms, 71 particularly under windy conditions, were speculated to be potential contributors, causing spikes 72 in the signals of sonic temperature (Burns et al., 2012). However, the precise impact of vibration-73 induced errors in sonic-derived temperature on temperature variances and sensible heat fluxes, 74 especially for tall towers under strong wind conditions, has remained unexplored.

75 Accurate air temperature measurements are not only important for determining H but also 76 crucial for estimating other scalar fluxes (e.g., water vapor and CO₂) through density effect 77 corrections (DEC hereafter; Detto and Katul, 2007; Gao et al., 2020; Lee and Massman, 2011; 78 Sahlée et al., 2008; Webb et al., 1980). The measured high-frequency time series of densities of 79 water vapor, CO₂, and other scalars are subjected to the effects of density fluctuations of dry air and other components in the atmosphere, as well as the fluctuations of air pressure (Lee and 80 81 Massman, 2011; Webb et al., 1980). Correcting for these effects involves applying corrections to 82 either the calculated raw fluxes or to the high-frequency time series of the scalar density fluctuations (Webb et al., 1980; Detto and Katul, 2007; Gao et al., 2020; Sahlée et al., 2008). Any 83 84 errors or uncertainties in sonic-derived temperature are anticipated to propagate, and in some certain cases, be amplified by the correction algorithms applied to the scalar fluxes, leading to 85 86 heightened uncertainties in these fluxes (Liu et al., 2006).

The objective of this study Is to scrutinize the uncertainties in temperature statistics and fluxes determined by sonic anemometers, with particular attention to the potential influence of vibrations of the tower and mounting arms under high wind speeds. The data employed were collected from three levels of Campbell Scientific sonic anemometers (Model CSAT3B) alongside co-located fine wire thermocouples and open-path infrared gas analyzers. By comparing the sensible heat fluxes calculated using air temperature from the sonic anemometers and the

- thermocouples, we assess vibration-induced errors in sensible heat fluxes at the three heights. The findings reveal that the sonic anemometers underestimate the temperature variances and fluxes compared to the thermocouples. Furthermore, we investigate the propagation of these vibrationinduced errors to water vapor and CO_2 fluxes through the density effect corrections.
- 97

98 2. Materials and methods

99 2.1 Experiment and data

100 The experiment was conducted at the National Oceanic and Atmospheric Administration 101 (NOAA) Grid 3 area (Station ID: GRI) situated on the western edge of the Snake River Plain in southeastern Idaho, USA (43.59°N, 112.94°W; 1,500 m above mean sea level; Figure 1). The 102 103 closest mountains are located approximately 13 km northwest from GRI. Based on the data from 104 multiple automated meteorological observation stations in the area, southwesterly and 105 northeasterly winds prevail during the day and night, respectively (Finn et al., 2016). Under these 106 prevailing winds, GRI has a relatively flat and uniform upwind fetch (Finn et al., 2018; Lan et al., 107 2018). The vegetation primarily comprises shrubs and grasses, each with a roughness length and 108 displacement height of a few centimeters (Finn et al., 2016).

109 The experiment utilized a 62-m tower and a 10-m tower at the Grid 3 area to mount the 110 sensors (Figure 1). The 62-m tower was guyed at eight levels and the 10-m tower was guyed at 111 one level. 3.6m (12-ft) retractable booms were horizontally braced to the 62-m tower to attach the 112 CSAT3s and IRGAs. These sensors were mounted at the end of the booms, and the CSAT3s were 113 well-aligned to the booms. As a result, the CSAT3s and IRGAs were positioned at least 2.0 m away from the 62-m tower. On the 10-m tower, 1.8 m (6-ft) poles were utilized to mount the 114 115 CSAT3s and IRGAs, positioning the sensors approximately 1.5 m away from the tower's frame 116 structures.

117

Figure 1. Photos of the 62-m and 10-m towers at the Idaho National Laboratory (INL) site in southeastern Idaho, and the instrumentational configuration of the field study.

120

Throughout the experiment, multiple levels of EC systems were deployed. These included 121 122 two models of 3D sonic anemometers from the same manufacturers (Model CSAT3B and CSAT3, 123 Campbell Scientific, Inc.) and three models of infrared gas analyzers from the same manufacturers 124 (IRGA; Model LI7500RS, LI7500A, and LI7500, LICOR, Inc.). CSAT3s measured the three-125 dimensional wind velocity components (u, v, and w) and the sonic air temperature $(T_{s,m})$, while 126 IRGAs measured the densities of water vapor (ρ_v) and CO₂ (ρ_c). Co-located with CSAT3s and 127 IRGAs, Type-E fine wire thermocouples (Model FW3, Campbell Scientific, Inc.) were used to 128 measure air temperature (T_c). Specifically, the FW3 thermocouple is composed of a chromel wire 129 and a constantan wire with diameters of 0.0762 mm. The FW3 determines T_c by measuring the 130 voltage potential differences created at the junction of the two wires due to the temperature 131 difference, whereas $T_{s m}$ is determined based on the relationship between sonic virtual temperature 132 and the speed of sound (Liu et al., 2001). This distinction in temperature measurement principles 133 between CSAT3s and FW3 implies that the measured $T_{s m}$ and T_c are independent of each other. 134 Furthermore, T_c is expected to remain unaffected by vibrations of the tower and mounting arms. 135 In this study, we also recorded the inclination of the CSAT3B (e.g., pitch and roll angle

measurements) given by an integrated inclinometer in the CSAT3B. Pitch angle is defined as the angle between the gravitationally horizontal plane and the CSAT3B x-axis, and roll angle is defined as the angle between the gravitationally horizontal plane and the CSAT3B y-axis. The sonic roll and pitch angles were stored as 30-min averages.

Three dataloggers (Model CR1000X, Campbell Scientific, Inc.) were employed to sample the high-frequency instruments (i.e., sonic anemometer, fine-wire thermocouple, and gas analyzer) at 10 Hz. Each datalogger is equipped with a GPS receiver (Model GPS16X-HVS, Garmin International, Inc.) to synchronize the datalogger clocks. Additionally, a variety of meteorological measurements were conducted at GRI, including net radiation, air temperature, relative humidity, soil moisture, soil temperature, and soil heat fluxes. The data examined in this study spans from 25 April to 31 July 2021, collected at three heights: 40.3, 23.0 and 12.8 m.

147

148 2.2 Post-field data processing

The data processing mainly entailed despiking, double rotation for the wind components (Wilczak et al., 2001), sonic temperature conversion (Liu et al., 2001; Schotanus et al., 1983), and application of DEC to the raw fluxes of latent heat and CO₂ (Webb et al., 1980). However, corrections for the effects of humidity and density fluctuations in this study are applied to the turbulent fluctuations of sonic temperature, ρ_v , and ρ_c , respectively (Detto and Katul, 2007; Gao et al., 2020; Sahlée et al., 2008; Schotanus et al., 1983; Webb et al., 1980). For each 30-min interval, the corrected turbulent fluctuations of sonic temperature (T'_s), ρ'_v , and ρ'_c are determined by,

$$T'_{s}(t) = T'_{s_{m}}(t) - 0.51 \frac{\rho'_{\nu}(t)}{\bar{\rho}_{a}} \bar{T},$$
(1)

$$\rho'_{\nu}(t) = (1 + \mu\sigma)\rho'_{\nu_{\underline{m}}}(t) + (1 + \mu\sigma)\frac{\bar{\rho}_{\nu}}{\bar{T}}T'_{s}(t),$$
(2)

$$\rho_{c}'(t) = \rho_{c_{-}m}'(t) + \bar{\rho}_{c}(1+\mu\sigma)\frac{T_{s}'(t)}{\bar{T}} + \mu\frac{\bar{\rho}_{c}}{\bar{\rho}_{a}}\rho_{v}'(t).$$
(3)

156 where T_{s_m} , ρ_{v_m} , and ρ_{c_m} represent measured sonic temperature, water vapor and CO₂ densities, 157 respectively; \overline{T} , $\overline{\rho}_a$, $\overline{\rho}_v$, and $\overline{\rho}_c$ are averages of air temperature, air density, water vapor and CO₂ 158 densities, respectively; $\mu = m_d/m_v$ (m_d and m_v are the molecular mass of dry air and water 159 vapor, respectively); $\sigma = \overline{\rho}_v/\overline{\rho}_d$ ($\overline{\rho}_d$ is the density of dry air). The prime symbol denotes the

160 turbulent fluctuations relative to the 30-min block average. As shown in the equations above, there 161 is interdependence between T'_s and ρ'_v , and thus T'_s and ρ'_v must be determined iteratively. In this study, the corrections are iterated twice. Note that in semiarid sites like ours, the adjustments to T'_{s} 162 due to fluctuations in specific humidity $(\frac{\rho'_v(t)}{\overline{\rho}_a})$ are typically negligible (not shown here) as 163 compared to the adjustment to ρ'_{ν} due to fluctuations in T'_{s} (as demonstrated in Section 3.5). The 164 165 corrected time series of fluctuations facilitate the investigation of coherent structures and scalar 166 similarity between temperature and other scalars (Detto and Katul, 2007; Sahlée et al., 2008). Here 167 and throughout, T_s refers to the air temperature measured by sonic anemometers after humidity 168 corrections, T_{s_m} the sonic temperature directly measured before corrections, and T_c the air 169 temperature measured by fine-wire thermocouples (FW3).

170

171 **2.3 Ensemble empirical mode decomposition (EEMD)**

172 The ensemble empirical mode decomposition (EEMD) (Huang et al., 1998; Huang and Wu, 2008) is applied to decompose the 30-min turbulence time series into three subsequences, 173 174 corresponding to the high, middle, and low frequency ranges, respectively. EEMD is a favored 175 method in analyzing non-linear and non-stationary turbulence data (Gao et al., 2018; Hong et al., 176 2010; Liu et al., 2021; Huang et al., 1998; Huang and Wu, 2008). Through the sifting process in EEMD, a 30-min time series is decomposed into thirteen oscillatory components $C_j(t)$ (j = 1, 2, ..., 177 178 13) and an overall residual $r_{13}(t)$. Each oscillatory component generally exhibits one 179 characteristic frequency (Hong et al., 2010; Gao et al., 2018), while the overall residual is either 180 monotonic or containing only one extremum, from which no more oscillatory components can be 181 further decomposed. Hence,

$$x(t) = r_{13}(t) + \sum_{j=1}^{13} C_j(t).$$
(4)

As detailed in Section 3.2, after comparing the power spectra of T_s and T_c , two frequency boundaries, 0.02 and 0.2 Hz, are identified. The oscillatory components are then categorized into three regimes (I, II, and III, respectively). The oscillatory components with mean frequencies falling within the corresponding ranges are added together to generate the three subsequences. Specifically, oscillatory components with the mean frequencies smaller than 0.02 Hz are summed and labeled as regime I (i.e., $x'_I = \sum_{j=10}^{13} C_{j,x} + r_{13}$, where x = w, T_s , and T_c), between 0.02 Hz and

188 0.2 Hz as regime II (i.e., $x'_{II} = \sum_{j=6}^{9} C_{j,x}$), and larger than 0.2 Hz as regime III (i.e., $x'_{III} =$

189 $\sum_{j=1}^{5} C_{j,x}$).

190

191 **3 Results and discussion**

192 **3.1** Comparison of the CSAT3B- and FW3-derived temperature variances and fluxes

Figure 2 illustrates the comparisons between the variances and fluxes obtained using T_s 193 and T_c at different heights. Here, we use $\sigma_{T_c}^2$ and $\overline{w'T_c'}$ as reference values since T_c is less sensitive 194 to the effects of humidity and wind speeds than T_s (Burns et al., 2012; Smedman et al., 2007). 195 Generally, the variances of $T_s(\sigma_{T_s}^2)$ are smaller than variances of $T_c(\sigma_{T_c}^2)$, typically by 2%–5% 196 197 (Figures 2a-2c). These lower variances result in a lower sensible heat flux $(\overline{w'T'_s})$. Specifically, at 23.0 and 40.2 m, $\overline{w'T_s'}$ is underestimated by approximately 2% and 4%, respectively, as compared 198 to the sensible heat fluxes derived from the FW3 (i.e., $\overline{w'T_c'}$) (Figures 2d and 2e). However, at 12.8 199 200 m, $\overline{w'T'_s}$ and $\overline{w'T'_c}$ are quite comparable (Figure 2f). These results confirm that errors in H were 201 not entirely due to errors in the vertical velocity (Frank et al., 2013; Horst et al., 2015). Further examination of Figure 2 reveals that the differences between $\sigma_{T_s}^2$ and $\sigma_{T_c}^2$, as well as between $\overline{w'T_s'}$ 202 203 and $\overline{w'T_c'}$, increase with the increasing measurement heights. Additionally, our tests indicate that 204 the influence of solar heating on measurements of FW3 is negligible, primarily due to the thin wire 205 diameter of 0.0762 mm (Text S1 and Figure S1).

206

Figure 2. Comparison of temperature variances and sensible heat fluxes computed using T_s and T_c at the heights of 40.2, 23.0 and 12.8 m, respectively.

209

210 What mechanisms could have caused the observed differences? Previous studies found that 211 CSAT3 sonic anemometers with a previous version of firmware could cause errors in T_s (Burns et 212 al., 2012). However, this should not be the case for our study because the CSAT3B modes were 213 used at these heights and they have an improved design compared to the original CSAT3. Our 214 results suggest that the differences are dependent on the measurement heights. As the measurement 215 heights increase, the dominant length scale of coherent structures is also enlarged (Zhang et al.,

- 216 2011). Therefore, we conjecture that the processes that lead to such differences are most likely
- scale dependent, motivating us to examine the spectra and cospectra in the next subsection.
- 218

219 3.2 Spectral comparisons

To gain further insight into the differences between $\sigma_{T_s}^2$ and $\sigma_{T_c}^2$ as well as the associated 220 221 fluxes (i.e., $\overline{w'T'_s}$ and $\overline{w'T'_c}$), the spectra of u, w, T_s and T_c and the w- T_s and w- T_c cospectra at 222 different heights are examined. Figures 3a-3c show the mean normalized Fourier power spectra of 223 u, w, T_s , and T_c as a function of natural frequency (f). Note that the power spectra were computed 224 every half hour using fast Fourier transform and normalized by the corresponding variances before 225 averaging. It is also interesting to note that the u, w, and T_s spectra deviate from the well-known 226 -5/3 power law in the high frequency range of f > 0.2 Hz, exhibiting similar features as previous studies (e.g., Burns et al., 2012). For f > 2 Hz, fS_u , fS_w , and fS_{TS} appear to follow the f^{+1} slope, 227 likely due to white noise and/or aliasing (Kaimal and Finnigan, 1994). In the 0.2 Hz $\leq f \leq 2$ Hz 228 229 range, the distortion of fS_u , fS_w , and fS_{TS} from the -5/3 power law is enhanced as the 230 measurement heights decrease. The upturned distortion for $0.2 \text{ Hz} \le f \le 2 \text{ Hz}$ might be associated 231 with spikes (Gao et al., 2020; Stull, 1988) that are not excluded from the 10 Hz time series during 232 despiking. The T_c spectra appear to follow the -5/3 power law for 0.2 Hz < f < 1 Hz, although are slightly attenuated for f > 1 Hz, likely because the thermal mass of the thermocouple wire limits 233 234 its response time (Burns et al., 2012).

235

Figure 3. Mean normalized power spectra of u, w, T_s , and T_c , and cospectra of the *w*- T_s , and *w*- T_c , at three heights of 40.2, 23.0, and 12.8 m, respectively. All power spectra and cospectra are normalized by the corresponding variance and covariance before averaging. The dashed lines show a $f^{-1/3}$, $f^{-2/3}$, f^{+1} , and $f^{-3/4}$ slope. Note that the frequency domain can be divided into three regions by comparing the T_s and T_c spectra.

241

It is also noted that the magnitude of the T_c spectra is higher than that of the T_s spectra in the low frequency range of f < 0.02 Hz, but their magnitude is comparable in the middle frequency range of 0.02 Hz < f < 0.2 Hz. These results indicate that turbulent eddies with scales less than 0.02 Hz contribute more to $\sigma_{T_c}^2$ than $\sigma_{T_s}^2$. Hence, the underestimation of $\sigma_{T_s}^2$ is mostly caused by the

lower magnitude of the T_s spectra in the low frequency range, whereas $\sigma_{T_s}^2$ is overestimated to some extent due to the upturned distortion of the T_s spectra in the high frequency range.

248 Figures 3d-3f show the distribution of the mean normalized w- T_s and w- T_c cospectra as a function of f. Each cospectra is normalized by the corresponding covariances before averaging. 249 250 For f > 0.2 Hz, especially when f > 0.5 Hz, the w-T_s cospectra are generally higher than the w- T_c cospectra, consistent with the higher spectra of T_s . Compared to the power law of -3/4, the 251 calculated $\overline{w'T'_s}$ are overestimated, while $\overline{w'T'_c}$ is slightly underestimated. For 0.002 Hz < f < 0.2 252 253 Hz, the normalized $w - T_s$ cospectra are slightly lower than the normalized $w - T_c$ cospectra, 254 indicating that turbulent eddies with scales in the frequency range of 0.002 Hz < f < 0.2 Hz contribute more to $\overline{w'T_c'}$. Overall, the underestimation of the CSAT3B-derived fluxes is also scale-255 dependent, and the underestimation of $\overline{w'T'_s}$ in the middle to low frequency range is offset by the 256 257 overestimation in the high frequency range to some extent.

258 According to the comparison of the T_s and T_c spectra, the whole frequency domain can be divided into three regimes: I) f < 0.02 Hz, II) 0.02 Hz < f < 0.2 Hz, and III) f > 0.2 Hz. For f < 0.2 Hz. 259 0.02 Hz, the magnitude of the T_c power spectra is slightly higher than that of the T_s spectra at all 260 261 levels, but the magnitude of the T_s and T_c spectra is comparable in the middle frequency range of 0.02 Hz < f < 0.2 Hz. For f > 0.2 Hz, the T_c spectra first follow the -5/3 power law and are then 262 263 attenuated, whereas the T_s spectra are distorted upward. Based on this division, in section 3.3, the 30-min time series is divided into the three regimes and the contributions of these different scales 264 to $\sigma_{T_s}^2, \sigma_{T_c}^2, \overline{w'T_s'}$, and $\overline{w'T_c'}$ at different heights are then quantified. 265

266

267 **3.3 Scale-dependent contributions to variances and fluxes**

268 To quantify the contributions of different scales to the corresponding temperature variances 269 and fluxes, we apply the EEMD approach to decompose the 30-min time series of w', T'_{s} , and T'_{c} into various oscillatory components, which are then categorized into the three regimes discussed 270 271 earlier (i.e., I, II, and III). Figures 4a-4c depict that for regime I, the ratios between the variances of T_s and T_c are generally lower than 1.0 (approximately 0.89 on average). This suggests that 272 turbulent eddies with scales less than 0.02 Hz contribute approximately 11% more to $\sigma_{T_{cl}}^2$ than 273 $\sigma_{T_{sl}}^2$. With these turbulent eddies contributing about 41%–57% to the total variances (Figures 5a-274 5c and Table 1), the 11% difference between $\sigma_{T_{cl}}^2$ and $\sigma_{T_{cl}}^2$ would cause 4%–6% difference 275

- between the total variances of T_s and T_c . As for fluxes, turbulent eddies with scales less than 0.02 Hz contribute approximately 6% more to $\overline{w'T'_s}_I$ than $\overline{w'T'_c}_I$. With these turbulent eddies accounting for about 26%–45% of the total fluxes (Figures 5d-5f and Table 1), the 6% difference
- 279 in $\overline{w'T_{s_I}}$ and $\overline{w'T_{c_I}}$ would cause 2%-3% difference in the total fluxes. Further, given that the
- 280 contribution of regime I to the total temperature variances and fluxes increases with measurement
- 281 height (Figure 5 and Table 1), the underestimation becomes more significant at higher levels.
- 282

Table 1. Contributions of the three regimes to the total temperature variances and fluxes of T_s and

		40.2 m	23.0 m	12.8 m
2 /	Ι	0.51	0.46	0.41
$\sigma_{Ts,i}^2 / \sigma_{\pi}^2$	II	0.32	0.36	0.37
, o _{TS}	III	0.17	0.18	0.22
2	Ι	0.57	0.52	0.47
$\sigma_{Tc,i}^2/\sigma^2$	II	0.34	0.36	0.38
7 OTC	III	0.10	0.12	0.15
2	Ι	0.89	0.88	0.89
$\sigma_{Ts,i}^2/\sigma_{Ts,i}^2$	II	0.98	0.98	0.99
7 0 <i>Tc</i> ,i	III	1.49	1.42	1.44
	Ι	0.43	0.34	0.26
$\overline{w'Ts'}_i / \frac{w'Ts'}{w'Ts'}$	II	0.42	0.47	0.48
7 W 13	III	0.14	0.19	0.26
	Ι	0.45	0.36	0.27
$w'Tc'_i / \frac{1}{w'Tc'}$	II	0.43	0.48	0.50
/ // / / /	III	0.12	0.16	0.23
	Ι	0.94	0.94	0.95
$w'Ts'_i / \frac{w'Tc'}{w'Tc'}$	II	0.98	0.99	0.99
, w i c i	III	1.17	1.23	1.19

284 T_c , as well as the mean ratios of temperature variances and fluxes of T_s and T_c for each regime.

285

287

Figure 4. (a-c) Distribution of ratios of half-hourly variances of T_s and T_c with wind directions and (d-f) wind roses at the heights of 40.2, 23.0, and 12.8 m, respectively. The square, circle, and pentagram markers represent the ratios of the variances in the three regimes. The black lines in df refer to directions of the mounting arms of instruments.

293

Figure 5. Contributions of the three regimes to the total temperature variances and fluxes of T_s and T_c , respectively, as well as the mean ratios of the temperature variances and fluxes of T_s and T_c for each regime.

297

298 For regime II, the ratios between the variances of T_s and T_c and the associated fluxes are 299 close to 1.0 with minimal scatter. This indicates that turbulent eddies with scales between 0.02 Hz 300 and 0.2 Hz contribute consistently to the temperature variances and fluxes. These turbulent eddies 301 contribute 32%-38% and 42%-50% to their total variances and fluxes, respectively (Figure 5 and 302 Table 1). For regime III, the ratios between the variances of T_s and T_c average about 1.45 at the three heights due to the distorted spectra in this regime for both T_s and T_c . This indicates that 303 turbulent eddies with scales larger than 0.2 Hz contribute roughly 45% less to $\sigma_{T_c III}^2$ than $\sigma_{T_s III}^2$. 304 With these turbulent eddies contributing about 12%-26% to the total variances (Figures 5a-5c and 305 Table 1), the 45% difference in $\sigma_{T_{c,III}}^2$ and $\sigma_{T_{s,III}}^2$ would cause 5%–7% difference in the total 306

variances of T_s and T_c . As for fluxes, turbulent eddies with scales larger than 0.2 Hz contribute approximately 20% less to $\overline{w'T_c'_{III}}$ than $\overline{w'T_s'_{III}}$. With these turbulent eddies accounting for 12%– 26% of the total fluxes (Figures 5d-5f and Table 1), the 20% difference in $\overline{w'T_c'_{III}}$ and $\overline{w'T_s'_{III}}$ would cause 2%–4% difference in the total fluxes. These results suggest that the observed underestimation of the T_s variances and fluxes is primarily attributed to the large turbulent eddies with frequencies less than 0.02 Hz, which is offset to some extent by the contribution from small turbulent eddies with frequencies larger than 0.2 Hz.

314

315 **3.4 Potential causes for the scale-dependent differences**

The potential causes for the scale-dependent differences between the T_s and T_c spectra 316 317 include measurement errors, solar heating of thermocouples, and tower and mounting arm 318 vibrations, among others (e.g., the deficiency in the design of sonic anemometers in response to 319 different wind speed conditions). The T_c spectra follow similar declining features in the high 320 frequency range independent to wind speed (Text S2 and Figure S2), suggesting that 321 measurements of the fine-wire thermocouples were not noticeably affected by increased wind 322 speed, and therefore operational errors could be excluded from the causes for the observed 323 difference. Additionally, the consistent differences between the power spectra of T_s and T_c under 324 nighttime and daytime conditions (Text S1 and Figure S1) suggest that the impact of solar heating 325 on thermocouples was also not the cause for the differences between the T_s and T_c variances and 326 fluxes.

327 As the wind speed increases, the tower vibrations become more pronounced, especially at 328 higher levels, as indicated by the more energetic peaks in the power spectra of sonic roll and pitch angles (Figure 6). For wind speed below approximately 10 m s⁻¹ at 40.2 m, the ratios of the T_s and 329 T_c variances for regime I show no obvious change with wind speed. However, for wind speed 330 above 10 m s⁻¹, the ratios decrease further as wind speed increases (Figure 7a). The ratios of the 331 332 temperature fluxes of T_s and T_c exhibit a similar pattern to the variances (Figure 7d). For regime 333 II, the ratios of both the variance and fluxes of T_s and T_c show no obvious relations with wind 334 speed (Figures 7b and 7e). For regime III, the ratios of both the variance and fluxes of T_s and T_c illustrate large scatter, especially when wind speed is below 10 m s⁻¹, but still show no obvious 335 336 trends as wind speed increases (Figures 7c and 7f).

337

Figure 6. Power spectra of the sonic (a) roll and (b) pitch angles measured by CSAT3B at the
three heights. The sonic roll and pitch angles were stored as 30-min averages during the experiment.

341 We thus hypothesize that the enhanced tower vibrations under strong winds lead to an 342 early or delayed detection of the sonic pulse. This results in overestimations or underestimations of the speed of sound and thus errors in the 10 Hz time series of sonic temperature. In this study, 343 for wind speeds below 10 m s⁻¹, the ratios of the variances (and fluxes) of T_s to those of T_c are 344 345 scattered around 1.0 for regime I. However, for wind speed above 10 m s⁻¹, the ratios decrease as 346 wind speed further increases (Figure 7). Therefore, tower and mounting arm vibrations were most 347 likely the cause for the differences in the temperature variance and fluxes. Under this circumstance, 348 such vibrations may also affect sonic-measured wind components along with T_s , resulting in errors 349 in all the calculated fluxes. However, rigorous tests of this hypothesis seem necessary through 350 testing sonic anemometers in wind tunnels or fields with different mounting strategies.

352

Figure 7. Ratios of (a, b, and c) half-hourly variances of T_s and T_c and (d, e, and f) covariances of w- T_s and w- T_c corresponding to the low, middle, and high frequency ranges, respectively, as a function of the mean wind speed (\bar{u}) at 40.2 m.

356

357 3.5 Implications to water vapor and CO₂ fluxes

Given that equations (2) and (3) are used to adjust the measured densities of water vapor and CO₂ by open-path CO₂/H₂O gas analyzers in EC systems, any errors in temperature measurements would be propagated to water vapor and CO₂ time series through these two equations. In equations (2) and (3), T_s can be replaced by T_c to achieve the adjusted time series of densities of water vapor and CO₂ for FW3. The adjusted time series of water vapor and CO₂ by the fluctuating parts of T_s and T_c , respectively, are then decomposed into three regimes to quantify the influence of T_s on variances and fluxes of water vapor and CO₂.

The variances of ρ_v are not influenced by using either T_s or T_c for the density effect corrections (Table S1) because the fluctuations in ρ_v are not very sensitive to the density effects, especially at semiarid sites like ours (Gao et al., 2020). Therefore, for the water vapor fluxes, there

only exist minor differences (< 1%) between the fluxes corrected by T_s and T_c for the three regimes,

369 while the overall water vapor fluxes corrected by T_s and T_c are comparable at the three heights

371

Figure 8. Comparison of water vapor and CO_2 fluxes corrected by temperature from sonic anemometers and fine wire thermocouples, respectively, at the three heights.

As for CO₂, the differences between T_s and T_c in the three regimes are propagated differently to the adjusted variances of ρ_c (Table S2). More importantly, there exist relatively large differences (but still within 10%) between the CO₂ fluxes adjusted by T_s and T_c (Figures 8d-8f). In general, CO₂ fluxes are more sensitive to errors or uncertainties in temperature measurements than water vapor fluxes (Liu et al., 2006). Therefore, precise measurements of air temperature are critical for quantifying ecosystem CO₂ fluxes.

- 381
- 382

383 4 Conclusions

384 Temperature variances and the associated fluxes are examined by using sonic anemometers 385 and co-located fine-wire thermocouples at three levels above a sagebrush ecosystem. Compared 386 to temperature variances and fluxes determined by thermocouples, sonic anemometers were found 387 to underestimate the variances and fluxes by approximately 5% and 4%, respectively, at the height 388 of 40.2 m. In the high frequency range, the distortion in T_s spectra contributed to the heat fluxes 389 by 2–4%, whereas the attenuation in T_c spectra led to underestimated fluxes. However, the primary 390 source of the underestimation in temperature variances and fluxes by the sonic anemometers was 391 identified in the low frequency range. This phenomenon became more profound with increasing 392 wind speed, and thus, heightened vibrations of the tower and mounting arms. Furthermore, when 393 adjusting the density effects using the attenuated temperature, our results indicate that CO_2 394 variances and fluxes are more sensitive to errors or uncertainties in temperature measurements 395 compared to those of water vapor at the semiarid site.

Our findings highlight the critical importance of accurate measurements of air temperature fluctuations in EC flux measurements. Furthermore, the observed underestimation of sonic temperature variances and fluxes suggests that the measured wind velocity components may also be biased due to the tower vibrations. Therefore, we recommend further investigation of the influence of mounting arm vibrations on wind velocity components by sonic anemometers.

401

402 **Data availability**

403

The data used in this study are available from Heping Liu upon request.

405	Code availability
406	The code used in this study are available from Zhongming Gao and Heping Liu upon
407	request.
408	
409	Author contributions
410	ZG and HL designed the study with substantial input from all coauthors. ZG, HL, DL, and
411	BY conducted the fieldwork and obtained and processed the EC data. ZG drafted the manuscript.
412	All authors contributed to the result analysis and interpretation, commented on and approved the
413	final paper.
414	
415	Competing Interests
416	The authors declare that they have no known competing financial interests or personal
417	relationships that could have appeared to influence the work reported in this paper.
418	
419	Acknowledgments
420	We thank Patrick O'Keeffe, Dennis Finn, Jason Rich, and Matthew S. Roetcisoender for
421	their assistance in the lab and field. This work was supported by the National Key Research and
422	Development Program of China (2023YFC3008002), the Fundamental Research Funds for the
423	Central Universities, Sun Yat-sen University (23ptpy91), and the National Science Foundation
424	(NSF-AGS-1419614, NSF-AGS-1853050, NSF-AGS-1853354).
425	
426	
427	References
428	Burns, S. P., Horst, T. W., Jacobsen, L., Blanken, P. D. and Monson, R. K.: Using sonic
429	anemometer temperature to measure sensible heat flux in strong winds, Atmos. Meas.
430	Tech., 5(9), 2095–2111, doi:10.5194/AMT-5-2095-2012, 2012.
431	Chu, H., Luo, X., Ouyang, Z., Chan, W. S., Dengel, S., Biraud, S. C., Torn, M. S., Metzger, S.,
432	Kumar, J., Arain, M. A., Arkebauer, T. J., Baldocchi, D., Bernacchi, C., Billesbach, D.,
433	Black, T. A., Blanken, P. D., Bohrer, G., Bracho, R., Brown, S., Brunsell, N. A., Chen, J.,
434	Chen, X., Clark, K., Desai, A. R., Duman, T., Durden, D., Fares, S., Forbrich, I., Gamon, J.
435	A., Gougn, C. M., Griffis, I., Helbig, M., Hollinger, D., Humphreys, E., Ikawa, H., Iwata,
430 137	11., Ju, 1., KIIOWICS, J. F., KIIOX, S. H., KOUAYASIII, H., KOID, 1., LAW, B., LEE, A., LIIVAK, M. Liu, H. Munger, I. W. Noormets, A. Noviek, K. Oberbauer, S. F. Oechel, W.
157	111, 110, 111, 1100000, 1, 1, 1000000, 11, 100000, 12, 000000, 0, 1, 0000000, 0, 1, 000000, 0, 1, 000000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

438	Oikawa, P., Papuga, S. A., Pendall, E., Prajapati, P., Prueger, J., Quinton, W. L.,
439	Richardson, A. D., Russell, E. S., Scott, R. L., Starr, G., Staebler, R., Stoy, P. C., Stuart-
440	Haëntjens, E., Sonnentag, O., Sullivan, R. C., Suyker, A., Ueyama, M., Vargas, R., Wood,
441	J. D. and Zona, D.: Representativeness of Eddy-Covariance flux footprints for areas
442	surrounding AmeriFlux sites, Agric. For. Meteorol., 301-302, 108350,
443	doi:10.1016/J.AGRFORMET.2021.108350, 2021.
444	Detto, M. and Katul, G. G.: Simplified expressions for adjusting higher-order turbulent statistics
445	obtained from open path gas analyzers, Boundary-Layer Meteorol., 122(1), 205-216,
446	doi:10.1007/s10546-006-9105-1, 2007.
447	Eder, F., Serafimovich, A. and Foken, T.: Coherent Structures at a Forest Edge: Properties,
448	Coupling and Impact of Secondary Circulations, Boundary-Layer Meteorol., 148(2), 285-
449	308, doi:10.1007/s10546-013-9815-0, 2013.
450	Finn, D., Clawson, K. L., Eckman, R. M., Liu, H., Russell, E. S., Gao, Z. and Brooks, S.: Project
451	sagebrush: Revisiting the value of the horizontal plume spread parameter σy , J. Appl.
452	Meteorol. Climatol., 55(6), 1305–1322, doi:10.1175/JAMC-D-15-0283.1, 2016.
453	Finn, D., Eckman, R. M., Gao, Z. and Liu, H.: Mechanisms for wind direction changes in the
454	very stable boundary layer, J. Appl. Meteorol. Climatol., 57(11), 2623-2637,
455	doi:10.1175/JAMC-D-18-0065.1, 2018.
456	Frank, J. M., Massman, W. J. and Ewers, B. E.: Underestimates of sensible heat flux due to
457	vertical velocity measurement errors in non-orthogonal sonic anemometers, Agric. For.
458	Meteorol., 171-172, 72-81, doi:10.1016/J.AGRFORMET.2012.11.005, 2013.
459	Fratini, G., Ibrom, A., Arriga, N., Burba, G. and Papale, D.: Relative humidity effects on water
460	vapour fluxes measured with closed-path eddy-covariance systems with short sampling
461	lines, Agric. For. Meteorol., 165, 53-63, doi:10.1016/J.AGRFORMET.2012.05.018, 2012.
462	Gao, Z., Liu, H., Li, D., Katul, G. G. and Blanken, P. D.: Enhanced Temperature-Humidity
463	Similarity Caused by Entrainment Processes With Increased Wind Shear, J. Geophys. Res.
464	Atmos., 123(8), 4110-4121, doi:10.1029/2017JD028195, 2018.
465	Gao, Z., Liu, H., Arntzen, E., Mcfarland, D. P., Chen, X. and Huang, M.: Uncertainties in
466	Turbulent Statistics and Fluxes of CO 2 Associated With Density Effect Corrections,
467	Geophys. Res. Lett., 47(15), doi:10.1029/2020GL088859, 2020.
468	Guo, X., Zhang, H., Cai, X., Kang, L., Zhu, T. and Leclerc, M.: Flux-Variance Method for
469	Latent Heat and Carbon Dioxide Fluxes in Unstable Conditions, Boundary-Layer Meteorol.,
470	131(3), 363–384, doi:10.1007/s10546-009-9377-3, 2009.
471	Hong, J., Kim, J., Ishikawa, H. and Ma, Y .: Surface layer similarity in the nocturnal boundary
472	layer: the application of Hilbert-Huang transform, Biogeosciences, 7(4), 1271–1278,
473	doi:10.5194/bg-7-1271-2010, 2010.
474	Horst, T. W., Semmer, S. R. and Maclean, G.: Correction of a Non-orthogonal, Three-
475	Component Sonic Anemometer for Flow Distortion by Transducer Shadowing, Boundary-
476	Layer Meteorol., 155(3), 371-395, doi:10.1007/S10546-015-0010-3, 2015.

477	Huang, N. E. and Wu, Z.: A review on Hilbert-Huang transform: Method and its applications to
478	geophysical studies, Rev. Geophys., 46(2), RG2006, doi:10.1029/2007RG000228, 2008.
479	Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, NC., Tung, C. C.
480	and Liu, H. H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear
481	and non-stationary time series analysis, Proc. R. Soc. London A Math. Phys. Eng. Sci.,
482	454(1971), 903–995, doi:10.1098/rspa.1998.0193, 1998.
483	Kaimal, J. C., Finnigan, J. J.: Atmospheric boundary layer flows: their structure and
484	measurement, Oxford Univ. Press, New York, 1994
485	Lan, C., Liu, H., Li, D., Katul, G. G. and Finn, D.: Distinct Turbulence Structures in Stably
486	Stratified Boundary Layers With Weak and Strong Surface Shear, J. Geophys. Res. Atmos.,
487	123(15), 7839–7854, doi:10.1029/2018JD028628, 2018.
488	Lee, X. and Massman, W.: A Perspective on Thirty Years of the Webb, Pearman and Leuning
489	Density Corrections, Boundary-Layer Meteorol., 139(1), 37-59, doi:10.1007/s10546-010-
490	9575-z, 2011.
491	Lee, X., Liu, S., Xiao, W., Wang, W., Gao, Z., Cao, C., Hu, C., Hu, Z., Shen, S., Wang, Y., Wen,
492	X., Xiao, Q., Xu, J., Yang, J. and Zhang, M.: The Taihu Eddy Flux Network: An
493	Observational Program on Energy, Water, and Greenhouse Gas Fluxes of a Large
494	Freshwater Lake, Bull. Am. Meteorol. Soc., 95(10), 1583-1594, doi:10.1175/BAMS-D-13-
495	00136.1, 2014.
496	Li, D., Katul, G. G. and Liu, H.: Intrinsic Constraints on Asymmetric Turbulent Transport of
497	Scalars Within the Constant Flux Layer of the Lower Atmosphere, Geophys. Res. Lett.,
498	45(4), 2022–2030, doi:doi/10.1002/2018GL077021, 2018.
499	Liu, H., Peters, G. and Foken, T.: New equations for sonic temperature variance and buoyancy
500	heat flux with an omnidirectional sonic anemometer, Boundary-Layer Meteorol., 100(3),
501	459–468, doi:10.1023/A:1019207031397, 2001.
502	Liu, H., Randerson, J., Lindfors, J., Massman, W. and Foken, T.: Consequences of Incomplete
503	Surface Energy Balance Closure for CO2 Fluxes from Open-Path CO2/H2O Infrared Gas
504	Analysers, Boundary-Layer Meteorol., 120(1), 65-85, doi:10.1007/s10546-005-9047-z,
505	2006.
506	Liu, H., Gao, Z. and Katul, G. G.: Non-Closure of Surface Energy Balance Linked to
507	Asymmetric Turbulent Transport of Scalars by Large Eddies, J. Geophys. Res. Atmos.,
508	126(7), e2020JD034474, doi:10.1029/2020JD034474, 2021.
509	Loescher, H. W., Ocheltree, T., Tanner, B., Swiatek, E., Dano, B., Wong, J., Zimmerman, G.,
510	Campbell, J., Stock, C., Jacobsen, L., Shiga, Y., Kollas, J., Liburdy, J. and Law, B. E.:
511	Comparison of temperature and wind statistics in contrasting environments among different
512	sonic anemometer-thermometers, Agric. For. Meteorol., 133(1-4), 119-139,
513	doi:10.1016/J.AGRFORMET.2005.08.009, 2005.
514	Massman, W. and Clement, R.: Uncertainty in Eddy Covariance Flux Estimates Resulting from
515	Spectral Attenuation, Handb. Micrometeorology, 67-99, doi:10.1007/1-4020-2265-4_4,
516	2006.

517	Mauder, M. and Zeeman, M. J.: Field intercomparison of prevailing sonic anemometers, Atmos.
518	Meas. Tech., 11(1), 249–263, doi:10.5194/amt-11-249-2018, 2018.
519	Mauder, M., Oncley, S. P., Vogt, R., Weidinger, T., Ribeiro, L., Bernhofer, C., Foken, T.,
520	Kohsiek, W., De Bruin, H. A. R. and Liu, H.: The energy balance experiment EBEX-2000.
521	Part II: Intercomparison of eddy-covariance sensors and post-field data processing methods,
522	Boundary-Layer Meteorol., 123(1), 29-54, doi:10.1007/s10546-006-9139-4, 2007.
523	Mauder, M., Foken, T. and Cuxart, J.: Surface-Energy-Balance Closure over Land: A Review,
524	Boundary-Layer Meteorol., 177(2-3), 395-426, doi:10.1007/s10546-020-00529-6, 2020.
525	Missik, J. E. C., Liu, H., Gao, Z., Huang, M., Chen, X., Arntzen, E., Mcfarland, D. P. and
526	Verbeke, B.: Groundwater Regulates Interannual Variations in Evapotranspiration in a
527	Riparian Semiarid Ecosystem, J. Geophys. Res. Atmos., 126(7), e2020JD033078,
528	doi:10.1029/2020jd033078, 2021.
529	Peña, A., Dellwik, E. and Mann, J.: A method to assess the accuracy of sonic anemometer
530	measurements, Atmos. Meas. Tech., 12(1), 237-252, doi:10.5194/AMT-12-237-2019,
531	2019.
532	Sahlée, E., Smedman, AS., Rutgersson, A. and Högström, U.: Spectra of CO2 and Water
533	Vapour in the Marine Atmospheric Surface Layer, Boundary-Layer Meteorol., 126(2), 279-
534	295, doi:10.1007/s10546-007-9230-5, 2008.
535	Schotanus, P., Nieuwstadt, F. T. M. and De Bruin, H. A. R.: Temperature measurement with a
536	sonic anemometer and its application to heat and moisture fluxes, Boundary-Layer
537	Meteorol., 26(1), 81–93, doi:10.1007/BF00164332, 1983.
538	Smedman, A., Högström, U., Sahlée, E. and Johnson, C.: Critical re-evaluation of the bulk
539	transfer coefficient for sensible heat over the ocean during unstable and neutral conditions,
540	Q. J. R. Meteorol. Soc., 133(622), 227–250, doi:10.1002/qj.6, 2007.
541	Stull, R. B.: An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers,
542	Dordrecht, Netherlands., 1988.
543	Tang, S., Xie, S., Zhang, M., Tang, Q., Zhang, Y., Klein, S. A., Cook, D. R. and Sullivan, R. C.:
544	Differences in Eddy-Correlation and Energy-Balance Surface Turbulent Heat Flux
545	Measurements and Their Impacts on the Large-Scale Forcing Fields at the ARM SGP Site,
546	J. Geophys. Res. Atmos., 124(6), 3301–3318, doi:10.1029/2018JD029689, 2019.
547	Wang, G., Huang, J., Guo, W., Zuo, J., Wang, J., Bi, J., Huang, Z. and Shi, J.: Observation
548	analysis of land-atmosphere interactions over the Loess Plateau of northwest China, J.
549	Geophys. Res., 115(D00K17), doi:10.1029/2009JD013372, 2010.
550	Webb, E. K., Pearman, G. I. and Leuning, R.: Correction of flux measurements for density
551	effects due to heat and water vapour transfer, Q. J. R. Meteorol. Soc., 106(447), 85-100,
552	doi:10.1002/qj.49710644707, 1980.
553	Wilczak, J. M., Oncley, S. P. and Stage, S. A.: Sonic Anemometer Tilt Correction Algorithms,
554	Boundary-Layer Meteorol., 99(1), 127-150, doi:10.1023/A:1018966204465, 2001.
555	Zhang, Y., Liu, H., Foken, T., Williams, Q., Liu, S., Mauder, M. and Liebethal, C.: Turbulence
556	Spectra and Cospectra Under the Influence of Large Eddies in the Energy Balance

- 557 EXperiment (EBEX), Boundary-Layer Meteorol., 136(2), 235–251, doi:10.1007/s10546-
- 558 010-9504-1, 2010.
- 559 Zhang, Y., Liu, H., Foken, T., Williams, Q., Mauder, M. and Thomas, C.: Coherent structures
- and flux contribution over an inhomogeneously irrigated cotton field, Theor. Appl.
- 561 Climatol., 103(1–2), 119–131, doi:10.1007/s00704-010-0287-6, 2011.
- 562