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Abstract. Most anthropogenic carbon dioxide (CO2) emissions originate from urban areas. To improve12
understandings of urban and regional emissions, we design and construct a low-cost UAV coordinated13
carbon observation network (LUCCN) which uses mid-accuracy (±1 ppm) CO2 sensors. In this paper,14
we introduce our multi-variable non-linear regression method for calibrating the non-dispersive15
infrared (NDIR) CO2 sensors for LUCCN’s ground stations. We tested our calibration method with16
concentration data collected at the Xinglong Atmospheric Background Observatory. With comparison17
against data simultaneously collected by a high-accuracy cavity ring-down spectrometer, we found the18
maximum standard deviation of LUCCN’s sensors to be 0.782 ppm in a controlled laboratory19
environment with a 1-second window size and 0.53 ppm in an outdoor environment with a 1-hour20
running average window size. As validation of LUCCN’s ground measurements, we identify and21
present consistent trends between local CO2 concentration variations and aerosol pollution events22
captured by the space-based moderate resolution imaging spectrometer (MODIS).23

Keywords: CO2 concentration, Regional emissions, Low-cost network (LUCCN), Ground base24
measurement25

1 Introduction26

Anthropogenic emission of Carbon Dioxide (CO2) is a primary driver of climate change and27

global warming (Rosenzweig et al., 2010). Investigations on anthropogenic emission from fossil fuel28

combustion require a complete measurement system to the important sectors, e.g. energy, industry and29

city (Liu et al., 2014). The inventory method (bottom-up method) is the foundation to understand the30

condition of anthropogenic emission of each country and sector. Unfortunately, the dis-transparency31

and bias of inventory is a long live hot-topic to be discussed, even a standard inventory metrology has32

been reserved in 2006 IPCC Guidelines for National Greenhouse Gas Inventories, and refined for33
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several versions (Andres et al., 2014; Bréon et al., 2015; Broquet et al., 2016). Therefore, the34

independent method and atmospheric inversion have been included in 2019 refinement to verify35

emission inventories (Maksyutov et al., 2019). State-of-art atmospheric inversion methods provide near36

real-time optimization of an acknowledged inventory. The improvement of inversion depended on the37

method and also measurement. Lack of measurement cannot effectively optimize the existing inventory38

(Duren et al., 2012). Unlike natural carbon emission processes e.g. ecosystem and ocean,39

anthropogenic emission sources are more concentrated with frequently variating emission rates (Kim et40

al., 2018). Therefore, monitoring anthropogenic emissions with atmospheric inversion methods41

requires dense and continuous measurements of CO2 concentration variations with high quality42

(Broquet et al., 2016; Arzoumanian et al., 2019 ).43

Ground-based CO2 measurements gained significant progress in the last decade (Kort et al., 2013;44

Turnbull et al., 2015; Delaria et al., 2021). Systematic ground-based observations of CO2 began in45

Hawaii in the 1950s, and international ground-based observation networks, such as the European46

Integrated Carbon Observation System (ICOS) (https://www.icos-ri.eu/, last access: 21 October 2023),47

the International Atmospheric Greenhouse Gas Monitoring Network (GAW) (Ries, 2013) and other48

greenhouse gas observation systems (Staufer et al., 2016; Delaria et al., 2021), have been gradually49

established to carry out continuous observations of ground-based greenhouse gases. For example, the50

GAW ground-based observation network has 31 global atmospheric background stations and more than51

400 stations for regional GHG observations. Those international ground-based observation networks52

have conducted long-term, high-precision observations of ground-based greenhouse gases and are the53

main data sources for international scholars to monitor and assess global greenhouse gas emissions54

(Agustí-Panareda et al., 2022; Bao et al., 2022).55

International ground-based observation networks play an important role in regional and56

continental scale greenhouse gas detection and assessment. Although observation networks like ICOS57

and GAW cover large areas, their measurements can hardly describe emissions in smaller regions, e.g.58

city and industry (Park et al., 2020). Therefore, we need denser networks to improve the spatial59

coverage and resolution on CO2 emissions, while the new network can also contribute to the larger60

regional scale ground-based observation networks (Turner et al., 2016; Wu et al., 2016).61

Many cities have carried out denser continuous ground-based measurements of CO2 and other62

greenhouse gases. For instance, the Megacity Carbon Project and the MegaParis CO2 Project use63
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high-precision in-situ measurements from cavity ring-down spectrometers (Picarro G2301 and G2401)64

to establish ground-based observation networks in Los Angeles and Paris (Irène et al., 2017; Verhulst65

et al., 2017). For both projects, the hourly measurement accuracy of CO2 emissions observations in66

Paris and Los Angeles is 1 ppm, with the monthly average uncertainty of 10%. (Staufer et al., 2016;67

Verhulst et al., 2017). Although high-precision spectrometers can provide high-quality observations68

and analysis, they are expensive to manufacture and maintain (Park et al., 2020). Therefore, only a few69

megacities, such as Los Angeles and Paris, have established observation stations or networks, while70

most municipalities cannot afford the same. Nevertheless, to minimise measurement errors of urban71

CO2 fluxes, we need to maximise the density of ground stations.72

To overcome the above limitations and to extend the observation coverages of CO2 emissions,73

low-cost CO2 ground observation sensors have been used in urban-intensive CO2 ground observations74

(Liu et al., 2021). Although sensors of lower cost are usually less accurate, Broquet et al. (2016)75

showed that the number of instruments is more important than the accuracy of their individual sensors,76

and when sensors are densely deployed, the observation error could be significantly reduced (Turner et77

al., 2016). In short, low-cost and denser networked detection of CO2 is more desirable.78

Currently, several low-cost CO2 ground observation networks have been established for79

continuous observations. For example, the Berkeley Atmospheric CO2 Observation Network80

(BEACO2N) has used a large number of low-cost sensors (about fifty sensors) to establish a CO281

detection network in San Francisco, and the distance between the adjacent instruments are82

approximately 2 km (Broquet et al., 2016; Shusterman et al., 2018; Teige et al., 2016). In addition, Lee83

et al. (2017) developed a mobile CO2 observation network in Vancouver with low-cost sensors. The84

network captures a CO2 concentration map at street level that can verify city-level emission inventories.85

Other previous studies presented that low-cost and denser CO2 observation networks can help to study86

the characteristics of urban CO2 concentrations. In summary, lower cost ground observation network87

can measure concentration distribution with medium accuracy ( ± 1 ppm) while having greater88

coverages (Broquet et al., 2016; Turner et al., 2016; Arzoumanian et al., 2019).89

In this article, we introduce the ground station for our novel low-cost UAV coordinated carbon90

observation network (LUCCN), which uses non-dispersive infrared (NDIR) CO2 sensors. Comparing to91

networks using high-accuracy sensors, LUCCN’s ground station is cheaper to manufacture and92

maintain, easier to operate and move around. Such characteristics are crucial to enable denser93
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networked detections of CO2. The rest of this article consists of four sections. Section 2 introduces the94

LUCCN sensors, including the principle of instrument observation and the components of the95

instrument. Section 2 also presents the laboratory calibration methods, results and instrument96

performances of LUCCN nodes. In order to further verify the observation performance of LUCCN, we97

present the outdoor continuous observation data calibration results in Section 3. We also compared98

outdoor observations against data simultaneously collected by a high-accuracy spectrometer. Finally,99

we prove LUCCN’s effectiveness by showing consistent pollution-caused trends from satellite100

observations and LUCCN’s measurements.101

2 Ground-based node of A Low-cost UAV Coordinated Carbon observation Network (LUCCN)102

2.1 Instrument103

The main component of LUCCN includes a swam of ground-based nodes. In each sensor site, a104

series of commercial sensors are organized in a small sized newly designed weatherproof enclosure.105

We use a Vaisala CarboCap GMP343 for CO2 measurement in Figure 1(b). This sensor has been106

introduced and well tested in Berkeley Atmospheric CO2 Observation Network (BEACO2N) studies107

(Delaria et al., 2021; Kim et al., 2018; Shusterman et al., 2018), which presented excellent stability in108

long term data collections of CO2 concentrations.109

In this study, we test the accuracy performance of GMP343 in varied measurement environment,110

incl. temperature, pressure and humidity. Variations of the three parameters fundamentally impact the111

measurement accuracy by altering infra-red light source intensity and gas molecule absorptions.112

Additionally, environmental impacts to accuracies vary between individual sensors due to113

manufacturing precisions and factory calibration methods. Beyond the CO2 sensor, each network node114

contains a slot to install sensors measuring co-emitted pollutant (CO, NO2, PM2.5), which help us to115

determine source emission sectors. For example, we use AlphaSense CO and NO2 electrochemistry116

sensors which are common used in GHG observation networks. However, the response time of those117

sensors are longer than the CO2 NDIR sensors. The coordinate measurement is in-sufficient in a minute118

temporal scale. The life-age of a electrochemistry is limited as 1 year. Considering the economical119

efficiency and stable, the standard of LUCCN node we recommended is only contain CO2 sensor as120

atmosphere composition sensor, but the measurement function in a site.121
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Fig. 1. The internal structure of LUCCN and the observation field diagrams in the laboratory. (a) is the exterior122
diagram of LUCCN ground stations, and (b) shows the internal composition of LUCCN. (c) shows the NDIR123
sensors and gas conduits placed inside a cloud chamber where temperature, pressure and humidity can be adjusted124
according to demands. (d) shows the exterior of cloud chamber, Picarro G2301 and WMO CO2 standard gas125
cylinders.126

In order to correct the bias induced by measurement environment, we integrate the pressure and127

humidity sensors within individual nodes. Since there are pt1000 temperature sensors within all128

GMP343’s chambers, external temperature sensors are unnecessary. For flux inversions, we integrate a129

Vaisala WXT-536 supersonic anemometer for measuring wind speed and directions. Finally, sensors130

for each node are integrated within a custom designed weatherproof enclosure. We also optimized the131
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closure design for alternative mounting requirements.132

To facilitate network data transmission and storage, we developed dedicated Internet of Things133

infrastructure and database. For data security considerations, the database software can be used for134

each local network without centralised storage. The total power supply requirement is less than 5 W135

which allows us to use solar panels instead of electric cables in extreme environments.136

2.2 Performance and calibration in lab137

The previous chamber tests indicate significant biases resulting from environmental parameters,138

including pressure, temperature, and humidity (Teige et al., 2016; Arzoumanian et al., 2019; Müller et139

al., 2020; Delaria et al., 2021). As a solution, we have developed a bias-correction method to reduce the140

environment-induced biases based on the standard manufacturer corrections. In our calibration process,141

each sensor has to be calibrated in an environment-controlled chamber that could adjust the142

temperature, pressure and humidity accurately (Figure 1c). The environment-controlled chamber used143

in this study is provided by Beijing Municipal Meteorological Bureau. There were seven LUCCN144

ground-based nodes and a Picarro G2301 involved in the calibration test at the same time. As145

measurement references, we connected a Picarro G2301 spectrometer to the environment-controlled146

chamber via an airtight tube. The Picarro G2301 was calibrated every 2 hours by WMO standard gas147

(402 ppm CO2) as shown in Figure 1d to remove the drift.148

Figure 2(a) shows the CO2 dry mole fractions measured by LUCCN nodes (colored lines) and the149

Picarro sensor (black line). Evidently, there are notable differences between the measurements of150

LUCCN nodes and the Picarro sensor in Figure 2(b). In addition, LUCCN sensors’ performances vary151

especially when there are pressure (gray dashed lines) and temperature mutations (blue dashed line) in152

the chamber. In the case of sudden temperature change, LUCCN # 2, LUCCN # 5, and LUCCN # 6153

experience negligible variations, while values of both LUCCN # 3 and 4 noticeably increase. On the154

contrary, when the temperature suddenly changes, the values of LUCCN # 1 decrease significantly,155

while LUCCN # 7 decrease slightly. Similarly, when the pressure changes suddenly, the measurement156

deviations of LUCCN sensors are also slightly different. The differences in these numerical mutations157

are also shown in Figure 2(b). The above phenomena indicate that even in the same environment,158

different LUCCN sensors respond differently to environmental mutations. So it is necessary to159

calibrate each LUCCN sensor respectively.160
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Fig. 2. (a) CO2 mole fractions measured by seven LUCCN nodes in the lab (colored lines), as well as the161
synchronous measurement by the Picarro sensor (black line). (b) The differences ( ���2 ) between the162
measurement of LUCCN nodes and Picarro G2301 corresponding to the top image. The vertical gray dotted lines163
in the two figures represent the moment of sudden changes in pressure inside the cloud chamber, while the vertical164
blue dotted lines represent the moment of the sudden change in temperature. Among them, different LUCCN165
nodes exhibit the inconsistent performance during sudden environmental changes, so they need to be calibrated166
separately.167

We employ a multi-variable non-linear regression function to establish the relation between168

environment parameters and the measurement bias of CO2 concentration. In our test, we found the bias169

correlation changes with pressure, temperature, humidity, and CO2 concentration itself, hence we need170

to calibrate sensor measurements within all possible conditions through a multi-variable function.171

Furthermore, we also found the correlation between biases of CO2 concentration, and environment172

parameters are non-linear. Finally, the bias correction changes with sensors. Thus, we need to correct173

biases of individual sensors respectively.174

The multi-variable non-linear regression function to correct the bias shows,175

���2,����������� = ��
� �� ∗ �� + ��

� �� ∗ �� + ��
� �� ∗ �� + ��

� �� ∗ �� + � (1)176

In which ΔCO2,calibration represents the bias (��2,����� − ��2,�2301). �, �, � and � correspond to177

the internal temperature, the air pressure, the water vapor pressure and CO2 concentration. In addition,178

�, �, �and � are the correction coefficients of � , � , �and � respectively. � is the baseline179

offset.180
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We applied the above correction method to a section of test data before deriving the coefficients181

shown in eq.(1) for calibrating the entire test dataset. Figure 3(a) shows the calibration results of182

LUCCN (coloured lines), and Figure 3(b) shows the differences between LUCCN and reference G2301.183

Overall, the corrections are sufficient to offset the biases. Compared with Figure 2(b), the differences184

have been reduced obviously, and the remained biases are very low. The standard deviations (SD) of185

ΔCO2,calibration of LUCCN sensors are all less than 1 ppm, and the maximum and minimum of SD are186

0.782 ppm and 0.594 ppm respectively. We also test the orders of magnitude used in this regression187

and find that the non-linear effect is not significant, which means lower orders, e.g. 3 order is enough188

even when the parameters, such as pressure and temperature, changes dramatically. It may be due to189

the data have been measured in the cloud chamber, so the calibration results perform better. The190

calibration results might be overly optimistic due to stable environmental conditions provided by the191

chamber, which isolate external environmental variations. Therefore, based on long-term and192

continuous ground observations, the accuracy, sensitivity and drift of LUCCN would be further193

verified in Section 3 and Section 4.194

Fig. 3. (a) CO2 mole fractions of LUCCN nodes with calibration (coloured lines) compared to the Picarro G2301195
(black line); (b) The differences between the calibrated LUCCN nodes and Picarro G2301 corresponding to Figure196
2(b). Compared with Figure 2(b), it can be seen that the effects of temperature and pressure fluctuations on the197
response of LUCCN nodes have been eliminated through the calibration. The standard deviations (SD) of LUCCN198
nodes with calibration are all less than 1 ppm. The gray dotted lines and blue dotted lines in the figures represent199
the same content as Fig. 2.200
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3 Measurement201

3.1 Observation site and setup202

LUCCN ground base nodes have been placed at the Xinglong Atmospheric Background203

Observatory (Xinglong site) of the Institute of Atmospheric Physics of the Chinese Academy of204

Sciences. Xinglong site is located on the top of Lianzhai Mountain (40° 24’N, 117° 30’E), Xinglong205

County, Hebei Province, China. The site is surrounded by mountains, sparsely populated, with little206

human activities. The LUCCN ground base nodes have been installed very close to the Picarro G2301207

tube inlet on the rooftop measurement platform building. All sensors are close to each other to ensure208

that the measurement targets are similar, as shown in Figure 1(a).209

We collected the measurement from 27 October 2021 to 31 July 2022, with two LUCCN sensors210

measuring CO2 mole fractions, temperature, pressure, relative humidity, wind direction and wind speed211

at the sampling frequency of 1 Hz. While the reference Picarro G2301 simultaneously measured CO2212

dry mole fractions at the sampling frequency of 0.2 Hz.213

3.2 Data processing and calibration214

Different from the laboratory observation, the responses of LUCCN sensors are affected by the215

complex variables in the outdoor ground-based observatories. Therefore, before corrections, controlling216

data quality is paramount for LUCCN’s accuracy. Firstly, we excluded the apparent abnormal values of217

all observed factors. Secondly, the data points larger than three times standard deviations were also218

eliminated. Thirdly, it is necessary to select the synchronous observation data of LUCCN and Picarro219

due to minor missing records of Picarro. After calculating the CO2 dry molar fractions of LUCCN, we220

interpolated the data of LUCCN and Picarro to the same sampling frequency (1 Hz).221

With these data processing steps, we obtained the CO2 dry mole fractions of one LUCCN node222

(bule line) and Picarro (red line) in Figure 4, and the corresponding temperature, pressure, wind speed,223

wind direction and relative humidity (RH) in Figure 5. There are measurements across all seasons with224

missing observations in May. Thus, we can observe obvious seasonal variations CO2 dry mole fractions,225

temperature, pressure and RH. For example, CO2 dry mole fractions are lower in summer and higher in226
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winter. It should be noted that these data were averaged over 1 hour.227

Fig. 4. (a) Time series of CO2 dry mole fractions measured by LUCCN (black line) and Picarro (red line) at228
Xinglong site from 27 October 2021 to 31 July 2022. And the blue dotted line presents the calibrated CO2 mole229
fractions of LUCCN. These data are averaged to 1 hour. (b) The black points present the differences between the230
raw of un-calibrated LUCCN and Picarro. And the blue points present the differences between the calibrated231
LUCCN and Picarro.232

Based on the time series of LUCCN and Picarro CO2 dry mole fractions in Figure 4(a), the233

differences (���2 ) of these time series (black points) are not constant with time, as shown in Figure234

4(b). The range of ���2 is from 4 ppm to 92 ppm. While ���2 are lower in winter, and higher in235

spring and highest in summer. Therefore, the responses of the LUCCN sensor can be related to the236

factors such as atmospheric temperature or pressure.237

The last step of data processing is to reduce the influence of atmosphere on the LUCCN responses.238

The CO2 dry mole fractions of LUCCN were calibrated with the bias-correction method in Section 2.2.239

With the calibration, CO2 dry mole fractions of the corrected LUCCN data ( bule dotted line) and240

Picarro data (red line) are shown in Figure 4(a). The results show that the calibration of LUCCN is241

highly consistent with the measurement of Picarro, and the ratios of these two sensors are close to the242

line ��2,����� = ��2,������� (eg. the line 1:1) in Figure 6. Moreover, the differences between the CO2243

dry mole fractions of LUCCN and the raw data of Picarro in Xinglong (blue points) site are244

significantly reduced (Figure 4(b)). The mean ���2 decreased from 39.46 ppm to 0.048 ppm at 1245

hour and the SD decreases to 0.53 ppm at 1 hour. It should be noted that the SD of the LUCCN in246
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Xinglong site is smaller than that of the laboratory calibration results in Figure 3(b), but this is because247

the Xinglong data used for calibration and calculation have been processed as 1-hour average data,248

while the data during laboratory test are averaged per second. The results indicate that the calibrated249

outdoor observation data of the LUCCN sensor can still meet the requirements of medium precision,250

i.e., ±1 ppm (1 SD) at 1 hour (Arzoumanian er al. 2019). In addition, SD are 0.33 ppm in autumn and251

0.39 in winter, 0.65 ppm in spring, and 0.67 ppm in summer. During nearly a year of observation, the252

drift of LUCCN is relatively low. Based on the above analysis, we believe that LUCCN is the effective253

medium precision and low cost atmospheric CO2 ground-based sensor.254

Fig. 5. Time series of observations on (a) RH, (b) temperature, (c) pressure, (d) wind direction and (e) wind speed.255

These meteorological factors were collected with CO2 mole fractions of LUCCN (see the black line in Figure 4(a))256

simultaneously. And these raw data are averaged to 1 hour too.257
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Fig. 6. The direct comparison of Picarro data and the calibrated LUCCN data at Xinglong site. The blue points are258

the CO2 mole fractions with calibration of LUCCN, and the red line indicates the 1:1 line.259

4 Cases study in pollution events260

In order to further verify the effectiveness of the LUCCN sensor, the responses of LUCCN in261

pollution events were compared with the observations of the Moderate Resolution Imaging262

Spectroradiometer satellite (MODIS). During the measurement period of LUCCN, there were 27263

pollution events in the results of MODIS. There were a few extra days when CO2 concentrations were264

high while unfortunately satellite data were unavailable due to cloud coverage.265

The days of these events were selected and shown in Figure 7 with red lines. During these266

pollution events, CO2 dry mole fractions of these days are also higher. Such observation agreements267

prove that LUCCN is cable of capturing upward CO2 concentration trends during pollution events. As268

for whether LUCCN can capture the pollution process, we selected three pollution cases to verify it.269

Figure 8 (a), (b), (c) represent the pollution process corresponding to the dashed black boxes of Figure270

7. The first pollution example shows that LUCCN observed a sub-peak and a peak of CO2271

concentrations. MODIS results show that the sub-peak corresponds to the polluted weather, and the272

highest peak is more polluted. Before and after the peaks, the CO2 levels observed by LUCCN were273

relatively lower, and the corresponding images of MODIS presented cleaner weathers, except for274
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November 29, 2021, when the image is obscured by clouds. The second and third examples show that275

the higher CO2 concentrations observed by LUCCN corresponded to the pollution weather shown by276

MODIS. Moreover, when pollution levels were low before and after polluted events, the CO2 dry mole277

fractions observed by LUCCN also decreased accordingly. This indicates that LUCCN is sensitive to278

pollution events and can capture the pollution processes effectively. Comparative analysis shows that279

the observation results of LUCCN and MODIS are in good agreement.280

LUCCN sensors not only need to have the ability to identify pollution processes, they also need to281

have high sensitivity to pollution events. In view of this, we would compare the differences between282

LUCCN and Picarro in pollution events and non-pollution events respectively. The results show that in283

the pollution events, the SD of the differences between LUCCN and Picarro is 0.367 ppm. In the 27284

non-pollution events randomly selected, the SD of the difference is 0.363 ppm. The results indicate that285

LUCCN has high sensitivity in both pollution and non-pollution events. Therefore, the LUCCN sensors286

are effective to measure the changes of CO2 mole fractions.287

Fig. 7. The relationships between CO2 mole fractions of LUCCN (blue lines) and the corresponding pollution288
events observed by the MODIS satellite (red lines) at Xinglong site. The black dashed boxes represent three289
examples of pollution events displayed by MODIS, which would display the measurements of LUCCN and290
corresponding satellite images in the following figure.291
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Fig. 8. (a) The first example of the pollution events in Fig.7. (b) The second example of the pollution events in292
Fig.7. (c) The third example of the pollution events in Fig. 7. The above figures are the enlarged images of the293
dashed boxes in Fig. 7, with the black dashed line indicating the boundary of each day. The below figures are the294
corresponding MODIS images of each day, and the red marks indicate the location of the Xinglong site.295

https://doi.org/10.5194/amt-2024-49
Preprint. Discussion started: 21 May 2024
c© Author(s) 2024. CC BY 4.0 License.



15

5 Conclusion and outlooks296

Low-cost urban CO2 observation networks play a crucial role in monitoring urban CO2 emissions297

and estimating their impacts on the environment. In this paper, we have described the composition,298

principle, calibration, and ground-based observations of the Low-cost UAV Coordinated Carbon299

Observation Network - LUCCN. At present, LUCCN nodes are capable of observing CO2300

concentration, temperature, pressure, RH, wind direction, and wind speed, and have a comprehensive301

design for data transmission, power supply, and equipment enclosure. Moreover, the accuracies of302

LUCCN have been verified through calibration experiments in the laboratory and outdoor ground303

observation. Because the relationships between the CO2 measurements of LUCCN sensors and their304

impact factors are not completely linear, the multi-variable non-linear regression method has been305

adopted to calibrate the measurement data of seven LUCCN sensors in the laboratory. The calibrated306

results show that the differences between the measurements of LUCCN and Picarro have been307

significantly reduced. The SD of seven LUCCN sensors are all less than 1 ppm, where the maximum308

and minimum values are 0.782 ppm and 0.594 ppm respectively with 1 second averaging window size.309

The results show that the accuracy of the calibrated LUCCN data is higher than the medium precision310

requirement, i.e., ±1 ppm at 1 hour (Arzoumanian et al., 2019). This result preliminarily proves that311

the LUCCN can measure CO2 concentrations effectively.312

In addition to the calibration experiments in the laboratory, we completed long-term and313

continuous observation of LUCCN at the Xinglong Atmospheric Background Observatory from the314

27th of October, 2021 to 31st of July, 2022. With the quality controlling and calibration, the 1 hour315

average difference values of LUCCN and Picarro decrease from 39.46 ppm to 0.048 ppm. CO2 dry316

mole fractions of LUCCN and Picarro are close to 1:1. And the SD is reduced from 9.06 ppm to 0.53317

ppm which is less than 1 ppm at 1 hour. That is, the accuracy of LUCCN still has reached the318

requirement of medium precision. Moreover, over the one-year observation period, the drift of LUCCN319

is small enough to be ignored. These above results further confirm that LUCCN is useful to measure320

the surface CO2 concentrations.321

Not only the accuracy of LUCCN has been confirmed, but also the sensitivity to the changes of322

CO2 concentrations has been verified. Therefore, a comparative analysis is made with the results of the323

satellite observation. During the observation period, there are 27 pollution events shown by MODIS324
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satellite. In the pollution events displayed by MODIS, CO2 dry mole fractions observed by LUCCN325

presented higher values. Moreover, LUCCN observations also showed lower CO2 levels in clean326

weathers before and after pollution events. These examples show that LUCCN can effectively measure327

the changes of CO2 concentrations. And the SD between LUCCN and Picarro in pollution events and328

non-pollution events are 0.367 ppm and 0.363 ppm respectively. Through these analyses, LUCCN can329

effectively observe the fluctuations of CO2 concentrations. Not only that, the self-adaption LUCCN330

system has been applied in the first integrated measurement campaign in Shenzhen, China. Through the331

campaign, we found that the LUCCN system is able to increase the spatial and temporal coverage of332

carbon emission information, especially in cases involving the detection of small, rapidly changing333

sources and sinks (Yang et al., 2024). To sum up, the LUCCN can realize the goal of low cost and334

medium precision CO2 observation, it is also a powerful tool to achieve the ground CO2 monitoring335

network.336
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