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Abstract 16 

The CO2 storage (Fs) is the cumulation or depletion in CO2 amount over a period 17 

in an ecosystem. Along with the eddy-covariance flux and wind-stream advection of 18 

CO2, it is a major term in the net ecosystem CO2 exchange (NEE) equation and even 19 

dominates in the equation under a stable atmospheric stratification while this equation 20 

is used for forest ecosystems over complex terrains. However, estimating the Fs remains 21 

challenging due to the frequent gusts and random fluctuations in boundary-layer flows 22 

that arouse tremendous difficulties in catching the true trend of CO2 changes for its 23 

storage estimation from eddy-covariance along with the atmospheric profile techniques. 24 

Using the measurements from Qingyuan Ker Towers equipped with NEE instrument 25 

systems separately covering mixed-broadleaf, oak, and larch forests towers in a 26 

mountain watershed, this study investigates the gust periods and CO2 fluctuation 27 

magnitudes while examining their impact on Fs estimation in relation to the terrain 28 

complexity index (TCI). The gusts induce CO2 fluctuations at numerous periods of 1 to 29 

10 min over two hours. Diurnal, seasonal, and spatial differences (P < 0.01) in the 30 

maximum amplitude of CO2 fluctuations (Am) ranges from 1.6 to 136.7 ppm and these 31 

difference in a period (Pm) at the same significant level ranges 140 to 170 second. The 32 

Am and Pm are significantly correlated to the magnitude and random error of Fs with 33 

diurnal and seasonal differences. These correlations decrease as CO2 averaging time 34 

windows becomes longer. To minimize the uncertainties of Fs, a constant [CO2] 35 

averaging time window for the Fs estimates is not ideal. Dynamic averaging time 36 

windows and a decision-level fusion model can reduce the potential underestimation of 37 



3 
 

Fs by 29%–33%, being equivalent to 1.9%–4.3% underestimation of the NEE for 38 

temperate forests in complex terrains. The relative contribution of Fs to the 30-min NEE 39 

observations ranged from 17% to 82% depending on turbulent mixing and TCI. The 40 

study's approach is notable as it incorporates TCI and utilizes three flux towers for 41 

replication, making the findings relevant to similar regions with a single tower. 42 

Keywords: Eddy covariance, complex terrain, carbon flux, storage term, carbon 43 

dioxide concentration, random uncertainty 44 

1 Introduction 45 

The accurate estimation of the net ecosystem exchange (NEE) of carbon dioxide 46 

(CO2) in forest ecosystems is crucial for a comprehensive understanding of the global 47 

carbon cycle. The eddy covariance (EC) technique has been widely used in forest 48 

ecosystems due to its capacity to directly measure the NEE while measurement 49 

conditions satisfy the underlying theory. The EC technique is based on a simplified 50 

mass conservation equation (after the Reynolds averaging), given by:  51 

 ,                     (1) 52 

where Vm is the volume of dry air in the control volume; c is the CO2 mixing ratio; t is 53 

the time; h is the measure height; u, v, and w denote the velocity components in the x, 54 
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y, and z directions, respectively; and an overbar denotes Reynolds averaging. This 55 

equation conceptualizes the NEE within a control volume from the ground to the 56 

measurement height (h), while ignoring the horizontal turbulence term divergence 57 

(Feigenwinter et al., 2004). In this equation, term I is the CO2 storage (Fs) representing 58 

the change in the average CO2 concentration (hereafter [CO2]). Terms II, IIIa, IIIb, and 59 

IV represent the vertical turbulent flux (Fc), the vertical advection, the interface vertical 60 

mass advection, such as the evaporation process (Webb et al., 1980), and the horizontal 61 

advection, respectively. 62 

Most flux measurements typically lack the solutions for terms III and IV, and can 63 

only estimate the NEE by summing Fc and Fs, and even a significant number of sites 64 

ignored the Fs. The Fs in the vertical gas column within a canopy can be substantial, 65 

requiring attention in NEE estimates (Aubinet et al., 2000). The Fs contributes ~60% to 66 

nocturnal turbulent flux underestimation in forest ecosystems with “ideal” topography 67 

(Mchugh et al., 2017). Especially, during atmospherically stable periods such as the 68 

early morning, sunset, and nighttime transitions, the Fs has a significant impact on the 69 

NEE. For 30-min ecosystem carbon flux measurements, ignoring Fs would 70 

underestimate the NEE (Zhang et al., 2010). The Fs value typically ranges from −2 to 71 

−5 μmol m−2 s−1 in the early morning, and the Fs is about 1–3 μmol m−2 s−1 after sunset 72 

for temperate forests. The effect of the Fs on the NEE of forest ecosystems decreases 73 

with the increase of timescale (Li et al., 2020). However, neglecting the Fs value can 74 

lead to a misunderstanding of the CO2 exchange processes, such as ecosystem 75 

respiration and photosynthesis, and their relationship with key control factors such as 76 
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solar radiation, temperature, and moisture (Mchugh et al., 2017). Therefore, it is 77 

imperative not to overlook Fs to ensure more precise NEE estimates of forest 78 

ecosystems, particularly in complex terrains. 79 

Despite the challenges inherent in monitoring forest conditions, understanding the 80 

carbon flux of forest ecosystems in complex terrains or with heterogeneous underlying 81 

surfaces remains an area of great interest. Topography complexity plays a complex role 82 

in the transportation of momentum, energy, and mass in the atmospheric boundary layer, 83 

with direct impacts on the airflow patterns, spatiotemporal characteristics, and gas 84 

concentration fluctuations (Sha et al., 2021; Finnigan et al., 2020). Differences in 85 

airflow along the slope, lateral CO2 discharge downhill, and spatiotemporal variations 86 

in soil respiration result in the CO2 outflow from slopes and valleys lagging behind the 87 

flat top of the mountain (De Araújo et al., 2010). At night, under stable atmospheric 88 

stratification, cold air moves from valley forest canopy to the ground the and then flows 89 

to low-lying areas, causing a “carbon pooling” effect. The gradient of [CO2] below the 90 

EC sensors fluctuates significantly, and the cold air discharge above the canopy reduces 91 

CO2 storage, leading to an underestimation of forest ecosystem respiration (Yao et al., 92 

2011; De Araújo et al., 2008; De Araújo et al., 2010). 93 

According to the theoretical definition, Fs estimates are derived by averaging the 94 

[CO2] of the control volume at the beginning and the end of the EC averaging period 95 

(30 min or 1 h) and dividing by the EC averaging period (Finnigan, 2006). The 96 

estimation of Fs at numerous sites frequently employs a vertical profile system. This 97 

approach operates under the assumption that the Fs represents the integration of the time 98 
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derivative of the vertically determined column-averaged [CO2]. It is noteworthy that 99 

the column-averaged [CO2] may not accurately represent the average [CO2] of the 100 

control volume in cases of inadequate air mixing, leading to insufficient sampling. 101 

Previous study showed that relying solely on tower-top measurements can lead to 102 

underestimation of Fs by up to 34% compared to the eight-level profile approach (Gu 103 

et al., 2012). The NEE magnitude with the Fs based on the 2-min [CO2] averaging time 104 

window (instantaneous concentration approach) was found to be 5% higher than that of 105 

the 30-min-window-based Fs (averaging concentration approach), particularly during 106 

nighttime in the growing season (Wang et al., 2016). A proper measuring system with 107 

improving the horizontal representativeness can reduce the bias of Fs to 2–10% 108 

(Nicolini et al., 2018). Most research has examined how vertical and horizontal gas 109 

concentration sampling point distribution affects the uncertainty in Fs estimation 110 

(Bjorkegren et al., 2015; Wang et al., 2016; Yang et al., 2007; Yang et al., 1999), with a 111 

small number of studies examining the effect of [CO2] sampling frequency on the Fs 112 

(Finnigan, 2006; Heinesch et al., 2007). Certain studies have experimentally validated 113 

new concepts, such as correlating the gas sampling point concentration with the 114 

horizontal distribution (Nicolini et al., 2018). Some studies have approached the true 115 

value theoretically, such as through defining the control volume represented by flux 116 

measurements (Metzger, 2018; Xu et al., 2019). However, the number of complete 117 

column samples required to describe the column-averaged [CO2] of each 30-min or 1-118 

h Fs estimate is still undetermined. 119 

Previous studies have emphasized the significance of the Fs to the NEE and the 120 
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influence of [CO2] dynamics on Fs estimates in complex terrains. To overcome any 121 

disparities between sensors and obtain precise changes in the [CO2] gradient above and 122 

below the forest canopy, individual gas analyzers are extensively utilized to measure 123 

[CO2] levels vertically (Siebicke et al., 2011). However, a single gas analyzer introduces 124 

time delays when monitoring multi-point [CO2] curves. Accurately determining the Fs 125 

estimates can be challenging due to the spatial and temporal resolution of [CO2] 126 

measurements (Wang et al., 2016). The random error of the Fs estimates using one 127 

complete column sample is considerably high due to short-term [CO2] fluctuations 128 

(Nicolini et al., 2018). The calculation of the Fs using time-averaged [CO2] profiling 129 

leads to significant information loss at high frequency, resulting in a substantial 130 

underestimation bias. Furthermore, resource constraints in the measurement system 131 

leads to the gap that the systematic bias and random error in Fs estimate are 132 

irreconcilable. This issue necessitates further efforts to characterize [CO2] fluctuations 133 

across different sites and demonstrate the mechanisms influencing Fs magnitudes, 134 

uncertainties, and their contributions to NEE observations in complex terrains. Thus, 135 

this manuscript aims to bridge this gap by introducing a statistical method to estimate 136 

Fs values and their uncertainties. 137 

This paper employed an innovative EC site with three flux towers (Qingyuan-Ker 138 

Towers) to monitor three typical types of temperate forest stands located in complex 139 

terrains in northeastern China. This study introduces a decision-level fusion model 140 

based on weighing the underestimation bias and random error of the Fs to obtain more 141 

accurate results. The objectives of this study were to: 1) compare diurnal, seasonal, and 142 
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spatial differences in [CO2] fluctuations, Fs, and its uncertainty; 2) examine the 143 

variation in Fs uncertainty with different [CO2] averaging time windows; and 3) 144 

investigate the response of Fs and its uncertainty to [CO2] fluctuations, wind above the 145 

canopy, and terrain complexity, and quantify the impact of the Fs on the NEE estimates 146 

under these conditions. 147 

2 Materials and methods 148 

2.1 Study site and instrumental set-up 149 

This study was conducted in temperate forests in a watershed based on the Ker 150 

towers (Zhu et al., 2021; Gao et al., 2020), situated in northeast China (41°50′N, 151 

124°56′E). The region experiences a temperate continental monsoon climate, with an 152 

average annual temperature of 4.3 °C and annual rainfall of 758 mm from 2010 to 2021 153 

(Li et al., 2023). The Ker towers consist of three 50-m-high EC towers (Fig. 1) that 154 

observe a mixed broadleaved forest (MBF), a Mongolian oak forest (MOF), and a Larch 155 

plantation forest (LPF). 156 
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 157 

Fig. 1 Overview of the study area. The first map (a) depicts the topography of the study site, with 158 

black curves indicating elevation contours, and marginal distributions represented as a gray graph, 159 

averaged over rows and columns. The second image (b) features an aerial photograph of the 160 

Qingyuan-Ker towers captured in the growing season (Gao et al., 2020). 161 

The basic information regarding Ker towers in this study is presented in Table 1. 162 

The CPEC310 integrated system from Campbell Scientific comprising an EC155 163 

closed-path infrared gas analyzer (IRGA) and a CSAT3A sonic anemometer, was 164 

employed to monitor the three-dimensional wind speed and CO2/H2O concentrations 165 

(10 Hz). The atmospheric profiling system (AP200, Campbell Scientific Ltd., Logan, 166 

UT, USA) was utilized to measure the CO2/H2O concentrations with eight height levels. 167 

Each level was measured for 15 s (with 10 s for the flushing of the manifold and 5 s for 168 

logging the average), leading to a measurement cycle of 2 min. 169 
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Table 1 Basic information of Ker towers 170 

Forest   Mixed broad-

leaved 

Mongolian oak Larch plantation 

Experiment period Jan 01, 2020–

Dec 31, 2021 

Jan 01, 2020–

Dec 31, 2021 

Jan 01, 2020–

Dec 31, 2021 

Elevation (m) 634 669 721 

Slope (°) 14.8 ± 2.1 19.1 ± 2.9 16.2 ± 5.3 

Canopy height (m) 21.5 ± 1.8 13.9 ± 0.6 19.5 ± 0.6 

Leaf area indices 3.0 ± 0.5 3.1 ± 0.8 3.9 ± 0.6 

Eddy covariance system CPEC310 CPEC310 CPEC310 

Eddy covariance sensor 

height (m) 

46 46 36 

Atmospheric profiling 

system 

AP200 AP200 AP200 

Profile heights (m) 0.5, 2, 6, 11, 16, 

21, 26, 36 

0.5, 2, 6, 11, 16, 

21, 26, 36 

0.5, 2, 6, 11, 16, 

21, 26, 36 

2.2 Calculation of storage flux 171 

Averaging the [CO2] in a time window was utilized to calculate the Fs values, in 172 

addition to data on the air pressure, CO2/H2O molar fractions, and air temperature at 173 

different heights above the ground surface (Finnigan, 2006; Montagnani et al., 2018; 174 

Xu et al., 2019). The molar mixing ratio and mass mixing ratio are conserved quantities 175 

with the variation of air temperature, air pressure, and water vapor concentration, 176 

whereas the molar fraction is not. This study determined the Fs using the molar mixing 177 

ratio obtained from CO2/H2O molar fraction observations, applying the ideal gas law 178 

and Dalton’s partial pressure law (Montagnani et al., 2009). The water vapor molar 179 

mixing ratio (𝜒𝜒𝑣𝑣) in mmol mol−1 is given by 180 

𝜒𝜒𝑣𝑣 =
𝑐𝑐𝑣𝑣

1 − 𝑐𝑐𝑣𝑣 × 10−3
, (2) 
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where 𝑐𝑐𝑣𝑣 is the water vapor molar fraction in mmol mol−1, and the CO2 molar mixing 181 

ratio (𝜒𝜒𝑐𝑐) in μmol mol−1 is given by 182 

𝜒𝜒𝑐𝑐 =
𝑐𝑐𝑐𝑐

1 − 𝑐𝑐𝑣𝑣 × 10−3
, (3) 

where 𝑐𝑐𝑐𝑐 is the CO2 molar fraction in μmol mol−1. 183 

The dry air density (�̅�𝜌𝑑𝑑) in mol m−3 is calculated as follows: 184 

�̅�𝜌𝑑𝑑 =
𝑃𝑃�

(𝑇𝑇� + 273.15) × (𝑅𝑅∗ + 𝜒𝜒𝑣𝑣 × 10−3 ∙ 𝑅𝑅∗ ∙ M𝑑𝑑/M𝑣𝑣), (4) 

where 𝑅𝑅∗ is the air gas constant (8.31441 Pa m3 K−1 mol−1), 𝑃𝑃� is the air pressure in 185 

Pa, and 𝑇𝑇� is the average air temperature in Celsius. M𝑑𝑑 and M𝑣𝑣 are the dry air and 186 

water vapor molar mass (18.015 g mol−1), respectively. M𝑑𝑑 is calculated from the CO2 187 

molar mixing ratio (Khélifa et al., 2007): 188 

M𝑑𝑑 = 28.9635 + M𝑐𝑐 ∙ (𝜒𝜒𝑐𝑐 × 10−6 − 0.0004), (5) 

where M𝑐𝑐 is the carbon molar mass (12.011 g mol−1). 189 

The Fs estimated from eight-level profiles are calculated as follows: 190 

𝐹𝐹𝑠𝑠 = �̅�𝜌𝑑𝑑 �
𝑑𝑑�̅�𝜒𝑐𝑐
𝑑𝑑𝑑𝑑

ℎ

0
𝑑𝑑𝑑𝑑 ≐ �̅�𝜌𝑑𝑑�

∆�̅�𝜒𝑐𝑐𝑖𝑖∆ℎ𝑖𝑖
∆𝑑𝑑

8

𝑖𝑖=1

, (6) 

where �̅�𝜒𝑐𝑐 is the average CO2 molar mixing ratio and ∆ℎ𝑖𝑖 is the height represented by 191 

each level.  192 

When measuring the Fs by sampling CO2 at several levels using a single analyzer, 193 

the synchronous observations of CO2 profile are impractical. Consequently, discrete 194 

temporal sampling and time averaging become necessary. To ensure the temporal 195 

alignment of Fs with Fc, the average [CO2] measurements within the control volume at 196 

the beginning and end (t) of an averaging period (30 min) are calculated by averaging 197 

over a time window (τ min) as follows: 198 
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�̅�𝜒𝑐𝑐𝑖𝑖 =
2
𝜏𝜏

� 𝜒𝜒𝑐𝑐𝑖𝑖(𝑑𝑑)
𝑡𝑡−𝜏𝜏2<𝑡𝑡≤𝑡𝑡+

𝜏𝜏
2

, (7) 

where τ = 4, 8, …, 28 min. Theoretically, the time window should be kept as short as 199 

possible in comparison to the turbulence flux averaging period to comply with the 200 

principle of Reynolds decomposition. We use large windows here for CO2 averaging in 201 

an attempt to demonstrate the effects of different window sizes on the accuracy of 202 

storage flux estimates. 203 

2.3 Data analysis 204 

To evaluate the impact of [CO2] fluctuations on Fs measurements and its 205 

corresponding uncertainty, empirical modal decomposition (EMD) and Fourier 206 

spectrum analysis were used to extract the period and amplitude of fluctuations in the 207 

high-frequency [CO2] time series (10 Hz). EMD was used to decompose the [CO2] time 208 

series into intrinsic mode functions based on local signal properties, which yield 209 

instantaneous frequencies as functions of time, allowing for the identification of 210 

embedded structures of eddies. EMD is applicable to non-linear and non-stationary 211 

processes (Huang et al., 1998). The period and amplitude of [CO2] fluctuations above 212 

the forest canopies reflected the eddy size. Subsequently, the maximum period and 213 

amplitude of [CO2] fluctuations in a short term (2h) was indicative of large eddies under 214 

the influence of gust. 215 

Due to the diurnal and seasonal variability of flux measurements, this study 216 

defined the transition period and growing season. The solar elevation angle was used 217 

to define the transition period as 1-h before sunrise (sunset) to 2-h after sunrise (sunset). 218 
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The growing degree days (GDDs) were calculated using the base temperature (Tbase) to 219 

determine the beginning and end of the growing season, and the formula was as follows 220 

(Mcmaster and Wilhelm, 1997): 221 

𝐺𝐺𝐺𝐺𝐺𝐺 =
1
2

(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑇𝑇𝑚𝑚𝑖𝑖𝑚𝑚) − 𝑇𝑇𝑏𝑏𝑚𝑚𝑠𝑠𝑏𝑏, (8) 

where Tbase is 6°C. Considering the persistent demand of temperature to support 222 

vegetation growth, the fourth day of the first GDD greater than zero (less than zero) 223 

over a span of five consecutive days was defined as the starting (ending) time of the 224 

growing season. 225 

The main data processing and analysis steps are outlined below: 226 

1. EMD and Fourier spectrum analysis of [CO2] high-frequency time series were 227 

used to extract the maximum amplitude (Am) and corresponding period (Pm) of [CO2] 228 

fluctuations every 2 h. The data were divided into two subsets based on Pm, with a cut-229 

off of 150 s. 230 

2. CO2 storage fluxes were calculated for different [CO2] averaging time windows 231 

(τ), ranging from 4 to 28 min in increments of 4 min. 232 

3. The standardized major axis (SMA) regression model (Warton et al., 2012) was 233 

used to compare the slope differences (bias) between Fs_τ and Fs_28 for different Pm and 234 

the forest stands. The SMA model offers routines for comparing parameters a and b 235 

among groups for symmetric problems. 236 

4. The normalized root mean square error (NRMSE) and slope were used to 237 

evaluate the relative error and bias between Fs_τ and Fs_28. The NRMSE is calculated as 238 

follows: 239 
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𝑁𝑁𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁 = 100 × �
∑ (𝐹𝐹𝑠𝑠_𝜏𝜏

(𝑖𝑖) − 𝐹𝐹𝑠𝑠_28
(𝑖𝑖) )2𝑁𝑁

𝑖𝑖=1

∑ (𝐹𝐹𝑠𝑠_28
(𝑖𝑖) − 𝐹𝐹𝑠𝑠_28������)2𝑁𝑁

𝑖𝑖=1
, (9) 

where i indicates the ith observation. 240 

5. The normalized weighting coefficient (𝑤𝑤) of Fs_τ was estimated based on the 241 

NRMSE and slope (Wang et al., 2020). The details are shown in Appendix A1. Then, 242 

using the decision-level fusion model, Fs_comb was calculated as follows: 243 

𝐹𝐹𝑠𝑠_𝑐𝑐𝑐𝑐𝑚𝑚𝑏𝑏 = 𝑤𝑤1∗ ∙ 𝐹𝐹𝑠𝑠_4 + 𝑤𝑤2∗ ∙ 𝐹𝐹𝑠𝑠_8 + ⋯+ 𝑤𝑤7∗ ∙ 𝐹𝐹𝑠𝑠_28 (10) 

The decision-level fusion model automatically assigned weights to the Fs based on 244 

different [CO2] averaging time windows. Its purpose in this study was to balance the 245 

relative error and bias of Fs estimates caused by [CO2] sampling. The analysis was 246 

performed using the EMD and smatr R packages (Warton et al., 2012; Huang et al., 247 

1998). 248 

2.4 Uncertainty analysis 249 

To improve the accuracy of estimating the uncertainty of Fs using individual tower, 250 

this work has made modifications to the 24-h difference method by extending the 251 

sampling time windows and applying meteorological condition constraints (Hollinger 252 

and Richardson, 2005). This method trades time for space to estimate the uncertainty 253 

of Fs. To determine the uncertainty of Fs, expressed as 𝜎𝜎(𝜀𝜀𝑠𝑠), in this case, we compared 254 

the observations at moment i within a day to the average of several observations during 255 

a similar period and with similar meteorological conditions. The specific computations 256 

were as follows: 257 
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𝐹𝐹𝑠𝑠�
(𝑖𝑖) =

1
𝑁𝑁

� 𝐼𝐼(𝜆𝜆𝑡𝑡) ⋅ 𝐹𝐹𝑠𝑠
(𝑡𝑡)

𝑡𝑡∈Ω,𝜆𝜆𝑡𝑡∈Λ 

, (11) 

Λ = {𝜆𝜆𝑡𝑡|�
�𝑢𝑢∗

(𝜆𝜆𝑡𝑡) − 𝑢𝑢∗
(𝑖𝑖)�

2

𝜎𝜎𝑢𝑢∗
+

(Ta(𝜆𝜆𝑡𝑡) − Ta(𝑖𝑖))2

𝜎𝜎Ta
+

(H(𝜆𝜆𝑡𝑡) − H(𝑖𝑖))2

𝜎𝜎𝐻𝐻
< 𝛿𝛿}, (12) 

𝜀𝜀𝑠𝑠(𝑖𝑖) = 𝐹𝐹𝑠𝑠(𝑖𝑖) − 𝐹𝐹𝑠𝑠�
(𝑖𝑖), (13) 

𝜀𝜀𝑠𝑠� (𝑖𝑖) =
1
𝑁𝑁

� 𝐼𝐼(𝜆𝜆𝑡𝑡) ⋅ 𝜀𝜀𝑠𝑠(𝑡𝑡)

𝑡𝑡∈Ω,𝜆𝜆𝑡𝑡∈Λ 

, (14) 

𝜎𝜎(𝜀𝜀𝑠𝑠)(𝑖𝑖) = �
1
𝑁𝑁

� 𝐼𝐼(𝜆𝜆𝑡𝑡) ⋅ (𝜀𝜀𝑠𝑠(𝑡𝑡) − 𝜀𝜀𝑠𝑠� (𝑖𝑖))2
𝑡𝑡∈Ω,𝜆𝜆𝑡𝑡∈Λ 

, (15) 

where Ω was the moment interval (i−0.5 h, i+0.5 h) within a certain time window (15 258 

d); I was indicator function; the set Λ represented consisted of elements that meet 259 

similar meteorological conditions, including the u*, air temperature (Ta), and sensible 260 

heat flux (H); 𝜎𝜎𝑢𝑢∗ , 𝜎𝜎Ta , and 𝜎𝜎𝐻𝐻  are the standard deviation of the u*, Ta, and H, 261 

respectively; 𝛿𝛿 was the threshold of Euclidean distance; and 𝜀𝜀𝑠𝑠 was the random error 262 

of Fs. 263 

After estimating the uncertainty of Fs, this study extended the work conducted by 264 

Richardson et al. (2008) to analyze its relationship with the magnitude of flux 265 

measurements (|Fs|), [CO2] fluctuations (Am and Pm), u*, and terrain complexity index 266 

(TCI). A comprehensible description of the TCI can be found in Appendix A2. This 267 

relationship can be approximated by using the following equation: 268 

𝜎𝜎(𝜀𝜀𝑠𝑠) = 𝛽𝛽0 + �𝛽𝛽𝑖𝑖 ∙ 𝑥𝑥𝑖𝑖
𝑖𝑖=1

, (16) 

where the nonzero intercept term 𝛽𝛽0 indicates the size of the random uncertainty as 269 

𝑥𝑥𝑖𝑖  approaches 0, which varies with the observation site, with larger value of 𝛽𝛽0 270 
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indicating greater uncertainty. The slope term 𝛽𝛽𝑖𝑖 indicates the sensitivity of the size of 271 

the random uncertainty of 𝑥𝑥𝑖𝑖 , with smaller 𝛽𝛽𝑖𝑖  values indicating a probability 272 

distribution of uncertainty closer to white noise. 273 

3 Results 274 

3.1 Characterization of [CO2] fluctuation and Fs variations 275 

The [CO2] high-frequency time series above the forest canopies were decomposed 276 

using EMD, followed by spectral analysis to extract the fluctuation period and 277 

amplitude of [CO2] at different time scales. As depicted in Fig. 2, it became evident that 278 

the [CO2] above the canopies displayed short-term fluctuations with periods ranging 279 

from 1 to 10 min, and the amplitude of these fluctuations showed an increasing trend 280 

with longer periods. This observation strongly suggested the presence of large eddies 281 

influenced by gusts above the canopies, and these eddies were responsible for the 282 

increasing amplitude of [CO2] fluctuations as their size increased. 283 



17 
 

1×
10

3
2×

10
3

3×
10

3

Sp
ec

tr
um

1 h 10 min 5 min 1 min

0
4×

10
3

8×
10

3

Sp
ec

tr
um

1×
10

3
3×

10
3

5×
10

3

Sp
ec

tr
um

1×
10

3
2×

10
4  

0
2×

10
3

4×
10

3

Period (sec)

Sp
ec

tr
um

105 104 103 102 101

0
5×

10
3

1.
5×

10
4

2.
5×

10
4

Sp
ec

tr
um

0

Sp
ec

tr
um

(a) IMF1

(b) IMF2

(c) IMF3

(d) IMF4

(e) IMF5

(f) IMF6

 284 

Fig. 2 Power spectral density of the intrinsic mode function (IMF) of above-canopy CO2 285 

concentrations in the Mongolian oak forest on July 2, 2020 (24 h). 286 

To examine the spatio-temporal variations in large eddies, this study compared the 287 

Am and Pm values above canopies across different forest stands. The analysis utilized 288 

data from daytime, nighttime, and transition periods in both the growing and dormant 289 

seasons. The averages of Am and Pm averages for the above-canopy [CO2] in the three 290 

forest stands ranged from 1.588 to 136.667 ppm and from 2.313 to 2.784 min, 291 

respectively (Table 2). Fig. 3 demonstrated significant seasonal and diurnal differences 292 

(P < 0.01) in Pm, with higher values during daytime in the growing season, and lower 293 

values during the daytime in the dormant season. Moreover, Pm was significantly 294 

different (P < 0.01) among different forest stands during the same time period, with 295 
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MBF stand having the highest values, followed by the MOF, and the lowest values in 296 

the LPF. During the growing season, the Am values were significantly higher than those 297 

during the dormant season, with both daytime and nighttime values also exhibiting 298 

significant differences (P < 0.01) among different forest stands. This observation 299 

provided evidence of significant spatio-temporal variability in large eddies influenced 300 

by gusts. 301 

Table 2 Mean of the Am and Pm in different forest stands at different periods 302 

Variable 
Tower 

site 

Growing season  Dormant season 

DT1 NT2 TP3  DT NT TP 

Am4 

(ppm) 

MBF6 57.932 139.667 136.717  2.219 5.212 4.944 

MOF7 36.160 57.945 55.777  2.699 5.175 4.637 

LPF8 52.688 58.816 60.147  1.588 2.985 2.456 

Pm5 

(s) 

MBF 154.563 167.024 164.824  158.449 151.428 158.121 

MOF 151.986 160.633 159.146  153.091 147.491 153.274 

LPF 149.003 143.950 145.696  143.458 138.794 142.009 
1 DT represents daytime; 2 NT represents nighttime; 3 TP represents transition period. 4 Am 303 

represents the maximum amplitude of short-term CO2 concentration fluctuations; 5 Pm represents 304 

the corresponding period of maximum amplitude. 6 MBF represents mixed broad-leaved forest; 7 305 

MOF represents Mongolian oak forest; 8 LPF represents Larch plantation forest. 306 

To estimate the uncertainty of Fs using an individual tower, a comprehensive 307 

analysis of its diurnal and seasonal dynamics, as well as the functional relationship 308 

between Fs and u*, was necessary. Fig. 4 presented significant diurnal variations and 309 

seasonal differences in Fs across the three forest stands. During the growing season, the 310 

median diurnal variation of Fs for the three forest stands ranged from −2.960 to 2.647 311 

μmol m−2 s−1, whereas during the dormant season, it ranged from −1.306 to 1.012 μmol 312 

m−2 s−1. Comparing the extent of Fs diurnal variation among the three forest stands, 313 
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MBF exhibited the largest extent during the growing season, while the extent of the 314 

three forest stands were similar during the dormant season. Notably, it was observed 315 

that the amplitudes for longer Pm values were greater than those for shorter Pm values. 316 

This observation indicated that the larger the eddies, the greater the magnitude of Fs. 317 

 318 

Fig. 3 Maximum amplitude (Am) (a) and corresponding period (Pm) (b) of short-term CO2 319 

concentration fluctuations in different forest stands for seasonal and diurnal variations, where GD, 320 

GN, GT, DD, DN, and DT denote the growing season daytime, growing season nighttime, 321 

growing season transition period, dormant season daytime, dormant season nighttime, and 322 

dormant season transition period, respectively. Columns with different lowercase letters are 323 

significantly different (P < 0.05) according to Fisher’s least significant difference test. 324 

Furthermore, a u* threshold value was identified for the variation of Fs with u* 325 

during daytime in both the dormant and growing seasons (Fig. 5). When u* fell below 326 

the u* threshold, the magnitude of Fs (|Fs|) decreased with increasing u*. Conversely, 327 

when u* exceeded the u* threshold, the |Fs| tended to remain relatively constant. Notably, 328 

a maximum point for the |Fs| was observed when the u* was less than 0.5 m/s during the 329 
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growing season, whereas not during the dormant season. This phenomenon was 330 

particularly evident during the nighttime and transition periods of the growing season, 331 

where |Fs| exhibited an initial increase followed by a subsequent decrease with u*. These 332 

observations strongly indicated that the effect of the turbulent mixing strength on the 333 

|Fs| over complex terrains was nonlinear and exhibited diurnal and seasonal differences. 334 
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 335 

Fig. 4 Median diurnal variation of CO2 storage flux (Fs) based on 28-min CO2 concentration 336 

averaging time windows in the three forest stands during different seasons. GS indicates the 337 

growing season and a short period of maximum amplitude (Pm), GL indicates the growing season 338 

and a long Pm, DS indicates the dormant season and a short Pm, and DL indicates the dormant 339 

season and a long Pm. 340 
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 341 

Fig. 5 Magnitudes of CO2 storage flux (|Fs|) determined with different CO2 concentration average 342 

time windows as a function of the friction velocity (u*) and moving block averages from all 30-343 
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min data for the years 2020-2021. Dashed and solid lines indicate the dormant and growing 344 

seasons, respectively. 345 

3.2 Effect of [CO2] fluctuations on the Fs and its uncertainty 346 

To investigate the influence of the [CO2] fluctuation periods on the error of Fs 347 

measurement, this study computed the diurnal average of the standard deviation 𝜎𝜎(𝜀𝜀𝑠𝑠) 348 

of the 30-min Fs uncertainty (𝜀𝜀𝑠𝑠) separately for different Pm values and the seasons. The 349 

overall distribution of 𝜀𝜀𝑠𝑠 showed a non-normal distribution with a high peak (kurtosis > 350 

2 and P < 0.05, results presented in Supplementary Table 1–4). The daily variation 351 

curves of 𝜎𝜎(𝜀𝜀𝑠𝑠) at various [CO2] averaging time windows are presented in Fig. 6. It 352 

was observed that the diurnal variation range of 𝜎𝜎(𝜀𝜀𝑠𝑠) was higher during the growing 353 

season compared to the dormant season, regardless of the Pm lengths, indicating a 354 

seasonal difference independent of the Pm. Additionally, during the growing season, 355 

both MBF and MOF demonstrated evident diurnal variation in 𝜎𝜎(𝜀𝜀𝑠𝑠), with the peak 356 

occurring at night and the trough during the daytime. The diurnal variation range of 357 

𝜎𝜎(𝜀𝜀𝑠𝑠) varied across the three forest stands, with MBF exhibiting the largest amplitude. 358 

Furthermore, a significantly positive correlation was observed between 𝜎𝜎(𝜀𝜀𝑠𝑠) the 359 

|Fs| (P < 0.01), with site, seasonal, and diurnal differences (Fig. 7). The relationship 360 

between these variables was characterized by intercepts and slopes that varied across 361 

different [CO2] averaging time windows, ranging from 1.99 to 2.82 and from 0.24 to 362 

0.28, respectively (results presented in the Supplementary Tables 5–6). Both decreased 363 

as the [CO2] averaging time window increased, with the growing season exhibiting 364 

larger values compared to the dormant season (results shown in the Supplementary 365 
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Tables 5–6). These findings suggested that increasing the [CO2] averaging time window, 366 

results in a reduction of the random error in Fs and the correlation coefficient between 367 

𝜎𝜎(𝜀𝜀𝑠𝑠) and |Fs|. This indicated a decrease in variability of 𝜎𝜎(𝜀𝜀𝑠𝑠) and a behavior similar 368 

to white noise. 369 

To assess the impact of [CO2] fluctuations on the error and bias of Fs measurement, 370 

this study compared the NRMSE and slopes of Fs based on different [CO2] averaging 371 

time windows, with reference to the baseline Fs_28, across various Pm values, time 372 

periods, and sites. As shown in Fig. 8, the NRMSE decreased and approached 373 

convergence as the [CO2] averaging time windows increased. During both daytime and 374 

nighttime in the growing season, the NRMSE corresponding to longer Pm was greater 375 

than that corresponding to shorter Pm, while the opposite trend was observed during the 376 

dormant season. Additionally, the longer the [CO2] averaging time window, the greater 377 

the relative underestimation of Fs. 378 
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 379 

Fig. 6 Diurnal variations in the random uncertainty (𝜎𝜎(𝜀𝜀𝑠𝑠)) of CO2 storage flux (Fs) errors (𝜀𝜀𝑠𝑠) at 380 

different CO2 concentration ([CO2]) averaging time windows and their seasonal differences, where 381 

GS indicates the growing season and a short period of maximum amplitude (Pm) of [CO2] 382 

fluctuations, GL indicates the growing season and a long Pm, DS indicates the dormant season and 383 

a short Pm, and DL indicates the dormant season and a long Pm. 384 
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Fig. 7 Random uncertainty 𝜎𝜎(𝜀𝜀𝑠𝑠) of CO2 storage flux (Fs) errors (𝜀𝜀𝑠𝑠) at different CO2 386 

concentration ([CO2]) averaging time windows as a function of the Fs magnitude for mixed broad-387 

leaved forest, Mongolian oak forest, and Larch plantation forest during the growing and dormant 388 

seasons. GS indicates the growing season and a short period of maximum amplitude (Pm) of [CO2] 389 

fluctuations, GL indicates the growing season and a long Pm, DS indicates the dormant season and 390 

a short Pm, and DL indicates the dormant season and a long Pm. 391 
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 392 

Fig. 8 Seasonal and diurnal differences in the normalized root mean square error (NRMSE) of 393 

CO2 storage flux (Fs) versus the respective Fs_28 values for different CO2 concentration ([CO2]) 394 

averaging time windows. GST indicates the growing season and does not distinguish the period of 395 

maximum amplitude (Pm) of [CO2] fluctuations, GSS indicates the growing season and a short Pm, 396 

GSL indicates the growing season and a long Pm, DST indicates the dormant season and does not 397 

distinguish Pm, DSS indicates the dormant season and a short Pm, and DSL indicates the dormant 398 

season and a long Pm. 399 

The comparison of slopes between Fs_4 and Fs_28 in the three forest stands revealed 400 

interesting patterns, as depicted in Fig. 9. During the growing season, the slopes 401 

corresponding to the shorter Pm of [CO2] fluctuations were consistently lower than 402 

those for the longer Pm, indicating that the effect of Pm on Fs uncertainty decreased with 403 

increasing [CO2] averaging time windows. However, for the MBF stand (Fig. 9d and 404 

Fig. 9g), the slopes corresponding to the shorter Pm of [CO2] fluctuations during the 405 

dormant season nighttime were actually greater than those for the longer Pm, primarily 406 
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due to diurnal variations in the daily dynamics of Fs. Overall, the influence of Pm on Fs 407 

uncertainty decreased with increasing [CO2] averaging time windows. This suggested 408 

that averaging [CO2] reduced the effect of gusts on the random uncertainty in estimating 409 

Fs, but led to a systematic underestimation of Fs. 410 
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 411 

Fig. 9 Seasonal and diurnal differences in the slope of CO2 storage flux (Fs) versus the Fs_28 for the 412 

different CO2 concentration ([CO2]) averaging time windows. GST indicates the growing season 413 

and does not distinguish the period of maximum amplitude (Pm) cases, GSS indicates the growing 414 

season and a short Pm, GSL indicates the growing season and a long Pm, DST indicates the 415 

dormant season and does not distinguish Pm, DSS indicates the dormant season and a short Pm, 416 

and DSL indicates the dormant season and a long Pm. 417 

To analyze the effect of [CO2] fluctuations on |Fs| in complex terrains, this study 418 

developed a multiple linear regression model, considering the interaction effects of 419 

turbulent mixing and terrain complexity on |Fs|, as shown in Fig. 10. Am exhibited a 420 
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significant positive correlation with |Fs| in all time periods (P < 0.05). Conversely, Pm 421 

showed a significant negative correlation with |Fs| during the dormant season daytime, 422 

the growing season daytime, and the transition periods (P < 0.05). Additionally, their 423 

correlation coefficient decreased with increasing τ. In Fig. 10d and Fig. 10e, a u* 424 

threshold was observed during the growing season nighttime. When the u* was below 425 

the threshold, higher TCI values resulted in smaller |Fs|; whereas when the u* was above 426 

the threshold, higher TCI values led to larger |Fs|. During the growing season nighttime 427 

and transition periods, u* showed a significant negative correlation (P < 0.05) with |Fs|, 428 

and the correlation coefficient decreased with increasing TCI values. These 429 

observations suggested that the effect of turbulent mixing on the |Fs| uncertainty was 430 

regulated by terrain complexity. 431 

A multiple linear regression model was used to analyze the effect of [CO2] 432 

fluctuations on the random uncertainty of Fs, 𝜎𝜎(𝜀𝜀𝑠𝑠), in complex terrains. This model 433 

considered the interaction effects of [CO2] fluctuations and terrain complexity on 434 

𝜎𝜎(𝜀𝜀𝑠𝑠), as shown in Fig. 11. As evident from Fig. 11a and Fig. 11e, the Am exhibited a 435 

significant positive correlation (P < 0.05) with 𝜎𝜎(𝜀𝜀𝑠𝑠) during both the dormant season’s 436 

nighttime and the growing season. Throughout the transition period of the growing 437 

season, Pm displayed a significant negative correlation with 𝜎𝜎(𝜀𝜀𝑠𝑠)  (P < 0.05). The 438 

magnitude of these correlation coefficients decreased with the increasing [CO2] 439 

averaging time windows. During the transition period of the dormant season, a TCI 440 

threshold was observed, with Pm showing a significant positive correlation (P < 0.05) 441 

with 𝜎𝜎(𝜀𝜀𝑠𝑠)  when the TCI was below the threshold, and a significantly negative 442 
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correlation (P < 0.05) with 𝜎𝜎(𝜀𝜀𝑠𝑠) when the TCI exceeded the threshold (Fig. 11b and 443 

Fig. 11f). The u* showed a significantly negative correlation with 𝜎𝜎(𝜀𝜀𝑠𝑠) during the 444 

daytime and transition periods of the growing season (P < 0.05), while in other time 445 

periods, u* was significantly positively correlated with 𝜎𝜎(𝜀𝜀𝑠𝑠)  (P < 0.05). The |Fs| 446 

demonstrated a significant positive correlation with 𝜎𝜎(𝜀𝜀𝑠𝑠)  (P < 0.05) in all time 447 

periods, with its correlation coefficient being greater during the growing season than 448 

during the dormant season. These observations suggested that the relationship between 449 

the random uncertainty in Fs and [CO2] fluctuations was moderated by topographic 450 

complexity. Increasing the [CO2] averaging time window reduced the effect of [CO2] 451 

fluctuations on the random uncertainty in Fs. 452 

 453 

Fig. 10 Linear regression coefficients of the CO2 storage flux (Fs) magnitude––driving factors 454 
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relationships for the seven CO2 concentration ([CO2]) averaging time windows. The predictors of 455 

the multiple linear models are (a) the logarithm of maximum amplitude of [CO2] fluctuations 456 

(ln(Am)), (b) the logarithm of the corresponding period of maximum amplitude (ln(Pm)), (c) the 457 

terrain complexity index (TCI), (d) the friction velocity (u*), and (e) the interaction term of TCI 458 

and u*, respectively. (f) β0 represents the intercept term. 459 

 460 

Fig. 11 Linear regression coefficients of the random uncertainty of CO2 storage flux (𝜎𝜎(𝜀𝜀𝑠𝑠))––461 

driving factors relationships determined with Eq. (11) for the seven CO2 concentration ([CO2]) 462 

averaging time windows. The predictors of the multiple linear models are (a) the logarithm of 463 

maximum amplitude of [CO2] fluctuations (ln(Am)), (b) the logarithm of the corresponding period 464 

of maximum amplitude (ln(Pm)), (c) the terrain complexity index (TCI), (d) the friction velocity 465 
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(u*), (e) the interaction term of TCI and ln(Am), (f) the interaction term of TCI and ln(Pm), and the 466 

magnitude of storage flux (|Fs|), respectively. (h) The intercept term is represented by β0. 467 

3.3 Effect of CO2 storage fluxes uncertainty on NEE observations 468 

The 30-min Fs_comb was obtained by weighing the bias and random error of Fs using 469 

different [CO2] averaging time windows and Pm values. This study then focused on the 470 

magnitude of Fs_comb in relation to the Fc magnitude and its diurnal, seasonal, and site 471 

variations. To assess the significance of Fs in NEE observations, the relative 472 

contribution ratio of Fs_comb magnitude (|Fs_comb|/(|Fc|+|Fs_comb|)) was employed. The 473 

|Fs_comb|/(|Fc|+|Fs_comb|) showed a decreasing trend to convergence with increasing u* 474 

(Fig. 12). On average, the |Fs_comb|/(|Fc|+|Fs_comb|) ranged from 17.2% to 82.0%, with a 475 

higher value during the dormant season compared to the growing season. This indicated 476 

that as turbulence intensity increased, the contribution of Fs to the NEE in forests 477 

decreased to a constant value. Nevertheless, even under strong turbulence intensity, Fs 478 

still played a significant role in the NEE observations of forests in complex terrains. 479 
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 480 

Fig. 12 Relative contribution ratio of the CO2 storage flux magnitude (|Fs_comb|/(|Fc|+|Fs_comb|)) 481 

determined by decision-level fusion model as a function of the friction velocity (u*) moving block 482 

averages from all 30-min data for the years 2020–2021. GD represents the growing season’s 483 

daytime; GN represents the growing season’s nighttime; GT represents the growing season’s 484 

transition period; DD represents the dormant season’s daytime; DN represents the dormant 485 

season’s nighttime; DT represents the dormant season’s transition period. 486 

As indicated in Table 3, both Pm and TCI exhibited a significant positive 487 
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correlation with |Fs_comb|/(|Fc|+|Fs_comb|) (P < 0.05), while both Am and u* showed a 488 

significant negative correlation with |Fs_comb|/(|Fc|+|Fs_comb|) (P < 0.05). Notably, 489 

seasonal variations in correlation coefficients were observed. The correlation between 490 

the u* and |Fs_comb|/(|Fc|+|Fs_comb|) was more pronounced during both the dormant 491 

season’s transition period and the growing season, and it decreased with increasing TCI 492 

values during the dormant season’s daytime and nighttime. 493 

Table 3 Linear regression coefficients of the relative contribution ratio of Fs_comb 494 

magnitudes to NEE observations (|Fs_comb|/(|Fc|+|Fs_comb|)) ––driving factors 495 

relationships for the six time periods. 496 

Time 

period 

β0 ln(Pm)7 ln(Am)8 u*9 TCI10 u*:TCI R2 

Total 

 

0.292 

*** 

0.048 

*** 

−0.037 

*** 

−0.334 

*** 

0.790 

*** 

−1.018 

*** 

0.278 

*** 

GD1 

 

0.299 

*** 

0.016 

 

−0.041 

*** 

−0.183 

*** 

−0.293 

* 

0.239 

 

0.158 

*** 

GN2 

 

0.370 

*** 

0.029 

 

−0.023 

*** 

−0.386 

*** 

−0.038 

 

0.081 

 

0.103 

*** 

GT3 

 

0.161 

 

0.060 

*** 

−0.014 

*** 

−0.182 

 

1.056 

*** 

−1.754 

 

0.186 

*** 

DD4 

 

0.393 

*** 

0.011 

 

−0.020 

*** 

−0.154 

* 

0.306 

 

−0.153 

 

0.040 

*** 

DN5 

 

0.661 

*** 

0.012 

 

−0.026 

*** 

−0.443 

*** 

−0.035 

 

0.399 

 

0.088 

*** 

DT6 

 

0.495 

*** 

0.017 

 

−0.036 

*** 

−0.294 

*** 

0.564 

 

−0.852 

 

0.149 

*** 
1 GD represents the growing season’s daytime; 2 GN represents the growing season’s nighttime; 497 

3 GT represents the growing season’s transition period; 4 DD represents the dormant season’s 498 

daytime; 5 DN represents the dormant season’s nighttime; 6 DT represents the dormant season’s 499 

transition period. 7 Am: maximum amplitude; 8 Pm: corresponding period of maximum amplitude. 9 500 

u*: friction velocity; 10 TCI: terrain complexity index; *** represents P < 0.001; ** represents P < 501 

0.01; and * represents P < 0.05.  502 
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To evaluate the impact of Fs_comb on NEEobs (Fc + Fs), we further evaluated the 503 

slope (with intercept terms forced to zero) and NRMSE of Fc + Fs_comb compared to Fc 504 

+ Fs_28, as presented in Supplementary Materials Table 7 and Table 8. The Fs_28 in the 505 

three forest stands was underestimated by 28.6%–33.3% compared to the Fs_comb, and 506 

the NRMSE of Fs_comb versus the Fs_28 ranged from 59.2% to 67.2%. The NEEobs with 507 

Fs_28 was underestimated by 1.9%–4.3% compared to the NEEobs with Fs_comb. The 508 

NRMSE of NEEobs with the Fs_comb versus the Fs_28 in the three forest stands ranged 509 

from 16.0% to 25.4%. The analysis suggested that combining the Fs values based on 510 

different averaging [CO2] time windows in the decision-level fusion model could 511 

successfully weigh potential underestimation bias and random uncertainties. 512 

The influences of Fs on the relationship between NEE observations and 513 

meteorological drivers, indicated the effect of uncertainty in Fs estimates on NEE 514 

observations. Our analysis showed that the correlations between NEE observations 515 

derived from Fc+Fs and both photosynthetic photon flux density (PPFD) and air 516 

temperature are lower compared to those obtained from Fc alone (Figure 1 and Figure 517 

2 in the Supplementary Materials). Additionally, the estimated light saturated net CO2 518 

assimilation (Amax) is greater when NEE observations are estimated by Fs+Fc, as 519 

opposed to when NEE is estimated solely by Fc. This suggests that Fs significantly 520 

affects daytime NEE and can correct the estimation of Amax and related parameters. The 521 

relationship between NEE observations and PPFD is influenced by the size of averaging 522 

time window the Fs measurement. A larger averaging window results in less random 523 

uncertainty in the Fs estimation, thereby increasing the correlation between NEE 524 
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observations and meteorological drivers, including PPFD and Ta. 525 

4 Discussion 526 

4.1 Short-term [CO2] fluctuations above the forest canopy and Fs estimates in complex 527 

terrains 528 

Compared to flat and uniform underlying surface, complex terrain and 529 

heterogeneous canopies modify the trajectory, speed distribution and direction of the 530 

airflow. Increased wind speeds and shifting wind directions also increase turbulent 531 

activity above the canopy, facilitating the mixing and dispersion of CO2. This study 532 

found that short-term fluctuations of [CO2] above the canopy exhibited a range of 1 to 533 

10 min (Fig. 2). These fluctuations were characterized by an average Pm ranging from 534 

2.313 to 2.784 min (Table 2). Our results are in line with previous research using 535 

wavelet analysis, which reported fluctuation periods of [CO2] within and above the 536 

forest canopy to be between 14 and 116 s (Cava et al., 2004). Their observations of the 537 

canopy waves during periods of extreme atmospheric stability (when z/L ≫ 1) exhibited 538 

a dominant period of 1–2 min, consistent with our findings. The period of [CO2] 539 

fluctuations was found to be predominantly influenced by turbulent fluxes and the 540 

residence time of CO2 within the canopy. This indicated a potential correlation between 541 

Pm and the residence time of CO2 within the canopy. Fuentes et al. (2006) employed a 542 

Lagrangian model and calculated the residence time of air parcels released near the 543 

ground and canopy, finding values ranging from 3 to 10 min and from 1 to 10 min, 544 

respectively. Similarly, Edburg et al. (2011) used the standard deviation of [CO2] 545 
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averages to determine CO2 residence time at different locations, including the ground, 546 

within the canopy, and in their gas mixtures, yielding values of 8.6, 3.6, and 5.6 min, 547 

respectively. The results of these simulation experiments are consistent with our study, 548 

further supporting the association between [CO2] fluctuations above the forest canopy 549 

and CO2 residence time. 550 

Tree density and canopy structure also play a role in influencing the air parcel 551 

residence time; in flat terrains, the air parcel residence time correlate with u* (Gerken 552 

et al., 2017), and an increase in vegetation leaf area leads to longer residence times 553 

when turbulence is not fully penetrative. During the growing season, forests exhibit 554 

higher leaf area index and canopy densities compared to the dormant season, resulting 555 

in longer Pm of short-term [CO2] fluctuations above the canopy (Fig. 3). Additionally, 556 

at night, stable atmospheric conditions lead to longer residence times due to suppressed 557 

turbulent mixing, resulting in relatively long nighttime Pm values compared to daytime 558 

and transition periods (Fig. 3). 559 

Complex terrains introduce complex changes in air flow structures, including 560 

gravity-induced waves, drainage, and nonlinear waves induced by single gusts, leading 561 

to dramatic [CO2] fluctuations. These dynamics contribute to uncertainties in estimating 562 

Fs. During nighttime, long-wave radiation emitted from the valley soil surface leads to 563 

the cooling and downslope acceleration of air near the soil surface due to gravity, 564 

potentially causing katabatic flow. As inertia-driven upslope winds are halted by 565 

katabatic acceleration, a local shallow drainage flow is established, reaching a quasi-566 

equilibrium state approximately 1.5 h after sunset (Nadeau et al., 2013). Under stable 567 
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atmospheric conditions, even gentle slopes (around 1°) can generate strong gravity-568 

driven waves (Belušić and Mahrt, 2012). Consequently, advection may complicate the 569 

interpretation of nighttime EC measurements at certain relatively gentle sites, but this 570 

complexity is not evident during daytime measurements (Leuning et al., 2008). 571 

Advection plays a role in depleting the CO2 accumulated within the canopy, resulting 572 

in lower Fs fluxes and establishing an inverse relationship between storage and 573 

advection (Van Gorsel et al., 2011). The occurrence of larger Fs values for long Pm 574 

values suggests weaker advection compared to short Pm values (Fig. 4). In our study, 575 

we observed that the Fs magnitude was relatively large during nighttime and transition 576 

periods, while it was smaller during daytime (Fig. 4), which is consistent with the 577 

findings reported by Wang et al. (2016). 578 

The terrain complexity and the diversity within the canopy significantly affect the 579 

airflow separation in the atmospheric boundary layer. This results in weakened air 580 

circulation within the canopy and spatial variation in the patterns and extent of airflow 581 

separation (Grant et al., 2015). During nighttime and transition periods in a closed 582 

canopy, the turbulent coupling state above and below the canopy gradually decouples, 583 

eventually reaching complete decoupling as the u* decreases (Fig. 5). However, this 584 

decoupling does not lead to stable stratification within the canopy. Despite the 585 

occurrence of decoupling and advection in the closed canopy, waves are unlikely to 586 

exist within the canopy itself (Van Gorsel et al., 2011). As a result, a consistent trend 587 

in the variation of Fs with τ is observed across the three forest stands during the growing 588 

season, independent of Pm (Fig. 9). Conversely, in an open canopy where waves are 589 
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present, the observations of Fs become more complex. This complexity could be the 590 

primary reason why the variation of Fs with [CO2] averaging time windows differs 591 

between the three forest stands for short Pm values during the dormant season daytime 592 

(Fig. 9). The presence of waves introduces additional variability in the measurements, 593 

leading to differences in Fs estimates based on different [CO2] averaging time windows 594 

in these particular conditions. 595 

4.2 Uncertainty in forest ecosystem Fs measurement in complex terrains 596 

The random uncertainty of Fs shares similarities with NEE estimation. For 597 

example, the magnitude of Fs measurements is positively correlated with the standard 598 

deviation of random uncertainty in Fs. Additionally, the overall distribution of Fs 599 

measurements exhibits a non-Gaussian distribution with a high peak, aligning with the 600 

statistical properties of NEE uncertainty (Richardson et al., 2006; Richardson et al., 601 

2008). The uncertainty in the storage term depends a lot on the set-up used, together 602 

with the biological activity of the ecosystem, and the height of the control volume. In 603 

addition, various factors contribute to the uncertainty in Fs estimates, including flux 604 

measurement footprint variations, sampling frequency, spatial sampling resolution of 605 

CO2/H2O concentrations, and instrumental measurement accuracy. The uncertainty 606 

arising from variations in the flux measurement footprint is considerable, typically on 607 

the order of tens of percentages, which is an order of magnitude higher than typical 608 

sensor errors (Metzger, 2018). The AP200 atmospheric profiling system used in this 609 

study has an accuracy of ±0.5 µmol mol−1 and ±0.1 mmol mol−1 for CO2 and H2O 610 

concentration measurements, respectively (Montagnani et al., 2018). The AP200 adopts 611 
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buffer volumes to mix the gas. Efforts to reduce random errors in [CO2] originating 612 

from pressure fluctuations include adding buffer volumes before IRGA pumping tests 613 

(Marcolla et al., 2014). The buffer volumes are fully mixed during gas extraction and 614 

performs a weighted average of [CO2] instantaneous measurements to minimize the 615 

sampling error for each level’s [CO2] measurement (Cescatti et al., 2016). 616 

The Fs estimates can be influenced by singular eddies that penetrate inside the 617 

canopy (Finnigan, 2006). Accurate calculation of Fs requires considering the period of 618 

[CO2] fluctuations with the eddy coherence structure. The spectral energy of the Fs time 619 

series is primarily concentrated between 0.001 and 0.2 Hz (500 and 5 s, respectively). 620 

However, even with sampling frequencies of 2 Hz and below, significantly lower Fs 621 

values are obtained (Bjorkegren et al., 2015). The Nyquist-Shannon sampling theorem 622 

dictates that accurate measurements of [CO2] require a sampling period no longer than 623 

half the period of [CO2] fluctuations. Consequently, to monitor short-term changes in 624 

[CO2], measurements must be taken over a period no longer than half of the period 625 

corresponding to the maximum amplitude (or major energy) of [CO2] fluctuations. In 626 

this study, the average Pm for [CO2] fluctuations fell within the range of 2.313–2.784 627 

min (Table 2). Therefore, it is crucial to ensure that the sampling period for [CO2] does 628 

not exceed 1.256 to 1.392 min, which corresponds to half the average Pm range. 629 

Monitoring fluctuations of Pm for less than 4 min during a 2-min monitoring period of 630 

[CO2] presents a significant challenge. This is a primary reason that the systematic bias 631 

and random error in Fs estimate with a single profile system are irreconcilable (Wang 632 

et al., 2016). Short-term [CO2] fluctuations are mainly influenced by boundary layer 633 
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turbulence, and sampling errors in incomplete fluctuation cycles will be superimposed 634 

with the real advection flux (anisotropy) dispersion in complex terrains (Van Gorsel et 635 

al., 2011). This substantially increases the random uncertainty in Fs based on shorter 636 

[CO2] averaging time windows (Fig. 6 and Fig. 8). As a result, the deviation of NEE 637 

estimates from the actual value expands. 638 

Fluxes in heterogeneous regions are significantly higher than in uniform regions. 639 

The energy transfer from the ground surface to large eddies occurs primarily in areas 640 

with pronounced heterogeneity, and this energy distribution is uneven across the region 641 

(Aubinet et al., 2012). Once large-scale eddies acquire energy, their cascading of energy 642 

to smaller-scale eddies is influenced by topographic features, leading to variations in 643 

these smaller-scale eddies along different flow streams (Chen et al., 2023). In complex 644 

terrains, the bidirectional airflow within forests along slopes can cause the decoupling 645 

of soil CO2 fluxes from EC measurements above the forest canopy (Feigenwinter et al., 646 

2008; Aubinet et al., 2003), leading to significant errors in CO2 flux measurements. 647 

Forest soil serves as the primary source of CO2 gas and regions of high flux over 648 

complex terrains act like chimneys, transporting air parcels from the soil surface within 649 

forests (Chen et al., 2019). By increasing the number of gas concentration sampling 650 

points near the ground, the horizontal representativeness can be enhanced, thereby 651 

reducing the bias in the estimation of Fs (Nicolini et al., 2018). In situations where 652 

turbulence is not well-developed, and CO2 mixing is inadequate, the trend of Fs with 653 

turbulence intensity aligns with that of advective fluxes, which is opposite to that of 654 

turbulent fluxes (Mchugh et al., 2017). The temporal dynamics and amplitudes of Fs 655 
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changes are influenced by topography complexity and wind conditions above the forest 656 

canopy (Fig. 10). Locations with more complex and sloping topography at the flux 657 

tower are more likely to generate advective fluxes that may not be easily observed at a 658 

single point. 659 

Estimating landscape CO2 fluxes in complex terrains solely based on 660 

measurements from a single flux tower can introduce significant errors and biases that 661 

are not acceptable. The magnitude of these errors in Fs estimates is dependent on the 662 

height of the forest canopy and the endogenous source/sink (Chen et al., 2020). To 663 

mitigate errors and biases associated with estimating Fs in complex terrains, we 664 

employed a regression modeling approach using the decision-level fusion model. This 665 

method involves computing a weighted average of Fs based on different [CO2] 666 

averaging time windows, effectively reducing errors and biases in the estimation of Fs 667 

(see Table 5). In fact, from the definition of storage flux, it can be seen that weighting 668 

the storage flux is essentially weighting the [CO2] in the average time window, which 669 

means replacing spatial sequences with temporal sequences for weighting. The 670 

weighting coefficients used to construct the model were based on the relative errors and 671 

biases of Fs estimation, with the weighting coefficient decreasing as the represented 672 

moment's length increased. To obtain more accurate estimates of forest ecosystem Fs in 673 

complex terrains, further research should focus on understanding the spatiotemporal 674 

patterns and dynamics of [CO2]. 675 
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5 Conclusions 676 

This study investigated the impact of short-term [CO2] fluctuations on the 677 

estimation of Fs in temperate forest ecosystems within complex terrains. Additionally, 678 

it examined the Fs uncertainty and the contribution of the Fs to NEE using data from 679 

three flux towers. To enhance Fs uncertainty estimation, statistical sampling techniques 680 

were applied based on the individual tower approach. 681 

The results highlighted the significance of considering multiple time windows for 682 

averaging [CO2] when estimating Fs, as [CO2] above the forest canopies exhibited 683 

fluctuations with periods ranging from 1 to 10 minutes. Diurnal, seasonal, and spatial 684 

variations were observed in the amplitude and periodicity of [CO2] fluctuations, 685 

highlighting the need for thoughtful sampling strategies. The use of individual gas 686 

analyzers to sample the CO2 in the control volume was inadequate, leading to 687 

systematic biases and random errors in the Fs estimates. Increasing [CO2] averaging 688 

time windows mitigated the effect of [CO2] fluctuations on Fs estimates, reducing both 689 

their magnitude and uncertainty. 690 

The study also revealed that the uncertainty of Fs followed a non-normal 691 

distribution, with its standard deviation positively correlated with Fs magnitude, which 692 

has important implications for quality control. To improve Fs estimation, a decision-693 

level fusion model was introduced, integrating Fs estimates from multiple [CO2] 694 

averaging time windows, effectively reducing the impact of short-term [CO2] 695 

fluctuations while considering underestimation bias and random errors. The 696 

contribution of Fs to NEE exhibited diurnal, seasonal, and spatial variations associated 697 
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with u*, contributing to the NEE observations at rates ranging from 17.2% to 82.0% 698 

depending on the turbulent mixing and terrain complexity. The influence of terrain 699 

complexity on the relationship between [CO2] fluctuations, turbulent mixing, and the 700 

contribution of Fs to NEE was also evident. The findings from the three flux towers 701 

allowed for the generalization of these results beyond the study site. These insights 702 

provide crucial scientific support for the practical application of the eddy covariance 703 

technique and advance our understanding of accurately estimating NEE in forest 704 

ecosystems in complex terrains. 705 

Appendix A 706 

A.1 the weight parameters of the decision-level fusion model 707 

For each 30-min CO2 storage flux (Fs) estimate based on the CO2 concentration 708 

([CO2]) averaging time window (τ), the weight in the decision-level fusion model can 709 

be obtained by weighting the random uncertainty and bias of Fs_τ. 710 

The weight of the random uncertainty for the Fs_τ is expressed as follows: 711 

𝑤𝑤𝜏𝜏 =
1/𝜎𝜎(𝜀𝜀𝜏𝜏)
∑ 1/𝜎𝜎(𝜀𝜀𝑗𝑗)𝑗𝑗

, (A.1) 

where 𝜎𝜎(𝜀𝜀𝜏𝜏) is the random uncertainty of the Fs_τ, qualified as the standard deviation. 712 

The weight of the bias for the Fs_τ is expressed as follows: 713 

𝑊𝑊𝜏𝜏 =
𝐾𝐾𝜏𝜏
∑ 𝐾𝐾𝑗𝑗𝑗𝑗

, (A.2) 

where 𝐾𝐾𝜏𝜏 is the slope between the Fs_τ and Fs_28. 714 

Ultimately, the weight of the Fs_τ in the decision-level fusion model can be 715 

calculated using the following equation: 716 
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𝑤𝑤𝜏𝜏∗ = 𝑟𝑟𝑤𝑤𝜏𝜏 + (1 − 𝑟𝑟)𝑊𝑊𝜏𝜏, (A.3) 

where r represents the proportion of the weight of random uncertainty. 717 

A.2 Complex terrain index 718 

This study employed a novel descriptor called the terrain complexity index (TCI) 719 

to quantify the complexity of the three-dimensional terrain. For a given unit area, the 720 

TCI equation can be expressed as follows: 721 

𝑇𝑇𝑇𝑇𝐼𝐼 = (1 − 𝑃𝑃𝑑𝑑cos𝛼𝛼𝑑𝑑)(1 − 𝑍𝑍𝑑𝑑−1)�𝐺𝐺𝑓𝑓 − 2�−𝐻𝐻/ln (12), (A.4) 

where, 𝑃𝑃𝑑𝑑 represents the volume of terrain above the lowest elevation of an area 722 

unit (𝑉𝑉𝑢𝑢) divided by the product of its largest vertically projected area (𝑁𝑁𝑣𝑣) and the 723 

edge length of the side of the area unit (d), expressed as 𝑃𝑃𝑑𝑑 = 𝑉𝑉𝑢𝑢/(𝑁𝑁𝑣𝑣𝑑𝑑); Pd was 724 

defined to be one when the 𝑁𝑁𝑣𝑣 is zero. Given 𝑉𝑉𝑢𝑢, an increase in 𝑁𝑁𝑣𝑣 correlates with a 725 

higher degree of terrain complexity. Notably, the 𝑃𝑃𝑑𝑑 is defined as 1 when the terrain 726 

volume is 0 or when the terrain surface of the area unit was parallel to the horizontal 727 

plane and was smooth and homogeneous. αd indicates the slope of the area unit. Zd 728 

denoted the terrain roughness, which defined as the ratio of the terrain surface area to 729 

the projected horizontal plane (Loke and Chisholm, 2022). The value of Zd is in the 730 

range of [1, +∞). The larger Zd, the more complex the terrain. 𝐺𝐺𝑓𝑓 is the fractal 731 

dimension of terrain surface area, which ranged from 2 to 3 and described the 732 

complexity in spatially self-similar structure of the local surface within the area unit 733 

and the area unit surface (B. B. Mandelbrot, 1967; Taud and Parrot, 2005). Employing 734 

terrain surface area, the box-counting method is used to estimate fractal dimension of 735 

unit area. H represented the Shannon-Wiener index and expressed as 𝐻𝐻 =736 
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−∑ 𝑃𝑃𝑖𝑖 ln(𝑃𝑃𝑖𝑖)𝑚𝑚
𝑖𝑖=1 , capturing the uniformity of the spatial distribution of the pixel 737 

aspects within the area unit (Brown, 1997). When the aspect of each pixel is divided 738 

into 30° segments, 𝑃𝑃𝑖𝑖 denotes the proportion of the ith type of pixel aspects within the 739 

area unit and n was the total number of pixel aspect types within the area unit. A 740 

larger H indicates a more complex terrain. When the number of pixel aspect types in 741 

the area unit is kept constant, it’s essential to recognize that greater uniformity in the 742 

distribution of all pixel aspect in the area unit results in a larger H. Similarly, when the 743 

uniformity of the distribution of pixel aspects in the area unit is kept constant, a larger 744 

H is achieved with an increase in the observation of the number of pixel aspect types. 745 

To quantify the terrain complexity of the underlying surface around the flux towers, 746 

we computed the quartiles of TCI for all area units within a sector (divided by 30°) with 747 

a radius of 380 m. A weighted geometric mean was employed to construct TCIs, which 748 

describe the statistical distribution of TCI of the sector. The TCIs represents the 749 

topographic complexity of the sector and are calculated using the following equation: 750 

 𝑇𝑇𝑇𝑇𝐼𝐼𝑠𝑠 = (𝑇𝑇𝑇𝑇𝐼𝐼5𝑇𝑇𝑇𝑇𝐼𝐼25𝑇𝑇𝑇𝑇𝐼𝐼50𝑇𝑇𝑇𝑇𝐼𝐼75𝑇𝑇𝑇𝑇𝐼𝐼95)1/5              (A.5) 751 

where TCI5, TCI25, TCI50, TCI75, and TCI95 are the quartiles of 5%, 25%, 50%, 75%, 752 

and 95%, respectively. The TCIs values range from 0 to 1, with higher values indicating 753 

greater terrain complexity. 754 
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