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ABSTRACT—Meteorological satellite data have been extensively utilized in global numerical weather prediction systems and have a 1 

positive impact to improve forecast accuracy. In order to correctly assimilate satellite radiance observations in data assimilation systems, 2 

the systematic observation biases must be corrected to conform to a Gaussian normal distribution with a mean of 0. By selecting 3 

appropriate air-mass predictors through correlation assessment, a two-step bias correction scheme (namely the scan-angle bias 4 

correction and the air-mass bias correction) is established in this paper based on radiance observations of FY-3E/ HIRAS-II from 1 to 5 

31 January 2023. The results indicate that FY-3E/HIRAS-II O-B (observation-simulation) bias exhibits scanning angle bias dependence 6 

from nadir to limb field of view. Statistics have found that this scanning angle bias does not depend on latitude band. After scan-angle 7 

bias correction using statistical scan-angle correction coefficients, the dependence of the O-B biases on the scan angle can be eliminated. 8 

The second step is to perform air-mass correction. Our correction scheme is compared with the air-mass bias correction scheme in 9 

NCEP-GSI. Although the scan angle influence is also considered in NECP-GSI scheme, it does not account for the water vapor effect in 10 

the atmosphere. Consequently, the correction effect is not good for channels with lower peak height of weighting function, resulting in a 11 

slightly residual positive bias after correction. The combination of air-mass predictors (model surface skin temperature, model total 12 

column water vapor, thickness of 1000-300 hPa, and thickness of 200-50 hPa) selected through importance assessment in this study 13 

effectively eliminates the air-mass biases. The systematic biases between observed brightness temperature and background simulated 14 

brightness temperature from background atmospheric field for all HIRAS-II channels significantly decrease after bias correction, and 15 

the bias distribution essentially follows a Gaussian normal distribution with a mean of 0. The FY-3E/HIRAS-II data assimilation 16 

experiments show that the selected air-mass predictors (EXP-2 scheme) is the most effective among the four experiments. The mean O-17 

B and O-A in all channels are the smallest after bias correction. Compared with the independent ERA5 objective analysis fields, the 18 

EXP-2 scheme has a significant improvement for the temperature analysis at upper air and near surface. The water vapor profiles of 19 

the EXP-2 scheme are the closest to ERA5 at almost all height levels. 20 

 21 

Index Terms—FY-3E/HIRAS-II, bias correction, data assimilation, numerical weather prediction (NWP) 22 

1. INTRODUCTION 23 

The quality of the numerical weather prediction (NWP) largely depends on the accuracy of the initial atmospheric conditions, 24 

provided by the data assimilation system (Auligné et al., 2007b). Satellite data is an important input observation source to data 25 

assimilation systems, it is of great significance to correctly assimilate satellite radiance data to improve the accuracy of the 26 

numerical weather prediction (Zhang et al. 2023). 27 

Satellite observations have the advantages of wide coverage and high temporal and spatial resolution, which greatly 28 

complement the data gaps in areas lacking conventional observations worldwide. Moreover, satellite radiance in infrared or 29 

microwave bands exhibit strong sensitivity to meteorological elements (e.g., temperature, humidity) within the atmospheric 30 

structure (including the Earth's surface) (Li et al., 2019). Notably, satellite-borne infrared hyperspectral atmospheric sounders such 31 

as AIRS (Atmospheric Infrared Sounder), CrIS (Cross-track Infrared Sounder) and IASI (Infrared Atmospheric Sounding 32 

Interferometer) can obtain global meteorological observations with multiple channels and high vertical and spectral resolution. 33 

A Bias Correction Scheme for FY-3E/HIRAS-II 

Observation Data Assimilation 
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These observations, particularly three-dimensional atmospheric temperature and humidity profiles, have been extensively utilized 34 

in global numerical weather prediction with a significant positive impact. In contrast to other infrared hyperspectral atmospheric 35 

sounders, HIRAS-II (Hyperspectral Infrared Atmospheric Sounder-II) is carried on FY-3E, the world's first early morning polar-36 

orbiting meteorological satellite. The satellite launched in 2021 effectively fills the data gap of satellite observations within a 6-37 

hour assimilation window, ensuring almost 100% coverage of satellite observations within the assimilation time window. As the 38 

world's only infrared atmospheric sounder operating in an early morning polar orbit, it is imperative to assimilate its observations 39 

into data assimilation systems (Zhang et al., 2024). 40 

One of the most important steps in data assimilation is bias correction, especially for the bias correction of satellite observation 41 

(Yin et al., 2020). Satellite observation currently account for the vast majority of all assimilated atmospheric observations, and 42 

satellite observations have a strong influence on the quality of the main output meteorological parameters (e.g., temperature, winds 43 

and humidity) from the analysis (including the reanalysis), as well as the additional information generated by the assimilating 44 

forecast models (e.g., precipitation, cloudiness and radiative fluxes). During assimilating the meteorological satellite-observed 45 

radiance data, the target functional atmospheric data assimilation method based on statistical optimal estimation requires the errors 46 

of satellite observations (O) and background simulations (B) all to be an unbiased Gaussian distribution. Therefore, if uncorrected 47 

satellite observations are directly absorbed by the data assimilation system, the accuracy of the analyzed fields will be affected, 48 

thus affect the forecast accuracy of NWP (Dee, 2004). However, satellite observations (O) and background (B) in fact are always 49 

systematically biased. The systematic bias between O and B may originate from observation errors of the instrument itself, 50 

simulation errors of the fast radiative transfer model, forecast errors of the NWP system (as the input atmospheric state parameters 51 

to radiative transfer models), errors introduced during data preprocessing steps, among others. The sources of systematic bias are 52 

complex, but the bias can be quantitatively estimated by statistical 𝑂 − 𝐵. If the unbiased assumption is not valid, the deviation 53 

of the observation error 𝜇𝑜 = 𝑂 − 𝑇̅̅ ̅̅ ̅̅ ̅̅  and the deviation of the simulation error 𝜇𝑏 = 𝐵 − 𝑇̅̅ ̅̅ ̅̅ ̅̅  must be subtracted from the 54 

observation and simulation brightness temperature, respectively. 𝑇 represents the true value of brightness temperature. In the 55 

presence of errors in observation and background, 𝜇𝑂−𝐵 = 𝑂 − 𝐵̅̅ ̅̅ ̅̅ ̅̅ ,  𝜇𝑂−𝐵  is the deviation between observed and simulated 56 

brightness temperatures. This expression provides a basis for bias estimation and bias correction, so the value of 𝜇𝑂−𝐵 can be 57 

estimated even in the absence of the true value based on the statistical samples of 𝑂 − 𝐵 . In order to properly use satellite 58 

observations in the assimilation system, the 𝑂 − 𝐵 must first be corrected to produce an unbiased analysis (Zou, 2020).  59 

For a long time, satellite radiance data assimilation has mainly used a bias correction scheme that relies on “air-mass”, which 60 

use quantities related to "air state" as predictors to implement bias correction. Its theoretical basis is that there is a linear correlation 61 

between the spatial and temporal variations of the satellite observation biases and the predictors, and the higher the correlation, the 62 

more obvious the correction effect is (Zou, 2020). McMillin et al. (1989) first proposed a bias correction scheme for the TIROS 63 

Operational Vertical Sounder (TOVS) using the observed radiance from MSU (Microwave Sounder Unit) channels 2, 3 and 4 as 64 

air-mass predictors. Eyre (1992) adjusted the scheme by incorporating cloud radiance, but the air-mass biases still remained. It is 65 

worth mentioning that Harris and Kelly (2001) proposed a revolutionary bias correction scheme that divides the bias into two parts: 66 

the unavoidable scan angle bias of cross-track scanning instruments and the air-mass bias caused by the NWP mode and the fast 67 

radiative transfer mode. On one hand, the scheme incorporated the latitude dependency into scan angle bias correction, and on the 68 

other hand, it replaced observation-based predictors variables with model background-based predictors. Although the scheme has 69 

achieved remarkable progress, it is a static off-line scheme that relies on bias correction coefficients calculated in advance based 70 

on historical samples and does not account for the evolution of biases with time and with weather systems. Subsequently, many 71 

researchers developed variational bias correction schemes. Dee (2004) proposed a variational scheme for adaptive radiance bias 72 

estimation and correction based on the ECMWF (European Centre for Medium-Range Weather Forecasts) assimilation system. 73 

Zhu et al. (2014) objectively evaluated the effect of the variational correction scheme in NCEP (the National Centers for 74 

Environmental Prediction) - GSI (Gridpoint Statistical Interpolation). 75 
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Due to the dependence of systematic biases on instruments (or sensors), many scholars have developed specific bias correction 76 

schemes suitable for respective satellite instruments. Liu et al. (2007) proposed a bias correction scheme based on the radiance 77 

data from the ATOVS (Advanced TIROS Operational Vertical Sounder) instruments onboard NOAA-15/16/17 polar-orbiting 78 

meteorological satellites. Li et al. (2016) proposed a bias correction scheme for IASI (Infrared Atmospheric Sounding 79 

Interferometer) suitable for the GRAPES assimilation system, based on the approaches of Harris and Kelly. Li et al. (2019) assessed 80 

the capability of air-mass predictors for bias correction in the NCEP GSI assimilation system using CrIS radiance data and proposed 81 

an improved bias correction scheme based on the periodic characteristics of observation minus background biases. Yin et al. (2020) 82 

evaluated the observation quality of the FY-4A/GIIRS (Geostationary Interferometric Infrared Sounder) longwave infrared 83 

channels using GRAPES 4D-Var assimilation system and applied an off-line bias correction scheme to correct the O-B biases of 84 

these channels. Liu et al. (2024) used the CMA-GFS (the China Meteorological Administration Global Forecast System) model to 85 

assimilate FY-3E/HIRAS-II data using a combination of 1000~300 hPa thickness, 200~50 hPa thickness, and 50~10 hPa thickness 86 

as predictors. 87 

Most of the above radiance bias correction studies mainly focus on spaceborne microwave radiometers, and there is limited 88 

research on observation bias in infrared hyperspectral atmospheric sounders, particularly for the HIRAS-II onboard the early 89 

morning polar-orbiting satellite FY-3E launched recently. Liu et al. (2024) use a combination of 1000~300 hPa thickness, 200~50 90 

hPa thickness and 50~10 hPa thickness as predictors to correct FY-3E/HIRAS-II biases, but do not provide the reasons for 91 

predictors selection. Therefore, a bias correction scheme suitable for FY-3E/HIRAS-II is established in this paper based on the 92 

selection of the optimal air-mass correction predictor combination using its radiance observation from 1 to 31 January 2023. In 93 

addition, the scheme is compared with the air-mass correction scheme in NECP-GSI to quantitatively evaluate its bias correction 94 

effect. Finally, the potential positive impact of the scheme to enhance the accuracy of data assimilation is check based on one-95 

month assimilation experiments. 96 

2. DATA AND MODEL 97 

This article investigates a bias correction study on the radiance observations from the hyperspectral infrared atmospheric 98 

sounder HIRAS-II aboard the Fengyun-3E satellite. HIRAS-II is an interferometer Fourier transform spectrometer with continuous 99 

coverage of infrared wavelength from 3.92 to 15.38 μm, consisting of 3041 channels (after apodization) with a spectral resolution 100 

of 0.625 cm-1. HIRAS-II measures Earth and atmosphere in the conventional mode through a cross-track rotary scan mirror that 101 

provides the scan angles vary from −50.4° to +50.4°. Each scan line observes 32 fields of regard (FOR), including 28 contiguous 102 

ground targets, 2 cold spaces and 2 onboard blackbody targets. Each FOR consists of a 3×3 array of fields of view (FOVs) and the 103 

approximate resolution for the nadir FOV is 14 km. A total of 31 days' HIRAS-II Level 1 radiance data from 1 to 31 January 2023 104 

is used in our research as the satellite observations (O). The HIRAS-II Level 1 radiance data obtained from the Fengyun Satellite 105 

Data Center: http://data.nsmc.org.cn. 106 

The National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) 6h forecast filed valid at 0000, 107 

0600, 1200, and 1800 UTC, are used as input to the fast radiative transfer model. (Data are available at 108 

https://rda.ucar.edu/datasets/d084001/). GFS data is a regular latitude-longitude grid data with a spatial resolution of 0.25°×0.25° 109 

and the atmosphere is divided into 41 vertical layers from 1000 hPa to 0.01 hPa. The atmospheric state parameters include the 110 

profile of temperature, humidity and ozone, et al.  111 

The GFS data are spatialy-temporaly matched to HIRAS-II FOVs as follows: for each HIRAS-II field of view (FOV), perform 112 

bilinear interpolation on GFS forecast value by selecting the 4 closest grid points. Since the samples collected in this study are 113 

clear-sky observations over sea, the clear-sky atmosphere does not change much within 0 to 3 hours, so based on the observation 114 

time of each HIRAS-II FOV, select the two spatially matched GFS data that are closest to HIRAS-II’s observation time for linear 115 

interpolation. 116 

http://data.nsmc.org.cn/
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The fast radiative transfer model employed in this study is RTTOV v12.3. RTTOV is a widely used fast radiative transfer 117 

model, suitable for satellite radiometers, spectrometers, and interferometers in visible, infrared and microwave bands. It can 118 

simulate satellite-observed brightness temperature based on the atmospheric and surface state vectors input by users (Saunders et 119 

al., 2018). The spatially and temporally matched GFS data are used as input to calculate simulated brightness temperature (B) for 120 

FY-3E/HIRAS-II assuming clear-sky condition. 121 

3. QUALITY CONTROL 122 

To ensure the rationality and effectiveness of the HIRAS-II data used for statistics, a quality control process is performed 123 

before calculating the bias correction coefficients. The following steps are included: 124 

1) Cloud detection 125 

Cloud detection is a crucial step before satellite data assimilation. Since the infrared hyperspectral atmospheric sounder cannot 126 

penetrate clouds during the measurement, its observations are highly susceptible to the influence of clouds and precipitation, and 127 

simulations of the fast radiative transfer modes under cloudy conditions have considerable uncertainty, so selecting the clear-sky 128 

field of view with high confidence can greatly reduce simulation errors in the fast radiative transfer models. In this study, the 129 

temporally and spatially matched FY-4A/AGRI (Advanced Geostationary Radiation Imager) cloud mask products are employed 130 

for FY-3E/HIRAS-II FOV cloud detection. When the viewing angle of the satellite is large, the field of view becomes distorted 131 

and spatial resolution decreases. To minimize the impact of field-of-view deviation, this study selects only the observations from 132 

the FY-4A/AGRI with a viewing zenith angle less than 60° (The region is approximately from 55° S to 55° N and from 50° E to 133 

155° E) for matching. The HIRAS-II has a coarse spatial resolution of 14 km at nadir, whereas the AGRI cloud mask product has 134 

a higher spatial resolution of 4 km. Therefore, approximately 4×4 AGRI pixels are co-located within each HIRAS-II FOV. These 135 

clear HIRAS-II FOVs are retained during statistics when all the spatially matched AGRI pixels within the HIRAS-II FOV are 136 

identified as clear. The FY-4A/AGRI Level 2 4 km cloud mask product with 4 km resolution can be downloaded from the Fengyun 137 

Satellite Data Center: http://data.nsmc.org.cn. 138 

2) Surface type detection 139 

The surface emissivity calculated by the fast radiative transfer model is relatively accurate when the underlying surface within 140 

a satellite field of view is more uniform. The underlying surface over land is relatively complex, leading to some errors during 141 

simulation, while ocean surfaces are relatively uniform. The surface type of each FOV is determined based on the FY-3E/HIRAS-142 

II Level 1 LSM (Land Sea Mask) product. Only these ocean satellite-observed scenes are kept during statistics. 143 

3) Data Thinning 144 

Each field of regard (FOR) of FY-3E/HIRAS-II consists of 3 × 3 arranged FOVs with 14 km spatial resolution. Only the 145 

observations from the central fifth FOV within each FOR are retained, so the spatial resolution is approximately 45 km after 146 

thinning. 147 

4) Clear-sky detection using window channels 148 

To further eliminate the influence of clouds, a threshold test based on the O-B biases at these window channels 925 cm-1, 970 149 

cm-1, and 1111 cm-1 is performed for each thinned FOV. The FOV with O-B bias exceeding -4 to 4 K at any channel is discarded. 150 

5) Outlier detection 151 

The FOV with observed brightness temperature in any channel exceeding the value range (150-350 K) will be discarded. If 152 

the O-B biases in any channels exceed three times its standard deviation, the FOV is also discarded. 153 

After the above quality control steps, a total of 67534 samples were counted. 34844 samples from 1 to 14 January 2023 are 154 

used as the training data for fitting bias correction coefficients, and 32690 samples from 15 to 31 January 2023 are used as the 155 

testing data to examine the correction effect. 156 

http://data.nsmc.org.cn/
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4. BIAS CORRECTION SCHEME 157 

HIRAS-II radiance bias correction is divided into two steps referring to the offline static bias correction method of Harris and 158 

Kelly (2001) in this study. 159 

4.1 Scan-angle bias correction 160 

The field of view is susceptible to deformation as the scan angle increases when the satellite sensor performs a cross-track 161 

scanning to both sides of scan lines, which leads to unavoidable observation biases relative to the nadir FOV. The optical pathlength 162 

is longer as the scan angle increases, also leading to scan angle biases. In addition, although the fast radiative transfer models are 163 

become increasingly sophisticated and accurate, they can not only simulate the brightness temperature at the nadir, but also simulate 164 

the brightness temperature at other scan angles. However, atmospheric inhomogeneity increases with the increase of scan angle. If 165 

the model cannot fully simulate atmospheric inhomogeneity, it may also lead to bias in the simulated brightness temperature that 166 

depend on the scan angle (Zou et al., 2011). For each channel, the global or regional mean bias of every scan position (angle) 167 

relative to the central nadir position is calculated as: 168 

𝑆(𝜃) = 𝑅̅(𝜃) − 𝑅̅(𝜃 = 0)  (1) 169 

Where 𝑅̅ refers to the mean radiance at different scan angles，𝜃 represents the scan position (scan angle) and 𝑆 denotes 170 

the scan bias. A significant improvement made by Harris and Kelly (2001) to this scheme is incorporating the dependency of biases 171 

on latitude band. The Earth is divided into 18 latitude bands with 10 degrees interval and the correction coefficient is computed 172 

respectively. After a long period of lager sample size statistics, it has been shown that the scan biases of HIRAS-II do not exhibit 173 

a pronounced dependence on latitude band as found in microwave instruments. Therefore, the influence of latitude is not considered 174 

for the scan bias correction in this study. 175 

4.2 Air-mass bias correction 176 

The O-B biases generally exhibit variations associated with the properties of air-mass (and the surface) due to the inaccuracies 177 

in the radiance calibration of satellite instruments, the error from the fast radiative transfer models and NWP systems. The air-mass 178 

bias correction scheme primarily involves establishing a multivariate linear regression equation that relates the air-mass predictors 179 

𝑥𝑖(i = 1,2, … , n) to the air-mass biases, the air-mass biases 𝑟𝑗 for each channel 𝑗 can be calculated: 180 

𝑟𝑗 = ∑ 𝑎𝑗𝑖𝑥𝑖 + 𝑐𝑗
𝑛
𝑖=1   (2) 181 

 182 

Where 𝑎𝑗𝑖  and 𝑐𝑗 are calculated by least square fitting using a large number of samples. 183 

𝑎𝑗𝑖 = ∑ 〈𝐷𝑗 , 𝑥𝑘〉[〈𝑿, 𝑿〉]𝑘𝑖
−1𝑛

𝑘=1   (3) 184 

 185 

Here，〈 . . . , . . . 〉 represents covariance, 𝑘 is the sample number, 𝑿 is the vector of 𝑥𝑘, and 𝐷𝑗  denotes the O-B bias in 186 

channel j. 187 

The success of air-mass bias correction depends on the selection of air-mass predictors. The commonly used air-mass 188 

predictors in the ECMWF and NCEP-GSI assimilation systems are shown in Table 1. Here, 𝑝 represents the air-mass predictors 189 

in the ECMWF assimilation system and 𝑝′ represents the air-mass predictors in GSI. The predictor 𝑝1, 𝑝2, 𝑝5 and 𝑝6 reflect 190 

the mode background-errors at different layers and various dependencies within the forward model. The predictor 𝑝3 represents 191 

the systematic error of near-surface channels. In addition, it can compensate somewhat for the different emissivity characteristics 192 

of different surface types for these channels (Harris and Kelly, 2001). The water vapor is one of the main input components in the 193 

fast radiative transfer mode, the predictor 𝑝4 can reflect the model simulated error to some extent. The predictors 𝑝8-𝑝10 are 194 

employed to correct residual biases after scan bias correction (Dee and Uppala, 2009). The Parameter thickness is calculated as  195 

𝑃𝑟𝑒𝑑𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 = 𝑘𝑡ℎ × ∑ 𝑡𝑣(𝑖) ×𝑁−1
𝑖 ln

𝑃(𝑖)

𝑃(𝑖+1)
 (4) 196 



6 

 

Here, 𝑘𝑡ℎ = 𝑔𝑎𝑠𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡/𝑔𝑟𝑎𝑣𝑖𝑡𝑦(𝑔𝑎𝑠𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 287.0 𝐽 𝐾−1 𝑘𝑔−1, 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 9.81 𝑁 𝑘𝑔−1), 𝑁 is atmosphere levels, 197 

𝑃 is atmospheric pressure, 𝑡𝑣 is the parameter characterizing atmospheric temperature and humidity and calculated as 198 

𝑡𝑣(𝑖) =
𝑇(𝑖)+𝑇(𝑖+1)

2
× [1.0 + 0.608 ×

𝑞(𝑖)+𝑞(𝑖+1)

2
] (5) 199 

Where, 𝑇 and 𝑞 represent RTM level temperatures and moistures, respectively. 200 

In the NECP-GSI assimilation system, the predictor 𝑝0
′  represents a global constant offset. The predictor 𝑝1

′  is a function of 201 

the satellite scan angle 𝜃 and is primarily used to correct residual scan biases. The predictor 𝑝2
′  is only used for the correction of 202 

clear-sky microwave instrument radiance over the ocean to eliminate residual cloud interference. For non-microwave instruments, 203 

the value of the predictor is set to 0. 𝑝3
′  and 𝑝4

′  is the predictor of "temperature lapse rate", △ 𝜏 and △ 𝑇 represents the vertical 204 

variation rate of transmittance and temperature, respectively. The predictor 𝑝4
′  represents the convolution of △ 𝜏 and △ 𝑇, and 205 

𝑝3
′  is the square of the former. The predictor 𝑝3

′  and 𝑝4
′  reflect instrument and RTM errors. When the frequency of channel is 206 

shifted or the spectral settings in the RTM are inaccurate, the calculated transmittance profile will move up/down in the atmosphere 207 

(if the atmosphere is not isothermal). If the transmittance is moved up slightly, the weight function of the channel is shifted upwards 208 

and the brightness temperature should be decreased if the temperature decreases with height. Conversely, the brightness 209 

temperature will increase in the case of a temperature inversion. (Zhu et al., 2014).  210 

Harris and Kelly (2001) as well as Liu et al. (2007) used four predictors (model surface skin temperature, model total column 211 

water vapor, thickness of 1000-300 hPa and thickness of 200-50 hPa) as the optimal combination to the TOVS's air-mass bias 212 

correction. Auligné et al. (2007a) employed a predictor combination of thickness of 1000-300 hPa, thickness of 200-50 hPa, 213 

thickness of 50-5 hPa and thickness of 10-1 hPa to correct the air-mass biases in ATOVS. The predictor combinations used in the 214 

above-mentioned studies are primarily designed for microwave instruments. The predictors used in the ECMWF for all infrared 215 

hyperspectral instruments operating on polar-orbiting platforms are summarized in Table 2 (Auligné et al., 2007a; Collard and 216 

McNally., 2009; Eresmaa et al., 2017). In order to evaluate the optimal combination for FY-3E/HIRAS-II, several typical channels 217 

(737.5 cm-1, 900 cm-1, 1040 cm-1, 1279.375 cm-1, 1476.25 cm-1 and 1809.375 cm-1) are taken as examples in our study. The 218 

importance of predictors 𝑝1-𝑝6 for FY-3E/HIRAS-II is evaluated based on the diagnostic scheme proposed by Auligné (2007a). 219 

Since we use a two-step bias correction scheme, angle-related predictors are not involved in the assessment. This diagnostic scheme 220 

evaluates the bias correction effect based on the ability of each predictor to reduce the root mean square error of radiance biases. 221 

The results are shown in Figure 1. Figure 1(a) and (b) show the spectral positions and the weighting functions (WF) of each selected 222 

channel. The wavenumber of HIRAS-II channel No.141, 401, 626, 1008, 1323 and 1855 are 737.5 cm-1, 900 cm-1, 1040 cm-1, 223 

1279.375 cm-1, 1476.25 cm-1 and 1809.375 cm-1, respectively. The peak heights of weighting function are 535.2 hPa, 1070.9 hPa, 224 

29.1 hPa, 852.8 hPa, 300 hPa and 500.2 hPa in sequence. The six channels correspond to the long-wave CO2 absorption band, the 225 

long-wave window channel, the O3 absorption band, and the water vapor absorption bands at three different heights in turn. Figure 226 

1(c) indicates the importance assessment of different predictors in different channels, where the horizontal axis indicates the 227 

channel No. and the vertical axis is the diagnostic coefficients. A higher coefficient indicates a stronger correlation. The different 228 

colored bars represent different predictors. It can be seen from Figure 1 (c) that the O3 channel 626 and the water vapor channel 229 

1323 with higher height of weight functions have a higher correlation in predictors thickness of 10-1 hPa and 50-5 hPa. However, 230 

other four channels commonly used for data assimilation systems are strongly correlated with the model background surface skin 231 

temperature, model total column water vapor, thickness of 1000-300 hPa, and thickness of 200-50 hPa. Data assimilation systems 232 

generally do not assimilate strong O3 absorption channels at present and the water vapor content in upper atmosphere is scarce, so 233 

a predictor combination including model surface skin temperature, model total column water vapor, thickness of 1000-300 hPa 234 

and thickness of 200-50 hPa is selected to correct the air-mass biases for HIRAS-II in this research. Furthermore, to assess the 235 

effectiveness of our bias correction scheme a comparison is made in this study between the correction results of the NCEP-GSI 236 

predictor combination (𝑝0
′ -𝑝4

′ ) and the proposed method. 237 

 238 
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Table 1 Bias predictors implemented in ECMWF and GSI 239 

ECMWF NCEP-GSI 

𝑝0: 1（constant） 𝑝0
′ : 1 

𝑝1: 1000-300 hPa thickness 

𝑝2: 200-50 hPa thickness 𝑝1
′ : 

1

10
× (

1

cos 𝜃
− 1)2 − 0.015 

𝑝3: skin temperature (K) 

𝑝4: total column water vapor (kg kg-1) 

𝑝5: 10-1 hPa thickness 𝑝2
′ :𝑐𝑙𝑤 × (cos 𝜃)2 

𝑝6: 50-5 hPa thickness 

𝑝7: surface wind speed (m s-1) 𝑝3
′ : (∑△ 𝜏 ×△ 𝑇)

2
 

𝑝8: viewing angle 

𝑝9:  (viewing angle)2 𝑝4
′ : ∑△ 𝜏 ×△ 𝑇 

𝑝10: (viewing angle)3 

 240 

Table 2 Predictors used in bias correction of different infrared hyperspectral instruments for ECMWF. The 𝑝𝑥in the table correspond to Table 1 241 

Instrument Channel Predictors 

AIRS All channels 𝑝1 𝑝2 𝑝5 𝑝6 

CrIS Channels below the mid-troposphere 𝑝8 𝑝9 𝑝10 

 Channels above the mid-troposphere 𝑝1 𝑝2 𝑝5 𝑝6 𝑝8 𝑝9 𝑝10 

IASI All channels 𝑝1 𝑝2 𝑝8 𝑝9 𝑝10 

 242 

 243 
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 244 

Fig. 1. (a) Simulated HIRAS-II brightness temperature spectrum (black curve) by the RTTOV using the US76 standard atmospheric 245 

profile, the selected 6 typical channels (red dots) and the assimilated 485 channels (black dots). (b) weighting function of the 246 

selected channels. (c) relevance diagnostics of bias-correction. 247 

 248 

As we discussed earlier, model surface skin temperature, model total column water vapor, thickness of 1000-300 hPa and 249 

thickness of 200-50 hPa are selected as predictors for bias correction. The multiple linear regression model requires a linear 250 

relationship between continuous independent variables and dependent variables. Therefore, we examine the correlation between 251 

HIRAS-II O-B bias and predictors 𝑝1-𝑝6 based on samples from 1 to 31 January 2023. Figure 2 (a) ~ (f) show the distribution of 252 

a typical HIRAS-II channel 1855 (1809.375 cm-1, the peak height of weight function is 500 hPa) O-B bias with predictors 𝑝1-𝑝6, 253 

respectively. In order to obtain a correct analysis of the relationship between the O-B bias and predictors 𝑝1-𝑝6, the O-B biases 254 

eliminate the influence of scan bias. The horizontal coordinate of each subgraph is the value of each predictor, the vertical 255 

coordinate is the O-B bias and the color represents the number of samples. The black solid line in figure shows the first-order 256 

polynomial fit of the O-B bias and predictors, the correlation coefficients are given in the subtitles of each figure. From Figure 2 257 

(a) ~ (f), there is a certain linear correlation between the O-B bias and predictors 𝑝1-𝑝4, with the highest correlation coefficient of 258 

0.49, and there is no obvious linear relationship between the predictors 𝑝5-𝑝6. 259 
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260 

261 

 262 

Fig. 2 Scatterplots of (a) skin temperature, (b) total column water vapor, (c) thickness of 1000-300 hPa, (d) thickness of 200-50 263 

hPa, (e) thickness of 50-20 hPa and (f) thickness of 10-1 hPa with respect to HIRAS-II O-B for channel 1855 (1809.375 cm-1, 264 

500 hPa). Black curves show the first-order polynomial fitting. Color shade represents data number. 265 
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5. RESULT 266 

The bias correction coefficients are calculated using above method based on FY-3E/HIRAS-II observations from 1 January 267 

to 14 January, 2023. Subsequently, the FY-3E/HIRAS-II O-B biases in all channels from 15 January to 31 January 2023 are 268 

corrected based on the statistical coefficients. The correction results of the selected six typical channels mentioned above are 269 

analyzed in detail. 270 

5.1 The result of scan bias correction 271 

The variation of mean biases with the scan angles before and after scan-angle correction for the six typical channels is 272 

illustrated in Fig. 3. The dot-dash line represents the bias distribution before correction and the dashed and solid lines represent the 273 

bias distribution after correction for scan angle and air-mass, respectively. The vertical axis is the mean O-B biases and the 274 

horizontal axis is the positions of the field of regards (FORs) for each scan line (i.e., the scan angle) with the nadir between FOR14 275 

and FOR15. It is can be seen from Fig. 3 that the biases change with the scan angles for all channels before correction. The bias 276 

increases as the scan angle increases, especially for the lower tropospheric water vapor channel No.1008 with value up to 1.5 K 277 

caused by the larger scan angle with respect to nadir. Additionally, there is an asymmetrical bias distribution on both sides of the 278 

nadir in all channels, particularly for the lower height channels 141 and 1008. This is primarily caused by the non-90° inclination 279 

angle of the polar orbit satellite, leading to inconsistent latitude of the field of view on both sides of the scan line. The phenomenon 280 

resulted in the HIRAS-II observation being higher on one side and a lower on the other side, which in turn causes an asymmetric 281 

distribution of O-B bias. After the scan-angle bias correction, the mentioned biases from the limb FOR relative to nadir and the 282 

asymmetrical biases on both sides have been eliminated and the mean bias of each scan position is basically consistent. However, 283 

there are still some residual biases (dotted line) in the properties of air mass caused by inaccurate simulation (some channels 284 

reaching 0.5-1 K). It can be clearly seen from the black solid line in Figure 3 that the mean biases of all scan positions in all 285 

channels approach 0 K after the air-mass correction. 286 

 287 

Fig. 3 The mean O-B bias of HIRAS- II varies with the scan position before and after the bias correction. The subplots are channel 288 

(a) No. 141, (b) 401, (c) 626, (d) 1008, (e) 1323 and (f) 1855 in turn. (The dot-dashed line represents the O-B bias before bias 289 

correction, while the dotted line and the solid line are the results after the scan-angle and air-mass correction, respectively.) 290 
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5.2 Comparison with GSI's air-mass bias correction scheme 291 

Based on the O-B biases of each HIRAS-II channel after scan-angle bias correction from 1 to 14 January 2023 and 292 

corresponding air-mass predictors (model surface skin temperature, model total column water vapor, thickness of 1000-300 hPa 293 

and thickness of 200-50 hPa) data, the air-mass correction coefficients are fitted using Eq. (3). Then the coefficients are applied 294 

for air-mass bias correction (referred to as EXP-2). Figures 4 (a) to (f) and (g) to (l) show the scatterplots of observed brightness 295 

temperature (O) and background simulated brightness temperature (B) for the six representative channels before and after the air-296 

mass bias correction. The dashed line represents the y=x contour and the color shade represent the density of the radiance data 297 

number. The values in each subplot are the mean value and standard deviation of O-B. From Figure 4 (a), (b) and (d), it is evident 298 

that significant negative biases are exhibited in channels 141, 401, and 1008 (with a lower height of weight function) when the 299 

scene temperature is high before the EXP-2 correction, while water vapor channels with a higher height of weight function (Figure 300 

4 (e-f)) show a relatively warm bias compared to the background simulation (with mean biases ranging from 0.2 to 0.4 K). The 301 

scatter of these channels are all concentrated and evenly distributed near the y=x contour after air-mass correction, with mean bias 302 

close to 0 K and a significantly reduced standard deviation. 303 

 304 

 305 

Fig. 4 The scatterplots of observed versus RTTOV simulated brightness temperature (a-f) before and (g-l) after air-mass bias 306 

correction for HIRAS-II channel No. 141, 401, 626, 1008, 1323 and 1855. Color shade is the data number. 307 
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 308 

The bias correction scheme proposed in this paper has been compared with the air-mass bias correction scheme of NCEP-GSI 309 

to further evaluate its correction effectiveness. The air-mass predictors used in GSI for infrared instruments are 𝑝0
′ , 𝑝1

′ , 𝑝3
′ , and 310 

𝑝4
′  listed in Table 1 (hereafter referred to as EXP-GSI). Figure 5 illustrates the histogram of O-B biases before and after correction 311 

using two different schemes. The x-axis corresponds to the O-B bias and y-axis is the probability density function (PDF) of O-B. 312 

The black curves in the figure represents the observation residuals O-B before correction and the red and blue curves are the O-B 313 

residuals after correction using the EXP-2 and EXP-GSI schemes, respectively. The EXP-GSI scheme still displays notable positive 314 

biases in most channels after correction, especially in the channels with a height of weight function below 500 hPa. Considering 315 

that ninety percent of atmospheric moisture is confined below 500 hPa, the omission of water vapor as a predictor in the EXP-GSI 316 

scheme could potentially explain the suboptimal correction results. In contrast, the biases in all channels of the EXP-2 scheme are 317 

distributed close to a Gaussian distribution centered at zero, with the most significant correction effect in channel 1008. However, 318 

the corrected bias distribution of window channel 401 still exhibits a long tail on the left side, which may be attributed to the 319 

incomplete removal of cloud contamination scene during quality control. 320 

 321 

Fig. 5 The probability density function of O-B bias before (the black curves) and after bias correction for HIRAS-2 channel (a) 322 

No. 141, (b) 401, (c) 626, (d) 1008, (e) 1323 and (f) 1855. (the red curves for EXP-2 BC and blue curves for EXP-GSI). 323 

 324 

In order to examine whether the distribution of O-B biases after correction satisfies a normal distribution with a mean of 0, 325 

Table 4 presents the values before and after correction for these two schemes. Mean represents the mean value, STD represents 326 

the standard deviation, Kurtosis value indicates the steepness of the sample distribution and Skewness is the asymmetry of the 327 

sample distribution. Kurtosis of 3 and skewness of 0 indicate a normal distribution. It can be seen that the kurtosis and skewness 328 

values in all channels after EXP-GSI correction have not changed significantly, while both the observation residuals and standard 329 

deviations in all channels show a significant reduction after correction by EXP-2. The O-B bias of all other channels expect for 330 
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channel 141 with higher kurtosis 5.4 are close to a normal distribution with kurtosis value 3 and skewness value 0. This indicates 331 

a significant improvement in the correction effect for EXP-2. 332 

 333 

Table 3 The statistics before and after bias correction. 334 

Channels Experiments Mean STD Kurtosis Skewness 

141 

No BC -0.6328 0.7300 23.3652 -3.6373 

EXP-2 -0.0107 0.2997 5.4265 -0.8891 

EXP-GSI 0.1281 0.8424 22.9113 -1.9624 

401 

NO BC -0.2491 1.0602 16.3578 -2.6633 

EXP-2 -0.0081 0.6433 3.8705 -0.7459 

EXP-GSI 0.2039 1.1362 17.9520 -1.8301 

626 

NO BC -0.6068 0.6372 5.8011 -0.7712 

EXP-2 -0.0089 0.4400 3.3943 0.1547 

EXP-GSI 0.0815 0.6713 7.0669 -0.5527 

1008 

NO BC -0.8681 0.6615 13.0067 -1.9956 

EXP-2 -0.0087 0.3590 3.6878 0.2906 

EXP-GSI 0.1052 0.7070 16.5003 -1.2353 

1323 

NO BC 0.2155 1.2594 6.5173 0.4414 

EXP-2 -0.0127 1.0272 3.5891 0.1700 

EXP-GSI 0.2904 1.3913 7.1306 0.8153 

1885 

NO BC 0.3160 1.2226 7.3852 0.4690 

EXP-2 -0.0215 1.0176 3.7267 -0.0030 

EXP-GSI 0.1112 1.3188 6.4132 0.4703 

 335 

5.3 Analysis results from 1-month experiments 336 

It is important to verify the potential impact of different BC methods on HIRAS-II radiance data assimilation. The analyzed 337 

fields will deviate from the true state if the model first guess or observation contain systematic errors. This study uses WRFDA 338 

V4.4 to validate the effects of different bias correction schemes on NWP. The WRFDA model has been developed by the National 339 

Center for Atmospheric Research (NCAR). It provides different methods of data assimilation and can assimilate a wide range of 340 

observations. The WRF three-dimensional variational data assimilation system (WRF-3DVar) minimizes the so-called variational 341 

cost function 𝐽(𝑥) as Eq. (6) (Barker et al., 2004). 342 

 𝐽(𝑥) =
1

2
(𝑥 − 𝑥𝑏)𝑇𝑩−1(𝑥 − 𝑥𝑏) +

1

2
(𝑦 − 𝐻(𝑥))𝑇𝑹−1(𝑦 − 𝐻(𝑥))  (6) 343 

Where 𝑥 is the atmospheric state vectors, 𝑥𝑏 is the first guess (background), 𝑩 is the background error covariance, 𝑦 is 344 

the observation vector, 𝑹 is the observation error covariance and 𝐻 stands for the observation operator by using RTTOV v12.3. 345 

A new HIRAS-II data assimilation module is created in WRFDA by adding the reading and QC (The QC steps as described 346 

in Section 3, but the MR method (Eyre and Menzel, 1989) was used for cloud detection) interfaces. A total of 485 channels are 347 

selected for data assimilation, with specific positions in the spectrum shown as black dots in Fig. 1(a). Four parallel experiments 348 

are designed to assess the effects of different bias correction on analysis. These experiments differed in predictors and their detailed 349 

configurations are shown in Table 3. The initial and boundary conditions for all experiments are provided by the NECP GFS 6-h 350 

forecast data. The simulation domain of all experiments is approximately from 0° N to 60° N and from 70° E to 150° E, with a 9 351 

km grid spacing on 889 × 828 horizontal grids and 60 vertical levels up to 1 hPa. The bias correction coefficients used for 352 
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experiments are fitted by the predictors and HIRAS-II O-B biases obtained from 17 to 31 July 2023, and the fitted coefficients are 353 

used in 1-month assimilation experiments from 1 to 31 August 2023.  354 

 355 

Table 4 The setting of three experiments 356 

Experiment Description Predictors Used in BC Scheme 

EXP-CONV GFS data + conventional data 

 

 

NO BC GFS data + conventional data + HIRAS-II data 

(without BC) 

 

 

 

EXP-GSI GFS data + conventional data + HIRAS-II data (with 

BC) 

𝑝0
′ : 1 

𝑝1
′ : 

1

10
× (

1

cos 𝜃
− 1)2 − 0.015 

𝑝2
′ : (∑△ 𝜏 ×△ 𝑇)

2
 

𝑝3
′ : ∑△ 𝜏 ×△ 𝑇 

 

EXP-2 GFS data + conventional data + HIRAS-II data (with 

BC) 

𝑝0: 1（constant） 

𝑝2: 200-50 hPa thickness 

𝑝1: 1000-300 hPa thickness 

𝑝3: skin temperature 

𝑝4: total column water vapor 

 357 

This study assesses the effect of different bias correction schemes on NWP based on 1-month assimilation experiments from 358 

1 to 31 August, 2023. The mean O-B bias and mean O-A (observation minus analysis) bias at 485 assimilated channels during the 359 

1-month experiments period after QC are plotted in Figure 6 (a) and (b), respectively. The horizontal coordinate is the ordinal 360 

numbers of the assimilation channels, arranged from longwave to shortwave. The vertical coordinate is the mean bias. The black 361 

curves, blue curves and red curves in figures represent the results of experiment NO BC, experiment EXP-GSI and experiment 362 

EXP-2, respectively. As shown in Figure 6 (a), the majority of the HIRAS channels without bias correction exhibit significant 363 

negative biases up to -2.5 K. The O3 absorption bands from channel NO.161 to NO.182 with an average bias of 5 K due to the 364 

fixed default O3 profiles used in RTTOV. Although the EXP-GSI scheme can reduce the absolute deviation of most channels, it 365 

still shows a certain positive deviation. It is consistent with the results shown in Figure 5. After EXP-2 bias correction, the average 366 

biases of almost all channels are around 0 and only channel NO.183 to NO.223 and channel NO.452 to NO.472 still have a small 367 

negative bias (maximum not exceeding -0.32 K). This indicates that EXP-2 scheme is effective in the bias correction for HIRAS-368 

II assimilated channels. From Fig. 6 (b), there is obvious difference in O-A biases with and without bias correction. The mean O-369 

A bias of the experiment without bias correction (NO BC) shows large deviations in the O3 absorption band (channel NO.161 to 370 

NO.182), the near-surface water vapor absorption band (channel NO.189 to NO.297) and the shortwave CO2 absorption band 371 

(channel NO.452 to NO.485). There is a significant improvement in O-A for all channels relative to O-B after bias correction (both 372 

for EXP- GSI and EXP-2). The mean O-A of EXP-2 (red curve) is essentially 0 for all channels except the O3 absorption band and 373 

the shortwave CO2 absorption band. It shows that the EXP-2 scheme is effective in improving the analysis.  374 
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 375 

 376 

Fig. 6 (a) Mean O-B biases for 485 assimilation channels without BC (black curve), with the EXP-GSI BC (blue curve) and with 377 

the EXP-2 BC (red curve), (b) Mean O-A biases for 485 assimilation channels without BC (black curve), with the EXP-GSI BC 378 

(blue curve) and with the EXP-2 BC (red curve). The results are sampled from the 1-month assimilation experiments from 1 to 31 379 

August, 2023. Only data that passed the QC process are used. 380 

 381 

In order to specifically analyze the improvement of the analysis by different schemes, three data assimilation experiments at 382 

0000 UTC 7 August 2023 were selected for analysis. Figure 7 shows the spatial distribution of HIRAS-II O-B biases. The colored 383 

dots in figures represent the values of the O-B bias, with colder colors being negative bias and warmer colors being positive bias. 384 

The shading indicates the observed FY-4A AGRI brightness temperature of the window channel 13 at a central wavelength of 12 385 

µm. Figures 7 (a)~(c) show the distribution of O-B biases passed QC in 900 cm-1 channel (1000 hPa) for the NOBC, EXP-GSI and 386 

EXP-2, respectively. Figures 7 (d)~(f) are as above but for 1476 cm-1 channel (300 hPa). It can be seen that the O-B biases without 387 

BC have either cold or warm bias (Fig. 7 (a) and (d)). The most O-B biases after EXP-GSI BC are slightly warmer (Fig. 7 (b) and 388 

(e)), especially in the region from 0° N to 30° N. The overall O-B biases after EXP-2 BC is near 0 (Fig. 7 (c) and (f)) and the 389 

correction effect is significant.  390 
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 391 

 392 

Fig. 7 Spatial distributions (colored dots) of the HIRAS-II O-B biases without BC (left), with the EXP-GSI BC (middle) and 393 

with the EXP-2 BC (right) for (a)~(c) the 900 cm-1 channel (1000 hPa) and (d)~(f) 1476 cm-1 channel (300 hPa) at 0000 UTC 7 394 

August 2023.  395 

 396 

To further validate DA results, the analysis is verified against the ERA5 0.25° × 0.25° data for each experiment. Figure 8 (a) 397 

and (c) show the vertical RMSE (Root Mean Square Error) profiles of temperature and water vapor, respectively. The black solid 398 

line represents experiment NOBC, the blue solid line represents experiment EXP-GSI, the red solid line represents experiment 399 

EXP-2 and the black dotted line represents experiment EXP-CONV. Compared with experiment EXP-COVN, experiments EXP-400 

2, EXP-GSI and EXP-NOBC assimilated a large amount of HIRAS-II data covering from the ground to the upper atmosphere. 401 

Therefore, it can be seen from Figure 8 (a) that the temperature analysis field accuracy is effectively improved (closest to ERA5), 402 

including experiment EXP-NOBC. The RMSE of temperature analysis fields from NOBC, EXP-2 and EXP-GSI significantly 403 

decrease relative to EXP-CONV in all atmosphere (Figure 8 (a)), the RMSE of water vapor analysis fields slightly decrease relative 404 

to EXP-CONV below 800 hPa (Figure 8 (c)). The RMSE profiles from EXP-2 and EXP-GSI normalized by the RMSE from the 405 

experiment NOBC are displayed in Figure 8 (b) and (d) to validate the influence of different bias correction schemes. The horizontal 406 

axis represents the RMSE percentage reduction relative to NOBC. A value less than 100 % indicates a decrease in RMSE after 407 

bias correction and values greater than 100% means the RMSE increase reversely. Figure 8 (b) shows that EXP-2 correction 408 

scheme effectively improves the temperature analysis fields accuracy in the upper and near-surface levels. EXP-2 scheme shows 409 
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a better improvement than EXP-GSI schemes, especially in the upper levels. For the water vapor analysis fields (Figure 8 (d)), all 410 

BC schemes showed less significant improvements relative to NOBC compared to the temperature analysis fields, with changes 411 

in RMSE within 0.5%. It is still the EXP-2 scheme reducing the largest RMSE at 400 to 800 hPa atmosphere. This may be due to 412 

the warmer O-B biases after the EXP-GSI correction.  413 

 414 

Fig. 8 Averaged vertical RMSE profiles of (a) temperature and (c) water vapor compared with ERA5. The vertical RMSE profiles 415 

of (b) temperature and (d) water vapor are normalized by the RMSE from the NOBC experiment. Error bars give statistical 416 

significance intervals for differences from the NOBC at the 95% level. 417 

6. CONCLUSIONS 418 

This paper establishes a two-step bias correction scheme for the innovation vector (O-B) based on the FY-3E/HIRAS-II 419 

radiance data from 1 January to 31 January, 2023. Furthermore, a cross-comparison is conducted with the NCEP-GSI's air-mass 420 

bias correction scheme to objectively evaluate the effectiveness of the scheme. In addition, we briefly investigate the effectiveness 421 

of this scheme in the data assimilation system. The main conclusions are as follows: 422 

(1) Due to the high sensitivity of the FY-3E/HIRAS-II innovation vector (O-B) to instrument scan angles, it is imperative 423 

to perform a scan bias correction. The distribution of scan biases is independent of latitude, so the division of the latitude band 424 
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is not necessary during scan correction. The biases of limb FOV with respect to nadir and the asymmetry in biases on the two 425 

sides of the scan lines have been eliminated after scan-angle correction. 426 

(2) The air-mass biases can be effectively eliminated by selecting the optimal combination of air-mass predictors in this 427 

study based on correlation evaluation. The systematic biases between the observed brightness temperature and the simulated 428 

brightness temperature in all channels are reduced and the standard deviation is also significantly decreased after correction. 429 

Additionally, the O-B biases basically follow a Gaussian distribution with a mean of 0. 430 

(3) The correction effect of the NCEP-GSI's air-mass bias correction scheme to these channels mid-lower tropospheric layer 431 

channels (with a height of weight function below 500 hPa) is unsatisfactory. This could be attributed to the omission of total 432 

column water vapor as a predictor in this scheme. 433 

(4) Compared the data assimilation analysis fields from different schemes with the independent ERA5 objective analysis 434 

fields, the EXP-2 scheme has a significant improvement for the temperature analysis at upper air and near surface. The water 435 

vapor profiles of the EXP-2 scheme are the closest to ERA5 at 400 to 800 hPa height levels. 436 

This bias correction scheme is just a preliminary experiment for the FY-3E/HIRAS-II data assimilation. At present, the off-437 

line static correction is adopted and the variation of O-B bias with time and weather system is not considered. The upcoming step 438 

will involve implementing a variational bias correction scheme, the bias correction coefficient will change with time and weather 439 

system. In addition, this study only validates the effectiveness of the scheme for HIRAS-II and will continue to validate its 440 

applicability for similar infrared instruments in the future. Finally, this study only briefly evaluates the impact of the bias correction 441 

scheme on data assimilation system. The impact on NWP will be further evaluated in the future in actual extreme weather individual 442 

cases (e.g., convective precipitation and typhoons). 443 

 444 
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