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Abstract 

Greenhouse gases monitoring is important to ensure climate goals are being achieved. This study unveils the potential of using 10 

atmospheric tall towers in direct flux measurements, bridging the gap between atmospheric and ecosystem monitoring 

networks. The ICOS Cities (PAUL) project aims to monitor CO2 emissions in urban areas, where concentrated emissions make 

them key targets for climate change mitigation. This study explores synergy between ICOS atmospheric and ecosystem 

networks by utilizing slow-response analysers (~2 sec) on tall atmospheric towers for ecosystem studies using the Eddy 

Covariance method. A standard setup with an ultrasonic anemometer and an infrared (IR) fast-response CO2 analyser was 15 

installed and compared with measurements from an existing cavity ring down spectroscopy (CRDS) analyser measuring CO2, 

CO, and CH4. Deployed on the 100 m Saclay tower near Paris, covering a 43.9 km² 80% footprint with heavy traffic roads, a 

nearby heating plant, and a forest, the setup addressed technical challenges and height-induced complexities. Corrections for 

flux attenuation by high frequency losses were limited to <20% on average for all stabilities, around 11% for unstable 

conditions. Wavelet-based eddy covariance allowed 18-34% more data exploitation than standard EC enabling the analysis of 20 

non-stationary fluxes, particularly from a point source such was the case of a heating plant. The estimated storage term 

produced by atmospheric profiling measurements reported an expected increase at night, destocking during the first half of the 

day. Storage term represented at times more than half of the surface flux. Elevated mean fluxes for CO2 (10 μmolm−2s−1) and 

CH4 (200 nmolm−2s−1) were observed from the heating plant wind direction during December and January. Conversely, the 

forest direction exhibited the strongest sink among all wind directions, with −4 μmolm−2s−1 during July and August. These 25 

results demonstrate the feasibility and versatility of utilizing atmospheric towers for urban emission monitoring, offering 

valuable insights for emission monitoring strategies worldwide. 
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1. Introduction 

Global surface temperature is 1.6 °C warmer on land compared with the pre-industrial era (IPCC, 2021), and projections show 

more than 2°C warming in 2100 (IPCC, 2022). Warming results from the increase in greenhouse gas (GHG) concentration in 30 

the atmosphere, mainly driven by anthropogenic emissions (IPCC, 2021), of which 86% comes from fossil fuel CO2 (Canadell 

et al., 2021). Agriculture, forestry and other land use (AFOLU) are a significant source of GHG (12.0 ± 2.9 GtCO2eq yr−1), 

while concurrently possessing the potential to remove CO2 from the atmosphere (Jia et al., 2019). 

Urban areas concentrate human activities and represent a significant source of GHG emissions, consequently making it one of 

the targets for mitigating climate change. Many northern countries' cities have ambitious GHG emission reduction plans over 35 

the next 2 decades, that consist of electrifying the energy grid, implementing car-free zones, and investing in insulation 

improvement. Consequently, there arises an imperative for robust monitoring of urban areas' emissions reduction. Several 

works have tried to decompose eddy covariance measurements in (sub-)urban setup with different degrees of uncertainty 

(Velasco et al., 2009; Bergeron and Strachan, 2011; Ueyama and Takano, 2022). Currently in Europe the project ICOS Cities 

(PAUL) aims to advance technologies for monitoring CO2 concentrations in urban areas of three different sized pilot cities 40 

(Munich, Paris, and Zurich). 

Monitoring GHG in the atmosphere, ocean and ecosystem is the objective of world-distributed research infrastructures such 

as ICOS in Europe (Heiskanen et al., 2022). To that purpose, different methods are used on terrestrial sites. Ecosystems sites 

focus on local flux monitoring using high-frequency measurements, while atmospheric towers measure precisely the 

concentrations as an imprint of larger scale fluxes. Ecosystem sites measure surface fluxes that represent a specific biome, as 45 

determined by the tower’s footprint. In contrast, atmospheric sites have a footprint spanning several hundreds of km2 and may 

be used to identify anomalies in CO2 surface fluxes based on concentration (Ramonet et al., 2020) or retrieve surface flux by 

inverse modelling eventually using tracers (Ciais et al., 2011). 

At local scale, Eddy Covariance (EC) is the reference method for GHG monitoring. The method is praised for directly and 

continuously measuring surface turbulent flux and largely applied since early measurements to different gases, including water 50 

vapour, CO2, CH4 and N2O (Valentini et al., 1996; Moncrieff et al., 1996; Fowler et al., 1995). Standard measurements require 

fast-response instruments, which is a technical limitation for measuring certain compound’s concentrations. Long-term 

measurement sites are equipped with CO2 and H2O gas analyser, and in some wet or agricultural sites with N2O or CH4 

analysers (Nemitz et al. 2018). At larger scales, atmospheric concentration measurements are often used alongside meso-to-

continental scale transport models to solve surface flux (Lauvaux et al., 2012). This top-down approach is often validated 55 

locally by direct EC measurements (Vuichard et al., 2016). 

The differences between typical atmospheric and a flux tower monitoring setup is that: (1) atmospheric towers are taller (above 

100-meters height) whereas flux towers range from 2 to 40 meters height. This is because atmospheric measurements are setup 

to catch the seasonal and annual trend in atmospheric background concentrations at regional scale which requires limiting the 

impact of local sources (Yazidi et al., 2018); (2) atmospheric towers have more precise measurements but slower, not cadenced, 60 
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sampling rate around a few seconds, whereas EC sample from 5 to 20 Hz. This is required by the eddy covariance method; (3) 

ecosystem stations have ecosystem monitoring (vegetation and soil sampling), which are not measured in atmospheric stations, 

while these measure additional gaseous compounds (CH4, N2O, CO) (Hazan et al., 2016).  

Being able to use slow-response analysers to calculate flux by eddy covariance has been identified as a useful strategy to 

expand the flux networks to other compounds (Wohlfahrt et al., 2009). Atmospheric towers have high precision analysers 65 

which, if we can use them to compute Eddy-Covariance fluxes, would provide multi-species flux measurements that would 

expand the flux network. This would require a fast 3D anemometer and continuous data logging at these sites. However, the 

constraints for concentration and flux measurements are not the same, and so not all towers may be suitable. For any 

atmospheric tower a couple of adversities must be addressed first. Discarding atmospheric stations on mountains that have 

unsuitable conditions for flux measurements, we focus on tall tower over reasonably flat landscapes: 70 

• Firstly, measuring flux with a 3s-response time analyser is challenging. Indeed, fast-response analysers, typically with 

100 millisecond response time, are needed for flux measurements to capture the small and fast eddies (turbulent 

fluctuations) that carry most of the flux signal in the surface layer (Kaimal and Finnigan, 1994). Using slow-response 

analysers on short towers would mean losing most of the signal. For instance, the frequency with the highest 

contribution to the flux on a 4- and 37-meters tall tower was 0.16 Hz (6 s period) and 0.02 Hz (50 s period), 75 

respectively (Coimbra et al., 2023). Using a slow analyser in these towers would attenuate the flux by 65-80 % and 

30-45 % respectively in unstable conditions with wind speed from 3 to 7 m/s, and even greater attenuation is expected 

in stable conditions. Fortunately, the contribution of higher frequencies to the EC flux is inversely proportional to 

height (Horst, 1997), and so for the same unstable conditions measurements at 100 m would give a peak contribution 

between 0.002 and 0.009 Hz (8.3 and 1.85 minutes period) and the high-frequency attenuation would therefore be 80 

small (10-20%). High frequency (HF) corrections based on predefined or experimental cospectra profiles are well 

established and routinely applied to correct for tube attenuations in ICOS and other flux networks (Horst, 1997; 

Massman and Lee, 2002; Ibrom et al., 2007; Fratini et al., 2012). We therefore expect sampling with slow-response 

analysers at tall tower may be suitable because the peak of the covariance cospetrum would be well caught and could 

be corrected with standardised approaches (Massman, 2000). 85 

• Secondly, the height also affects the source area. Taller towers have bigger footprint and often higher heterogeneity, 

commonly including both artificial and vegetated patches in the same wind sector. Heterogeneity and point sources 

can induce sudden shifts in the concentration due to wind direction changes, which will later be flagged as non-

stationary by standard eddy covariance procedures. This quality filtering results in the loss of a significant amount of 

data for less stationary surface fluxes, such as CH4 and N2O (Irvin et al., 2021; Mishurov and Kiely, 2011). Whereas 90 

standard EC requires stationarity, wavelet-based EC does not (Torrence and Compo, 1998; Mallat, 1989; Farge, 1992; 

Farge and Schneider, 2001). Wavelet-based EC methods are sought in airborne campaigns when short-time resolution 

is needed (Strunin and Hiyama, 2004; Mauder et al., 2007; Desjardins et al., 2018; Metzger et al., 2013) and have 

been used to retrieve outbursts and non-stationary flux (Schaller et al., 2017; Göckede et al., 2019). By not requiring 
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stationarity, they yield high-quality data with fewer gaps. In two ICOS ecosystem sites Wavelet-based EC methods 95 

have been found to increase by 17 to 29 % the number of high-quality observations (Coimbra et al., 2023). The 

number may even be greater in urban conditions where point source and denser landscape would enhance surface 

fluxes heterogeneity. 

• Lastly, the height also require accounting for storage fluxes below the EC measurement height, and vertical advection 

fluxes components (Aubinet et al., 2005). Storage flux arises from the accumulation or release of the compound below 100 

the measurement height. The flux at the ground is hence the sum of the flux at the measurement height and of the 

storage flux below. Positive storage flux may result from the decoupling of surface and atmospheric dynamics. Such 

a decoupling may arise especially under stably stratified surface layer, occurring at night above canopies especially 

under radiative cooling conditions (Kaimal and Finnigan, 1994). Negative storage fluxes arise during the early 

morning when the atmospheric boundary layer raises and the stably stratified layer breaks down (Aubinet et al., 2005). 105 

At tall towers the storage can be high and remain large in the morning when the vegetation starts photosynthesizing 

but the turbulence is still low (Haszpra et al., 2005). At very tall towers (300 m), the storage dominates the flux 

dynamics (up to 95% of the total flux, Winderlich et al. 2014). It should be noted that under ideal surface 

homogeneous conditions, the storage term is expected to tend to zero when averaged over a day and hence only affect 

the surface flux dynamics but not the integrated fluxes. 110 

In atmospheric towers, ICOS focuses on measuring not only CO2 but also CO and CH4 concentrations routinely. Therefore, 

measuring fluxes on these towers potentially enables the measurement of CO and CH4 fluxes in the surrounding areas of each 

tower. 

On mid latitudes in the North hemisphere most of CO emissions (14,000 TgCOyr−1, 54%) come from direct (fossil or bio) fuel 

combustion (Zheng et al., 2019). We expect this emission to increase during winter due to the diminished efficiency of fuel 115 

combustion induced by colder temperature (Helfter et al., 2016). Additionally, a substantial contribution to CO levels stems 

from the chemical oxidation of CH4 (900 TgCOyr−1, 40%) and volatile organic compounds (VOCs) (300 TgCOyr−1, 12%) 

(Zheng et al., 2019). This oxidation process makes vegetation an indirect CO emitter through the release of biogenic VOCs, 

but this production is not local and would not appear as a flux from the surrounding of the tower. Soil do also emit VOCs, but 

are up to three orders of magnitude lower than canopy emissions under usual conditions (Peñuelas et al., 2014). On the contrary, 120 

soils are mainly recognized as a CO sink (15 times stronger than soil source), primarily attributed to microbial oxidation 

processes (Inman et al., 1971; Conrad and Seiler, 1980; Conrad, 1996). 

Globally for the 2008–2017 decade, the majority of CH4 emissions arise predominantly from wetlands natural emissions 

(~24%), enteric fermentation and manure (~17%), and fossil fuels (~17%) (Saunois et al., 2020). Wetland emissions are 

concentrated in tropical and southern regions (< 30◦ N), while fossil fuels are the predominant source in mid-latitudes (30–60° 125 

N). Agricultural waste contributes significantly in both tropical and mid-latitude areas (Saunois et al., 2020). In-situ 

observations showed considerable emissions from marshes (41±21 gCm−2yr−1), lakes (28±33 gCm−2yr−1), swamps (26±20 

gCm−2yr−1), and fens (20±16 gCm−2yr−1) (Delwiche et al., 2021). The high emissions from marshes and high variability for 
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lakes highlight the dependence of sediment for CH4 emissions. In a high flux lake (JP-SwL, 67 gCm−2yr−1), emissions can vary 

from a monthly average of 0.1 μmolm−2s−1 to 0.3 μmolm−2s−1 from winter to summer (Iwata et al., 2020). Fossil fuels 130 

observations from a 190 m tall communications tower in the centre of London showed a mean annual CH4 flux of 46.5 ± 

5.6 g C m−2 yr−1, increasing in the winter attributed to a seasonal increase in natural gas usage (Helfter et al., 2016). With that 

said, soils not only produce CH4 but also consume it. Indeed, oxidation in soils is the primary inland process for CH4 

consumption (Canadell et al., 2021), making upland soils a net sink (Dutaur et Verchot 2007). 

In this study, we evaluate the capability of using atmospheric monitoring tower with slow response analyser supplemented 135 

with a sonic anemometer to compute surface fluxes of CO2, CH4 and CO. To that purpose we installed a standard eddy 

covariance setup for CO2 and H2O at 100 m at the ICOS FR-SAC atmospheric tower in the south of Paris, collecting 4 months 

of data starting from July 2023 until October 2023. The chosen site is a sub-urban site surrounded by a mix of agriculture, 

forest, wetlands, roads and buildings area. We then computed net CO2 flux for slow and fast-response analysers and compared 

them. The high-frequency losses were determined and the correction procedure evaluated. The fluxes were calculated using 140 

the wavelet-based eddy covariance method detailed in Coimbra et al. (2023), while the storage flux was computed using three-

point profile concentrations routinely measured at the ICOS tower. The seasonal variations and variations with wind directions 

of the CO2, CH4 and CO fluxes were then discussed. 

2. Material and methods 

2.1. Site description 145 

The study uses data from a 100-meter tall tower in the French Alternative Energies and Atomic Energy Commission (CEA) at 

a research campus in Saclay, 20 km southwest Paris (Figure 1). The tower is part of the ICOS atmospheric network (FR-Sac) 

and takes part in the ICOS Cities, Pilot Applications in Urban Landscapes (PAUL) project, focused on integrated city 

observatories for greenhouse gases. Climatically, the area is under oceanic influence with mild temperatures (11.5°C annual 

mean) and moderate precipitations (677-700 mm annual). The surrounded landscape is dominated by artificial (buildings, 150 

roads), agriculture (mainly cereal) and forest. The region serves as a pathway for urban-to-suburban daily mobility with more 

than 60 thousand vehicles every day in 2022 according to SIREDO in the national (N118) and regional (D306, D36, D128) 

roads.  
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Figure 1. Site diagram showing tower and acquisition house and tree for scale. On the right panel, site map and localisation in the 155 
region. Colours indicate land use: cropland (orange); grassland (light green); forest (dark green); water (light blue); white (urban). 

For reference (1) heating plant, (2) manure/composting plant, (3) lake. 

Since 2011 the site has been equipped with a high precision cavity ring down spectroscopy (CRDS) gas analysers (CO2, CO, 

CH4, G2401; Picarro Inc., Santa Clara, CA, USA) with a varying time response of a few seconds. The analyser is placed in a 

ground level hut, connected to 3 sampling lines, 12.7 mm of diameter, collecting air at the 3 different heights of the tower (15, 160 

60, 100 meters above ground level) alternatively every 10 minutes. Since 2017, a second multi-gas analyser is measuring 

continuously through a parallel sampling line connected to the top of the tower (100 meters above ground level).  

The flow rate through the sampling lines is set around 12 L min-1, but with no control. At the bottom of all lines connected to 

the CRDS analyzer the air is dried with Nafion (PermaPure, model MD-070-144S-4). The CRDS gas analysers were following 

the ICOS calibration procedure aiming to a precision higher than 50, 1 and 2 ppb for CO2, CO and CH4 (ICOS RI, 2020). From 165 

June to October 2023, we setup a full Eddy Covariance system at 100 m, consisting of a closed-path infrared (IR) gas analyser 

(LI-7200; Li-Cor Inc., Lincoln, NE, USA), a 0.7 m heated tube with a flow rate set to 15 L min-1 and a three-dimensional sonic 

anemometer (Gill WindMaster; Gill Instruments Ltd, Lymington, Hampshire, UK). The tower is also equipped with pressure 

(Vaisala PTB200), humidity and temperature sensors (Vaisala HMP155) at 1.5, 60 and 100 m.  

Half-hourly average dry CO2 mixing ratio showed a high degree of comparability between instruments (R² 0.97) and no bias 170 

(slope=1) (Figure 2). Nonetheless we found an offset of 7.25 ppm and an average drift of -11 ppm yr−1, which has no impact 

on eddy covariance flux. 
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Figure 2. Comparison between dry CO2 mixing ratio measured by the IR (LI-7200) and the CRDS (PICARRO G2401) analysers. 

Left panel: scatter plot. Right panel: mixing ratio difference (IR-CRDS) as a function of time. Dots are observations, red line is 175 
linear fit and grey line is 1:1 line. The correlation coefficient (R²), the mean error (ME, ppm), the mean absolute error (MAE, ppm), 

the linear fit and drift. 

Data was not available for most of November due to maintenance in the instruments. The IR (LI-7200) was setup up 

unconventionally with the analyser horizontally and the sampling tube vertically with a U-shaped head and a rain cap turned 

downwards. The choice was made based on the safety for maintenance on top of the tower. Unfortunately, the IR malfunctioned 180 

during the measurement campaign and prevented to have all analysers running at the same time for the whole period. 

2.2. Data processing  

The mass balance equation to compute surface flux includes three terms: storage; advection; and turbulent transport (Foken et 

al. 2012). For the scope and goals of this work, vertical and horizontal advection were considered negligible, assuming dynamic 

horizontal homogeneity of the surface. Vertical component of the wind (𝑤) and the mixing ratio of a scalar s (𝜒𝑠) can then be 185 

used to calculate flux at the surface 𝐹𝑒𝑐𝑜based on the turbulent covariance (𝑤′𝜒𝑠
′̅̅ ̅̅ ̅̅ ̅) measured at a certain height (ℎ𝑚), and the 

storage term (∫
𝜕𝜒𝑠̅̅̅̅

𝜕𝑡
𝑑𝑧 

ℎ𝑚
0

, where t is time and z is the height). Here overbars stand for time averaging. The surface flux 𝐹𝑒𝑐𝑜 

(µmol m−2 s−1) can be then expressed as a function of the molar volume of dry air 𝑉𝑎 =
𝑅𝑇𝑎

𝑃−𝑒
, where P is atmospheric pressure 

(Pa), e is vapour pressure (Pa), R is the ideal gas law constant (8.31 J kg−1 K−1) and Ta is air temperature (K): 

𝐹𝑒𝑐𝑜 = (∫ 𝑉𝑎
−1
𝜕𝜒𝑠̅̅ ̅

𝜕𝑡
𝑑𝑧 

ℎ𝑚

0

+ 𝑉𝑎
−1 𝑤′𝜒𝑠

′̅̅ ̅̅ ̅̅ ̅) (1) 

2.2.1. Storage flux computation 190 

The storage flux was computed as in Aubinet et al. (2005) as the derivative over time of scalar s contained in the column below 

the measurement height (100 m): 

https://doi.org/10.5194/amt-2024-71
Preprint. Discussion started: 13 May 2024
c© Author(s) 2024. CC BY 4.0 License.



8 

 

𝑆𝑇𝑠 = ∫ 𝑉𝑎
−1
𝜕𝜒𝑠̅̅ ̅

𝜕𝑡
𝑑𝑧 

ℎ𝑚

0

~
∆∑ 𝑉𝑎𝑖

−1𝜒𝑠𝑖̅̅̅̅ ∆𝑧𝑖
3
1

∆𝑡
 (2) 

Where ∆𝑡 is 30 min, index i stands for the three layers (0-15, 15-60, 60-100, and ∆𝑧𝑖is the layer depth. The scalars CO2, CO 

and CH4 were measured at 15, 60 and 100 m with the CRDS analysers. The dry air volume ratio was computed at each height 

based on measured air relative humidity and temperature. The storage was calculated using the three levels measurements done 195 

by the same instrument alternating between the three heights by periods of 10 minutes. The 10-minutes-average measurements 

were linearly interpolated. The 30-min average was computed and the time derivative calculated at that time-step.  

2.2.2. Turbulent flux calculation 

The turbulent flux was calculated based on a covariance, thus the name of the method Eddy Covariance (EC). Pre-processing 

is required, and was done using EddyPro 7.0.9, applying de-spiking (Mauder et al., 2013), covariance maximization for time 200 

lag, and double rotation (Wilczak et al., 2001). Time lag relates to the delay from sampling and measurement, and the 

maximization can lose reliability under noisy measurements (Langford et al. 2015). Typically, a default value and bounds are 

set individually for each gas and gas analyser. If an optimal value falls within the bounds, it is retained; otherwise, the default 

is chosen. For the LICOR 7200 analyser the lag time was set to 0.09 ± 0.35 s based on tube dimensions and flow rate. For the 

PICARRO analysers, that had a 100 m line, the lag time was set to 60 ± 2 s based on comparison with the LICOR 7200 CO2 205 

concentration. This lag time is compatible with flow rate ~12.6 L min−1. The ± 2 s tolerance was included to account for the 

uncertainty over the precise travel time and possible seasonal changes linked to air viscosity dependency to temperature and 

filter dirtiness. 

In addition to the standard EC calculated by EddyPro 7.0.9, we used a second flux processing method based on discrete wavelet 

transform (Coimbra et al., 2023) (Appendix A). This method decomposes a time series (𝑥) into sub-series (𝑥̃), each defined in 210 

a given frequency domain j :  

𝑥(𝑡) = ∑ 𝑥̃(𝑡, 𝑗)
𝐽

𝑗=0
 (3) 

Where j is the scale level corresponding to a given frequency 𝑓𝑗 = 𝑠0
−12−𝑗𝛿𝑗, for 𝑗 = 0, 1, … 𝐽, where s0 is the sampling rate 

(0.1 s in this study) and 𝛿𝑗 the frequency resolution (1 for discrete wavelets). When using discrete wavelets, since frequencies 

are independent (Coimbra et al., 2023, appendix A), we can calculate the covariance of 𝑤 and 𝜒𝑠 in each frequency band 

𝑤̃𝜒𝑠̅̅ ̅̅ ̅(𝑗) by a simple multiplication of the decomposed sub-series 𝑤̃(𝑡, 𝑗) and 𝜒𝑠̃(𝑡, 𝑗): 215 

𝑤̃𝜒𝑠̅̅ ̅̅ ̅(𝑗) = 𝑤̃(𝑡, 𝑗) × 𝜒𝑠(𝑡, 𝑗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = ∫ 𝐶𝑜𝑤𝜒𝑠(𝑓)𝑑𝑓
𝑗

𝑗−1

 (4) 

For continuous wavelets a different formula (Farge, 1992; Torrence and Compo, 1998; Farge and Schneider, 2001) or an 

empirical wavelet-specific-correction factor (Coimbra et al., 2023) should be applied. We note in eq. (4) that the frequency 
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resolved covariance 𝑤̃𝜒𝑠̅̅ ̅̅ ̅(𝑗) is also the integration of the cospectrum of 𝐶𝑜𝑤𝜒𝑠(𝑓) in the frequency band j-1 to j, which can be 

computed by EddyPro. The sum of the wavelet-decomposed covariance then yields the covariance: 

𝑤′𝜒𝑠
′̅̅ ̅̅ ̅̅ ≈ ∑ 𝑤̃𝜒𝑠̅̅ ̅̅ ̅(𝑗)

𝑗=1..𝐽

 (5) 

A detailed description of the wavelet method, the wavelet transform and the corresponding flux data processing can be found 220 

in Appendix A1 and in (Coimbra et al., 2023). In this study, we used discrete Daubechies (k=6) wavelet (Daubechies, 1988) 

making sure the cone of influence was larger than the period selected. All fluxes were averaged every 30 minutes integrating 

up to the closest available period (6.1×10-4 Hz or 27 min). Despiking (Mauder et al., 2013) was used on each frequency-

decomposed sub-series (𝑥̃) to eliminate any unrealistic values identified and replaced them using a linear interpolation. For 

EC flux calculation, the slow-response analyser (PICARRO) was resampled to 10 Hz to synchronize with the sonic 225 

anemometer sampling rate. This was achieved by repeating each measured value until it changed. 

2.2.3 Quality flags and stability classes 

Quality flags were assigned using the standard 0-1-2 flag system from FLUXNET (Mauder and Foken, 2011), involving tests 

for stationarity and fully developed turbulence (Foken and Wichura, 1996). Stationarity is essential to equate ensemble and 

time averages, as turbulent fluctuation is formally defined as a deviation from the former rather than the latter. Standard eddy 230 

covariance (EC) cannot be used for non-stationary events, but wavelet decomposed series are stationary in each scale 

eliminating the need to flag out these data. 

The stationarity test (STA) measures the absolute relative deviation between 5 and 30-minute covariances, while the turbulence 

test (ITC) assesses the deviation between measured and modelled integral turbulent characteristics. Data is considered of 

quality high (< 30 %), medium (30 – 100 %), or low (>100 %), based on deviation percentages for each test (worst applicable 235 

result prevails). A detailed description of the quality flags can be found in Foken and Wichura (1996). 

Stability classes were defined using the stability parameter ζ = (z − d) / L, where z is the measurement height, d the zero-plane 

displacement height  and L the Obhukov length. We classified stability as: unstable (ζ < −0.2); near neutral (−0.2 > ζ > 0.2); 

stable (ζ >0.2). 

2.3. High frequency corrections on noisy measurements 240 

Instruments have measurement limitations which decreases their ability to produce a true value. Closed-path gas analysers 

require a gas sample to pass through a tube system including filters. Longer tube lengths typically result in increased time lag 

and reduced high-frequency signal. The signal degradation can be represented by a transfer function, 𝑇𝐹, which attenuates the 

high frequency (Ibrom et al., 2007) of the true cospectrum of w and a compound s: 

𝑓𝑆𝑝𝑠,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑓) = 𝑓𝑆𝑝𝑠,𝑡𝑟𝑢𝑒(𝑓) × 𝑇𝐹 (6) 
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Where f is the frequency (Hz), Sps is the spectrum between w and a scalar s. Note that we can considered the transfer function 245 

equal for the spectrum and cospectrum, as we neglect the w transfer function and spatial sensor separation for the case of this 

tall tower (Massman, 2000). We assume the true covariance can be estimated by multiplying the measured covariance by a 

correction factor, CF: 

𝑤′𝜒𝑠
′
𝑡𝑟𝑢𝑒

= 𝐶𝐹 × 𝑤′𝜒𝑠
′
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

 (7) 

Acknowledging that the covariance is the integral over all frequencies of the cospectra, the correction factor CF can be 

calculated from the transfer function TF and a true cospectrum, which is usually taken to be wTs (where Ts is the ultrasonic 250 

temperature). Indeed, we assume similarity of scalars in the atmospheric boundary-layer, and use the (co)spectrum of Ts as a 

proxy of unattenuated cospectrum, as Ts is collocated to w (Ibrom et al., 2007). This yields for CF:  

𝐶𝐹 =
∫𝐶𝑜𝑤𝑇𝑠 (𝑓)𝑑𝑓

∫𝐶𝑜𝑤𝑇𝑠 (𝑓) × 𝑇𝐹(𝑓|𝑓𝑐)𝑑𝑓
 (8) 

Where TF can be calculated in different forms and can account for both low or high-frequency attenuation. Experimental 

methods are recommended for high-frequency spectral correction (Ibrom et al., 2007; Fratini et al., 2012). We can approximate 

an empirical TF, explained further down, using a first-order system, as the product of a transfer function H accounting for a 255 

first-order filter’s time constant, τc, representing the system response time (s), and a transfer function Hp accounting for a 

generic phase shift φ as (Massman, 2000): 

𝑇𝐹 = 𝐻 × 𝐻𝑝 (9) 

𝐻 =
1

1 + (2𝜋𝑓𝜏𝑐)
2
 (10) 

𝐻𝑝 = 𝑐𝑜𝑠𝜑 − 2𝜋𝑓𝜏𝑐𝑠𝑖𝑛𝜑 (11) 

Note that the cut-off frequency, fc equals (2𝜋𝜏𝑐)
−1. Ideally H would be the measured-to-true spectra ratio for the scalar of 

interest. However, only the measured spectrum is known and so eq. (10(10) is fitted using the sonic temperature Ts as a proxy 

of the unattenuated spectrum (Ibrom et al., 2007; Fratini et al, 2012; Peltola et al., 2021): 260 

𝐻 =
𝑆𝑝𝑠(𝑓)

𝑆𝑝𝑠,𝑡𝑟𝑢𝑒(𝑓)
≈ 𝐹𝑛

𝑆𝑝𝑠(𝑓)/𝜎𝑠
𝑆𝑝𝑇𝑠(𝑓)/𝜎𝑇𝑠

 (12) 

Where Fn is a normalisation factor to account for any inaccuracies in the variance. 

Sometimes 𝑇𝐹 = 𝐻 is used and Hp is not considered (Ibrom et al., 2007). However, not accounting for the phase shift (e.g.: 

using cross covariance maximisation for lag correction and solely H for cospectra correction) can bias CF (Peltola et al., 2021). 

Fortunately, 𝐻𝑝 ≈ 1/√𝐻 which leads to 𝑇𝐹 = 𝐻𝐻𝑝~ √𝐻 (Peltola et al., 2021). In this work we use Fratini et al. (2012) where 

𝑇𝐹 = √𝐻.  265 
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Figure 3.  Transfer functions H (dotted lines) for each compound and analyser. The transfer function was fitted to the ratio of each 

compound’s spectra to the sonic temperature spectra. All spectra are ensemble averaged taken from EddyPro outputs, filtered for 

significant flxues. Dots show the mean spectra per frequency band. The grey shaded area show the frequency range (2 - 0.0018 Hz) 

over which transfer functions were fitted.  270 

The spectra and cospectra calculation was performed using EddyPro 7.0.9, following Fratini et al. (2012) described here in 

equations 8-12. The transfer function H, accounting for the first-order filter’s time constant 𝜏𝑐, was estimated for each analyser 

and each compound through a least square minimisation approach of the spectra (Figure 3). 

From the H, TF was computed as √𝐻, and CF was calculated with eq. (8). For both TF optimisation and CF calculation, only 

frequencies between 2 and 0.0018 Hz were used (see Figure 3). We assumed all compounds (CO2, CH4, CO) measured by 275 

CRDS (PICARRO G2401) suffered the same attenuation and used CO2, the best-defined curve for all three analysers (Table 

1). This assumption is grounded on the fact that measurements are done by the same instrument at the same acquisition rate 

sampled through the same line, and is backed by the proximity between CH4 and CO2 spectra, while the unexpected CO spectra 

can be explained by the CO signal noise due to the lower signal-to-noise ratio. Indeed, the noise was already larger than the 

signal at periods larger than 5 min (Figure 3). Similarly, the small step increase around 4 s for the CRDS analysers corresponds 280 

to the actual measurement interval. 

 

Table 1. The transfer function parameters for each instrument accounting for high frequencies attenuation. Here 𝑻𝑭 =

(𝟏 + (𝟐𝝅𝒇𝝉𝒄)
𝟐)
−
𝟏

𝟐, where 𝝉𝒄 is the first-order filter’s time constant. The cut-off frequency, fc equals (𝟐𝝅𝝉𝒄)
−𝟏. Fn is a normalisation 

factor. The optimized values correspond to optimisations as shown in Figure 3. The used values correspond to the optimised one 285 
except for the CH4 and CO for which the CO2 parameters are used instead. See equations (8-12) and text for details.  

Instrument Compound 
Optimized  Used 

𝜏𝑐 (s) fc (Hz) Fn (-) 𝜏𝑐 (s) fc (Hz) 

IR CO2 0.5 0.34 1.12  0.5 0.34 

CRDS CO2 3.0 0.05 1.63  3.0 0.05 

CRDS CH4 2.4 0.06 1.01  3.0 0.05 
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CRDS CO 0.5 0.34 3.49  3.0 0.05 

 

2.4. Spatial tools 

For an analysis of the fluxes’ footprint as a function of wind direction, we used a backward Lagrangian stochastic particle 

dispersion model (LPDM-B) for the footprint (Kljun et al. 2015), and computed vegetation indexes based on Sentinel 2 290 

(ESA/Copernicus Data) and a French land use map (IGN, 2022).  

Sentinel 2 data was collected using Google Earth Engine with a tool available at https://github.com/pedrohenriquecoimbra. To 

monitor vegetation, we calculated the enhanced vegetation index (EVI) using the following equation:  

𝐸𝑉𝐼 = 𝐺
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝐶1𝑅𝑒𝑑 − 𝐶2𝐵𝑙𝑢𝑒 + 𝐿
  (13) 

Where NIR, Red, and Blue are surface reflectances centred in the 842, 665 and 490 nm wavelengths, band B8, B4 and B2 in 

Sentinel2, corrected for transfer through the atmosphere; L is the canopy background adjustment that addresses non-linear, 295 

differential NIR and red radiant transfer through a canopy, and C1, C2 are coefficients, G is a gain factor. We adopted the same 

coefficients as in the MODIS-EVI algorithm: L = 1, C1 = 6, C2 = 7.5, and G = 2.5. For all reflectance bands, we removed 

clouds using the Sentinel-2 Cloud Masking, s2cloudless, also available in Google Earth Engine. We classified clouds if the 

cloud probability was above 60 % and removed pixels considered as cloud shadows based on a threshold of 0.15 for near 

infrared and a maximum distance of 1 km from cloud edges. We also removed 50 m around the mask assuming these pixels 300 

may still be affected by the cloud shadowing. 

2.5. Performance measurements 

Comparisons between instruments were carried out using mean bias and absolute error, defined as:  

𝑀𝑒𝑎𝑛 𝐸𝑟𝑟𝑜𝑟 (𝑏𝑖𝑎𝑠) =
1

𝑁
∑(𝑋𝑎,𝑛 − 𝑋𝑏,𝑛)

𝑁

𝑛=1

  (14) 

𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 =
1

𝑁
∑|𝑋𝑎,𝑛 − 𝑋𝑏,𝑛|

𝑁

𝑛=1

   (15) 

Where N equals the amount of data, X is the variable measured with instrument a and b at a time n. 

In figures, 95% confidence interval bands were calculated using the Seaborn module in Python. It uses a random sampling 305 

with replacement strategy, bootstrapping, to construct a confidence interval (Dragicevic, 2016). 

For linear fits, if not declared otherwise, the squared loss, also named ordinary least squares method, is used. The method 

consists of minimizing the sum of the squares of the difference between the observed and predicted values. When robust or 
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Huber loss is mentioned, we use a linear fit which minimizes the squared loss for the samples where the absolute difference 

between the observed, y, and predicted, f(x), values is smaller than δ and the absolute loss, sum of the absolute difference, 310 

otherwise. This feature makes it less sensitive to outliers than the squared error. 

𝐻𝑢𝑏𝑒𝑟 𝑙𝑜𝑠𝑠 = {
∑

1

2
(𝑦𝑖 − 𝑓(𝑥𝑖))

2
, |𝑦𝑖 − 𝑓(𝑥𝑖)| ≤ 𝛿

∑𝛿(|𝑦𝑖 − 𝑓(𝑥𝑖)| −
1

2
𝛿) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (16) 

By default, we chose arbitrarily 𝛿 = 5, note that very low 𝛿 values may increase the number of values considered as outliers. 

3. Results 

3.1. Mixing ratios of CO2, CO and CH4 

In Figure 4, diel pattern shows a peak in 𝜒𝐶𝑂2  during morning, 07:00 in July and moving towards 09:00 in October, and a clear 315 

valley around 15:00. The pattern disappears when moving towards winter months. CO and CH4 both show a similar peak in 

the morning autumn, although less marked. Only CO shows an afternoon peak in September which is also the month with the 

clearer morning peaks for CH4 and CO. Seasonally CO2, CO and CH4 mixing ratio are the highest in winter while H2O is 

higher during summer. This difference may be explained by a larger biogenic CO2 sink and H2O source during daytime in 

summer and a higher anthropogenic CO2 emission in winter (heating on). The difference may also be explained by larger 320 

(smaller) boundary layer thickness during the summer (winter) which can effectively dilute (concentrate) the molecules emitted 

at the ground. 
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Figure 4. Monthly dry mixing ratios diel pattern for all measured gases (CO2, H2O, CH4 and CO) for IR (LI-7200) and CRDS 

(PICARRO G2401). Solid line indicates median and region shows 95% confidence interval. 325 

A look into how the mixing ratios vary with wind direction reveals some spatial patterns (Figure 5). During warmer months 

(July to October), Westwind CO2 mixing ratio was smaller than the median value, while for CH4 and CO we can notice a 

higher than the median value for Northeast sector, especially clear for CO. In colder months (December and January) all mixing 

ratios were higher (also seen in Figure 4), with North-Easterly winds (0-180°) showing larger mixing ratios than in other 

directions. A peak in mixing ratios is observed for all three gases for winds coming from around 20°N, the direction from the 330 

heating plant. Interestingly, a smaller peak can be seen on the Northwest, direction from the lake (100 m afar), bare soil fields 

(around 500 m afar) and a regional road roundabout (around 1 km afar). 
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Figure 5. Average dry mixing ratios by wind direction. Warmer months (July to October) in grey and colder months (December and 

January) in red. Extreme values in the left and right 0.1% tails were removed. See Figure S1 for monthly observations. CO2 is in 335 
ppm while CH4 and CO are in ppb. 

3.2. Footprint and stationarity 

3.2.1. Footprint analysis 

A characterization of the site’s flux footprint (Figure 6) shows a heterogeneous landscape composition, comprising 25% urban, 

23% agriculture, 21% forest, and 21% grassland areas. In the western part of the site (42% forest), there is a relatively dense 340 

woodland primarily featuring deciduous trees. To the south (41% grassland), the landscape includes a nearby golf club in the 

vicinity of the CEA campus. In all directions there are croplands, predominantly cultivated cereal crops (winter wheat, barley, 

maize) and oilseeds (rapeseed), typical of the region. In the northeast (45% urban), the landscape aligns with the location of 

the CEA campus which includes a heating plant aligned to 20° N. The 43.9 km² 80% footprint encompasses a national road 

(N118) and several regional roads (D306, D36, D128) with a weekly traffic of 60 thousand vehicles on average (in 2022 345 

according to SIREDO). Water ponds have a small contribution for northwest to northeast sectors (2.3-2.6%). In these sectors 

two ponds are situated one approximately at 100 meters from the tower (northwest) and a second larger farther away (around 

2.4 km northeast, visible in the map Figure 6.a). 
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Figure 6. Flux footprint by land use group. (a) Footprint for all the period, where lines indicate 10 to 90 (border) % level source 350 
area. (b) Contribution of each land use weighted by footprint density. (c) Monthly footprint, where line indicate 50 and 80 (border) 

% level source area. Note that for visual purposes urban is coloured as white-grey in the map. Footprints estimated using model in 

Kljun et al. (2015). 

In Figure 6.c, we can see that the monthly changes in composition and shape of the area contributing to the fluxes measured 

at the tower (the flux footprint). Some months have larger footprint (e.g. August and September) while others are narrower 355 

(e.g. December and January) related to changes in the dispersion conditions. This difference is explained by the largest 

occurrence of stable conditions during the summer which leads to larger footprints than during the winter that has mainly 

neutral conditions (shown by the stability ratio z / L) driven by stronger Winter winds, elevated friction velocity, and cloudy 

conditions (Figure 7). Note as well that the landscape is not homogeneous (Figure 6.b), and so wind direction can also change 

the effective profile of sources and sinks contributing to each compound flux measured at the tower. December, for instance, 360 

was the month with the least contribution from the most urban northeast sector. 

The mixing layer height, and similarly the atmospheric boundary layer height, shows a clear diurnal and seasonal cycles (Figure 

7). Warmer hours of the day and months show taller boundary layer heights implying a larger volume of developed layer in 

which the compounds can be diluted. During these warmer periods the conditions are often unstable (z/L < 0.2) and friction 

velocity is high (> 0.4 ms−1). This indicates well-mixed layer and bigger eddy sizes. On the contrary, colder months (December 365 

and January) showed relatively flat diel pattern, mostly due to a shorter photoperiod, leading to a much lower boundary layer 

height. We also noted on-site fog was frequently observed during these periods. Concurrently, friction velocity increased on 

average during winter. We not that strong winds in neutral conditions and especially medium winds in stable conditions would 
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be favourable to horizontal advection. In the scope of the present work, however, it was not quantified due to a lack of 

measurements (horizontal gradients of concentration and fluxes).  370 

 

Figure 7. Boundary layer conditions. (a) Heights of the atmospheric boundary layer (ABLH) and the mixing layer (MLH) measured 

by SIRTA in Palaiseau, 4.8 km away from the tower. Data available online (Kotthaus et al., 2023). (b) Stability parameter 

(ζ = (z - d) / L) and friciton velocity (u*) measured at the FR-Sac tower. Absolute values of ζ bigger than 2 were ignored.  

3.2.2. Stationarity and well-developed turbulence 375 

Most of the data collected was under well-developed turbulence, 75% if only considering high-quality (flag 0) integral 

turbulence characteristics test (ITC), and 99 % including medium-quality (flag 1). Around half of the data (41 %), with an ITC 

flag 0 was also considered stationary (Stationarity flag 0), increasing to 81 % if we include flag 1 on both tests. The stationarity 

test is required for standard EC but not for wavelets, thus the use of the latter increases the data amount by 34 % in case only 

high-quality observations are used and 55 % in case medium-quality data is included (Figure 8). This savings happens more 380 

often during the day, due to a higher coincidence of both flags during night. The percentage given are for the Licor (IR) fast 

analyser but are of the same order of magnitude for the PICARRO analyser (CRDS). 
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Figure 8. Quality control flags for turbulence (ITC) and CO2 stationarity (SS). Flags follow 0-1-2 system for high, medium and low-

quality. Percentage of (a) turbulence flagged data by hour of the day. Stationarity flagged CO2 data by hour of the day for the (b) 385 
the Licor instrument (IR) and (d) the PICARRO instrument (CRDS). Stationarity flag per ITC group are also given for the IR (b) 

and CRDS instrument (c). Percentages are summed to 100% in each group and over all data (in parentheses). See Figure S2 for 

stationary test for the three instruments. 

3.3. Comparison of CO2 flux between slow and fast-response analysers 

3.3.1. High frequency spectral correction 390 

The CRDS analysers showed significantly more high-frequency attenuation of the flux than IR analysers (Table 2 and Figure 

9), as expected due to the much longer sampling tube of the CRDS analyser (115 m) than the IR analyser (0.7 m), as well as 

the slower CRDS acquisition frequency (~3 s) compared to the IR (0.1 s).  The difference was greater in (very) stable 

conditions, when higher frequencies contribute more to the flux, than on (very) unstable conditions (Figure 9). On (very) 

unstable conditions the contribution of low-frequencies to the flux increased as shown by the fact that none of the ogive levelled 395 

to 1 towards 30 minutes integration time (ogive slope > 0). Surprisingly CO (measured by CRDS) showed an atypical curve 

with stronger contribution from high frequencies, which after analysis was attributable to noise from this less sensitive 

instrument. 
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Figure 9. Normalised cospectra (a) and ogives (b) of w and CO2, CH4, CO covariances, for gases measured by IR and CRDS and the 400 

reference sonic temperature, Ts. Median values from July to October 2023 grouped by stability classes: ζ < −0.2 (unstable); −0.2 > ζ 

> 0.2 (near neutral); ζ >0.2 (stable). N indicates the amount of half hourly data in each class. 

The high-frequency attenuation varied from 3 to 7% for the fast instrument (IR), while for the CRDS instruments sampling at 

100 m, it ranged from 11 to 19% (Table 2). We can expect larger corrections on stable conditions, characterized by a larger 

contribution of high frequencies to the flux, as observed for IR, contrarily CRDS shows a decrease compared to near-neutral. 405 

It is worth noting that despite the 10 Hz acquisition frequency and 100 m height, the attenuation of the IR instrument was non-

negligible. Additionally, the time response of the slow CRDS analysers, estimated based on the transfer function (3.62 s), 

matches the acquisition frequency (ranging between 3 s and 4 s), but it also matches the expected attenuation for a long tube 

(Figure 16). 

Table 2. Percentage high frequency corrections of the CO2, CH4 and CO fluxes per stability class for each instrument. Note we used 410 
the CO2 transfer function for all compounds in the CRDS assuming the damping in the sampling line was dominant attenuating 

process. 

Instrument (compound) 
Stability class 

(very) unstable near-neutral (very) stable 

IR (CO2) 2.7% 5.5% 6.6% 

CRDS (CO2, CH4, CO) 11% 19% 17% 

3.3.2. Comparing CO2 flux measured by slow and fast-response analysers 

The CO2 fluxes computed from the IR (LI-7200) and the CRDS (PICARRO) analysers were well correlated with an 

underestimation of 13% of the CRDS for uncorrected fluxes that was diminished to 3% after high frequency corrections (Figure 415 

10). High-frequency correction decreased the bias, ME, by 0.04 μmolm−2s−1 with no effect for absolute error (MAE) or the 

correlation coefficient (R2). There was a moreover a tendency of the CRDS corrected fluxes to slightly underestimate the CO2 

fluxes under stable conditions (Figure S3). 
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Figure 10. Comparison of CO2 flux computed with the IR (LI-7200) and the CRDS (PICARRO G2401) analysers, (a) before and (b) 420 
after high frequency losses corrections. Dots are observations, red line is a robust linear relation and grey line is the 1:1 line. The 

correlation coefficient (R²), the mean error (ME, μmolm−2s−1), the mean absolute error (MAE, μmolm−2s−1). Statistics are calculated 

ignoring outliers from robust linear regression. 

3.4. Surface flux dynamics  

3.4.1. Turbulent fluxes 425 

We observed a well-defined summer pattern for the CO2 flux with emissions during the night and sequestration during the day 

(Figure 11). From summer to winter the sink shortens in time and decreases in magnitude up to the point that during winter, 

the site behaves on average as a source all along the day. We note that the concentration morning peak observed in Figure 4 

does not correspond to a peak in the flux. Following the seasonal pattern of CO2, the evapotranspiration (as shown by the latent 

heat flux) decreased towards colder months. The similarity between CO2 and H2O trends is a good indication that 430 

photosynthetic activity was slowing down. Indeed, in September several crops were senescent or harvested and the deciduous 

trees in the surrounding started to lose their leaves as shown by the EVI maps (Figure S5).  

The CH4 fluxes showed a quite marked daily pattern from July to September with higher emissions in the morning than in the 

afternoon. Seasonally the emissions in January were a factor of 10 larger than in the previous months. Looking at the CO flux, 

we see a marked increase in November and January but not in December, despites similar temperatures and traffic. In January 435 

winds were relatively well distributed while in December the most urban NE sector was rarely in the footprint, which may 

explain the difference between the three months. 
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Figure 11. Monthly mean turbulent fluxes diel pattern of CO2, CH4 and CO for IR (LI-7200, only CO2) and CRDS (PICARRO 

G2401) gas analysers. Fluxes showed after spectral correction. Data points falling within the extreme 1% tail of the distribution 440 
were removed. 

3.4.2. Storage and surface fluxes 

The CO2 storage fluxes were of the same order of magnitude as the turbulent fluxes (Figure 11) and showed diurnal patterns 

with positive values at night, early peaks of negative values during sunset, and a following increase towards positive values 

throughout the day (Figure 12).  445 

Overall the storage fluxes led to increased night-time emissions and daytime absorption of CO2 and CH4 surface fluxes 

compared to turbulent fluxes measured at 100 m. In warmer months, when storage was significant, we observe the appearance 

of destocking (negative storage term) at the same time as the rise in mixing layer height (Figure 7). Both started at early hours 

when the surface heated by the sun sets up instability leading to the formation of turbulence. During these early events, nearly 

all the ecosystem flux was measured through CO2 storage flux. Over the months we observe a decrease in the CO2 storage 450 

term as the atmospheric stratification progressively becomes mainly neutral and the boundary layer height stayed unchanged 

throughout the day. We also note a decrease in CH4 over time, however, in January we can see negative values in the middle 

of the day, also observed for CO and CO2. CO showed little storage during the vacation months (June and July) or in December 

with wind coming from the vegetated sector. CO storage increased in September and October during rush hours. 
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 455 

Figure 12. Monthly mean storage fluxes diel pattern of CO2, CH4 and CO computed using mixing ratios measured by the CRDS 

(PICARRO G2401) gas analyser on three levels (15, 60 and 100 m). Data points falling within the extreme 1% tail of the distribution 

were removed. 

3.5. A look into the flux spatial heterogeneity  

Fluxes categorized by wind direction and separated for day and night reveal spatial patterns (Figure 13). During daytime in 460 

warmer months (January to October), most directions exhibited a CO2 sink. The most pronounced CO2 sink was observed from 

the west, in the direction of the forest, where some emissions of CH4 were observed, but notably smaller emissions of CO. 

Colder months revealed stronger southeast CO2 emissions, echoed in CH4 and CO fluxes. In the northeast sector, CO emissions 

were strong, increasing in colder months, possibly due to the alignment with the national road N118, ~50°. Peaks in CO 

emissions during nights align with directions with higher emissions during the day and may be turbulent fluxes from 465 

particularly windy nights. Additionally, the wind direction spanning 10-45°, direction of the local heating plant, exhibited CO2 

and CH4 fluxes significantly higher than those observed in other directions, during both daytime and night-time periods. 
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Figure 13. Surface fluxes by wind direction, daytime in the top panel and night-time in the bottom panel. Surface fluxes includes 

turbulent and storage terms. The values presented are the median with the interquartile range, 0.1% extreme values were removed. 470 
Wind directions bins with less than 10 observations were added to the next bin clockwise. CO2 fluxes are in µmol m-2 s-1 and fluxes 

of CH4 and CO are in nmol m-2 s-1. Note for CO2 and CH4, 10-110° were plotted separately for visual purposes. See Figure S4 for 

monthly values. 

The NW CO2 flux also showed a shift from source in warmer months to a small sink during winter. This shift is expected when 

we consider the crop field on this wind direction was bare soil in July (Figure 14) and green in January (Figure 15). The 475 

greenness can be identified by a higher leaf density, which the Enhanced Vegetation Index (EVI) serve as a proxy. 

In July, west wind fluxes show a recognizable CO2 diel pattern with carbon sequestration during the day when wind comes 

from the vegetated direction (W and SW) (Figure 14.b). The high EVI indicates that the forest and grassland had fully green 

leaves during this month. On the 17th July, we can spot a positive CO2 peak during the end of the day coming from the W 

direction, not found in CH4 nor CO. The peak is atypical at this magnitude for a forest ecosystem and may be a signal from 480 

the road or other activity. CH4 was found to be more elevated for W winds. CO did not show a marked pattern when wind 

came from vegetated direction. For the period when wind came from the CEA campus (10-100°) the three gases showed very 

similar patterns, with a peak in the middle of the day. 
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Figure 14. Zoom into a summer week. (a) EVI mean mosaic from July (2nd, 7th, 12th, 14th, 17th, 24th) using Sentinel2 data. (b) Surface 485 
fluxes, turbulent and storage term, with background colours per wind directions, W in blue, SW in light blue, 10-30° in red, 30-100° 

in light red. 

In January, when the heating plant was operational and the wind came from its direction, we can distinctly observe the 

contribution of the heating plant to the CO2 and CH4 fluxes (Figure 15). CO fluxes were also higher when wind came from the 

heating plant but the difference compared to the vegetated wind direction was less striking. The mean (and 90th percentile) for 490 
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CO2, CH4 and CO fluxes from the NE were 8.2 (25) µmol m-2 s-1, 214 (801) nmol m-2 s-1, and 27 (71) nmol m-2 s-1, respectively. 

While for W and SW values were 1 (2.3), 4.8 (12) and 12 (40) µmol m-2 s-1 smaller.  

Apart from the fluxes coming from the heating plant, Wintertime fluxes were notably smaller compared to summer (Figure 

14), as expected by the lower biological activity during that period. The green areas exhibited lower EVI, indicating the loss 

of leaves during this season. 495 

 

Figure 15. Zoom into a winter week. (a) EVI mean mosaic from January (5th, 18th, 20th) using Sentinel2 data. (b) Surface fluxes, 

turbulent and storage term, with background colours per wind directions, W in blue, SW in light blue, 10-30° in red, 30-100° in light 

red. 

4. Discussion 500 

4.1. Challenges of measuring on a tall tower with slow-response analysers 

4.1.1. High frequency losses corrections on the atmospheric tower configuration 

Our findings revealed that an ICOS atmospheric tower configuration, utilizing a CRDS gas analyser with an acquisition 

frequency of approximately 0.3 Hz and a tube length of 100 m, exhibited a high-frequency loss correction of approximately 

20%. This correction was around three times more than that of the conventional ecosystem flux measurement setup, which 505 

employed an IR gas analyser with a 10 Hz acquisition frequency and a tube length of 0.7 m, positioned at the top of the tower. 

The observed transfer function (TF) for the CRDS setup closely matched the theoretical attenuation expected, as depicted in 

Figure 16. Indeed, the tube and sensor attenuation together lead to a first-order time constant around 3s as we observed for the 

CRDS setup (Table 1). This outcome suggests that even with a faster measurement system or a smaller tube attenuation, only 

a limited reduction of the attenuation can be expected. In order to substantially decrease the high frequency attenuation of the 510 

flux, both an increase of the acquisition frequency and a decrease in tube attenuation (decrease in tube length or increase in 

flow rate) would be required. 
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We note that since the tube attenuation is higher when flow inside the tube is laminar (Lenschow and Raupach, 1991), ensuring 

a Reynolds number larger than ~2300 is key to minimize attenuation. We can define 𝑅𝑒 =
2𝑄

𝜋𝑟𝑣
, where Re is Reynolds number 

(-), r is tube radius (m), Q is volumetric flow rate (m3s−1), and v is the kinematic viscosity of air. We find that for the tube in 515 

place with 9.5 mm of internal diameter, pumping ~14-17 L min−1 is necessary to achieve a turbulent flow. Under these 

conditions, the cut-off frequency would increase to more than 0.6 Hz, but the pressure would also drop from -6 mbar to -47 

mbar. 

 

Figure 16. Transfer functions computed for (1) the sensors acquisition frequencies (TFacq, Horst, 1997), (2) the tube attenuation 520 
(TFtube, Leuning and Moncrieff, 1990; Foken et al., 2012), (3) the combination of (1) and (2), and (4) the CO2 observations, for the 

two setups at the tower. The Saclay atmospheric setup (CRDS) consists of 100 m sampling line with a 9.5 mm diameter, a sampling 

frequency of ~0.3 Hz and a flow rate of 12.7 lpm. Conventional ecosystem setup (IR) consists of 0.7 m sampling line with a 5.33 mm 

diameter, a sampling frequency of 10Hz and a flow rate of 15 lpm. Note that for the IR setup, the curves (1) and (3) are superposed. 

It's worth mentioning, in our study, we used a first-order filter fitted on in-situ data as a transfer function, following Fratini et 525 

al. (2012) and shared by other studies (Ibrom et al., 2007; Peltola et al., 2021). On the atmospheric tower configuration where 

the main attenuation arises from the tube length, the transfer function may take an exponential shape as proposed by Leuning 

and Moncrieff (1990) and Foken et al. (2012), and the fitting may not be perfect, as depicted in Figure 16. The effect was 

however evaluated to be negligible on the correction factor. 

For a same transfer function, attenuation may change based on the cospectra dependence on measuring height, wind speed, 530 

and stability parameter (z/L). Specifically, increases in wind speed and stability parameter, or decreases in measuring height, 

are expected to shift a cospectrum towards higher frequencies, thereby enhancing attenuation for a given transfer function 

(Horst, 1997). Theoretical expectations of the attenuation factor from Horst et al. (1997) based on empirical cospectra agree 

very well with our measurements under unstable to near neutral conditions, but do not entirely align with our observations for 

neutral and stable conditions (Figure 17). Indeed, surprisingly, we found that the attenuation remained stable or slightly 535 

decreased for z/L values over 0.2 in the case of IR and CRDS respectively. This contrasts with the prediction by Horst et al. 

(1997), which suggested an increase by a factor of 5 under very stable conditions. This difference needs further investigation. 
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Figure 17. Flux attenuation due to high frequency losses, theoretical as line and measured as points. The theoretical losses are 540 
computed from Horst (1997, eq. 11), using the measured first order time constant c for the IR (0.5 s) and the CRDS (3s) 

More surprising is the HF losses found for CO2 measured by the IR (LI-7200). On this supposedly conventional ecosystem 

setup (0.7 m heated tube, 5.33 inner diameter, 15 Lmin−1 flow rate, 7 µm filter) attenuation and the transfer function were 

expected to be much smaller. The time constant of 0.5 s is equal to the cutting frequency (0.32 Hz) reported by Ibrom et al. 

(2007) for CO2 with 50 m long tube, 8 mm diameter, and a flow rate of 20 L min-1. We do not have strong evidence to explain 545 

this very large attenuation and we are bound to speculate that this may be due to the inlet filter. Indeed, we observed a very 

large HF loss for H2O with a 𝜏𝑐 ranging from 0.7 s for RH < 30% to 5 s at 70% RH and 50 s for RH larger than 80% (data not 

shown). This is the sign that the inlet did accumulate water vapour, most probably on the filter holding hygroscopic aerosols. 

Since CO2 dissolves in water, the microscopic water accumulated in the tube may have buffered the CO2 leading to a large 

attenuation.  550 

The CRDS setup, however, exhibited relatively small attenuation. In comparison, Wintjen et al. (2020) reported a damping 

factor of around 16-22% for a 48 m tube with a 6 mm diameter, measuring reactive nitrogen at 10 Hz. Despite the longer tube 

length and slower analysers in our study compared to Wintjen et al., their slower flow rate (2.1 L min−1) and the expected 

stronger air-wall interactions for reactive nitrogen compounds may have contributed to the higher damping factor in their 

study. Correcting for high-frequency losses resulted in agreement between the IR and CRDS methods within 3%, maintaining 555 

the elevated R2 of 0.94 (Figure 10). This demonstrates the high-frequency correction was able to correct for the losses. 

4.1.2. Storage and advection 

Storage fluxes amplitude were of the same order of magnitude as the turbulent fluxes, as also observed by Haszpra et al. (2005). 

This means that storage term is an essential component to include when looking into the diel surface flux pattern. In particular 
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we observe a clear negative storage flux in the morning during the summer months that may account for both the early onset 560 

of photosynthesis and the expansion of the mixed layer (Figure 7).  

 

Figure 18. Diel mean for July 2023 for CO2 surface flux and turbulent and storage terms. Values for the CRDS (PICARRO G2401). 

Data points falling within the extreme 1% tail of the distribution were removed. 

Similarly, we observe a quite strong night-time respiration component after sunset that is not captured by the turbulent flux. 565 

Storage flux would therefore be essential to consider when partitioning CO2 fluxes into biological uptake (photosynthesis) and 

emissions, which included both biological emission as respiration and anthropogenic emissions (Stoy et al. 2006; Tramontana 

et al. 2020; Coimbra et al. 2023).  

In this work horizontal and vertical advection were assumed negligible, but in reality, they may not be. Indeed, daily mean 

storage in the site gravitates around zero during July but shows a non-negligible variability for CO2 in August and September 570 

and for all gases in January (Figure S6). In ideal conditions the storage flux should average 0 over 24 hours since what is stored 

at night should be destocked during the day. A non-zero daily storage may indicate horizontal advection.  

Additionally, the chimney of the heating plant, ~600 m away from the tower, situated at a certain height, may bias the storage 

fluxes, which rely on gradient profiles along the tower. Indeed, if the plume from the heating plant emissions is measured 

intermittently due to changes in wind directions, we may attribute or ignore storage fluxes where lateral advection is happening. 575 

Properly identifying such a process would require tracking the chimney plume with a 3D dispersion model and half-hourly 

resolution which was out of the scope of the present work. 

Vertical advection may also exist, but is difficult to estimate and may even lead to erroneous corrections and implausible fluxes 

as observed by Haszpra et al. (2005). Vertical advection would even be neglected for very tall towers as proposed by Davis et 

al. (2003), based on the assumption that synoptic scale processes should counterbalance vertical advection in the long-term. 580 

4.2. Plausibility of the measured fluxes 

Winds originating from the deciduous forest (West) exhibit expected seasonal variations, with CO2 acting as a sink, and CO 

emissions being negligible in warmer months, transitioning to CO2 and CO emissions in winter. Comparison with a mixed 

deciduous forest site at 50 km SE (FR-Fon ICOS site, e.g. Delpierre et al., 2016) shows a similar seasonality of the CO2 fluxes, 
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a storage terms being slightly larger in FR-Sac than in FR-Fon, and a turbulent term notably smaller in FR-Sac (Figure S7). 585 

To explain the difference, we cannot exclude the possibility that the forests may behave differently simply because they are 

different ecosystems, however some aspects deserve to be mentioned. The surface flux in FR-Sac is expected to be smaller, 

since the forest only represents ~40% of the footprint. Moreover ~20% of the footprint is urban or traffic which may add a 

positive component to the flux decreasing its amplitude during the day (Figure 6). Advection could also play an additional role 

in reducing surface fluxes inf FR-Sac, and storage may have been underestimated because of the reduced number of sampling 590 

heights. Furthermore, while this paper primarily examines the high-frequency aspect of the signal, it is important to note that 

the 30 min integration period did not allow to capture entirely the low frequencies of the fluxes, especially under unstable 

conditions as can be seen by the co-ogives slope being non-zero at the lowest frequencies (Figure 9). Recent study on urban 

tall towers also reported low frequency contribution for kinematic heat and CO2 indicating the importance of low(frequency 

corrections (Lan et al., 2024). 595 

The presence of CO emissions during colder months may suggest contributions from activities beyond the forest, including 

traffic and nearby villages heating such as Villiers-le-Bâcle. We cannot exclude the possibility of indirect CO emissions from 

the forest through the oxidation of CH4 and biogenic volatile organic compounds (BVOCs), though this should be limited since 

the trees lost their leaves. Additionally, soil microorganisms consume CO (Conrad, 1996), which makes CO a tracer to 

distinguish soil respiration from anthropogenic emissions in the CO2 emissions.  600 
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Figure 19. Mean surface fluxes for CO2 (μmolm−2s−1), CH4 (nmolm−2 s−1) and CO (nmolm−2s−1) by identified sectors. Monthly 

averages (a) and hourly mean for warmer JASO (b) and colder months DJ (c). Surface fluxes include turbulent and storage terms. 

Wind sectors are CEA (10°-100° without heating plant), Heating plant (20°-40°), Forest (247.5°-292.5°). Note in (a) November is 

interpolated. 605 

The emissions from the heating plant were clearly distinct, with significantly higher levels of CO2 and CH4 observed from 

~30° wind direction compared to other directions (Figure 18). The high fluxes from point sources like the heating plant can 

induce non-stationarity. Using wavelets allows us to effectively measure these non-stationary fluxes. The CO2, CH4 and CO 

emissions from the heating plant wind sector increased to a maximum of 10000, 250 and 40 nmol m-2 s-1, respectively in 

January (Figure 18a), while they were not different from the other directions during the warmer months (Figure 18b). The CO2 610 

and CH4 emissions further show a similar diel pattern during the colder month with two minima at 0h and 16h. The emission 

ratios computed from these data are CO2/CH4 ~ 40 and CO2/CO ~250, indicating a quite large loss of methane.  
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Interestingly, the diel pattern of CO during colder months followed expected traffic patterns, while this trend was observed for 

the CEA wind direction during warmer months. 

4.3 Recommendations for atmospheric sites concerned by such a method 615 

As of now, the ICOS network comprises 38 atmospheric sites, with 17 classified as class 1 and the remainder as class 2. The 

ecosystem centre is more extensive, encompassing 99 sites, including 18 class 1, 31 class 2, and the remaining associated sites. 

This count may further rise when incorporating other regional networks into consideration. 

Not all atmospheric sites are adapted for flux measurements. EC towers prioritizes flat surfaces, slim towers and homogeneity 

whilst atmospheric towers may prioritize locations based on grid redundancy to improve atmospheric inversions. Slim towers 620 

with limited topography around are recommended for reliable measurements. Atmospheric measurements conducted in close 

proximity to large structures (e.g., just above domes) or in mountainous regions can introduce disturbances in the turbulence 

signal. This can lead to unreliable tilt angle correction and surface flux assessments. In some cases, flagging wind sectors not 

appropriated for EC measurements can be a straightforward solution. With that said, eddy covariance has successfully been 

used in mountainous landscape using appropriate tilt corrections (Matthews et al. 2017). 625 

For atmospheric tower candidates interested in measuring flux, we recommend: 

• Selecting at least one height for calculating fluxes through Eddy Covariance. For this decision a footprint estimation 

(Kljun et al., 2015) may be relevant.  

• Including a high-frequency 3D anemometer on the chosen height(s). 

• Evaluating the first-order filter time for tube and sensors, as showed here, to verify high-frequency attenuation is 630 

below an acceptable threshold, ~20%. 

• Performing continuous mixing ratio measurements on the chosen height(s), either limiting profile measurements to 

to specific hours or with a separate set of instruments. This ensures low frequency signal for eddy covariance and 

profile can prioritise transition periods when fluxes may exhibit non-stationary behaviour or low turbulence. 

• Evaluating the flow regime in the sampling tube, if possible increasing flow rate to guarantee turbulence (Re>2300). 635 

• Additional meteorological data (e.g.: precipitation, short and longwave incoming and outgoing radiation) and 

metadata (e.g.: forest type, crops, transport counting) pertinent for flux interpretation should be also collected. 

Ensuring continuous measurements is crucial for wavelets, given their frequency resolution depends on the quantity of 

continuous data points. Certainly, profile measurements are often contemplated and doubling the instruments may not be 

feasible. Therefore, we recommended to restrict profile measurements to specific hours when the development of the boundary 640 

layer may overshadow the relevance of measuring flux close to the tower. These moments, typically during sunrise and sunset, 

provide valuable insights for both atmospheric and ecosystem (storage) perspectives. Furthermore, during these moments 

standard covariance would typically flag and disregard measurements, although to a lesser extent for wavelet-based eddy 

covariance, as depicted in Figure 8. 
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5. Conclusions 645 

This study serves as a proof of concept for leveraging existing atmospheric towers to measure fluxes by simply adding a 3D 

anemometer. While eddy covariance on tall towers introduces challenges related to heterogeneity and storage effects, it 

mitigates concerns such as high-frequency attenuation. Comparing slow-response analysers with fast-response ones revealed 

very similar net fluxes across all stability conditions (R2>0.94), indicating the viability of using slower instruments in this case. 

It is important to note that our results focus solely on passive gases, as water was not considered due to air drying before 650 

measurement in the CRDS. For water, we could expect greater attenuation linked to tube length, as air-wall interactions of 

absorption and desorption are much stronger in water vapour (Massman and Ibrom, 2008). Similarly, we would not recommend 

measuring reactive gases, as their residence time might be too long (~60 s) for accurate eddy covariance measurements to be 

made. We also recommend using wavelet-based eddy covariance, as it enabled the exploitation of 18-34% more data compared 

to conventional EC, allowing for the analysis of non-stationary fluxes. This was particularly evident in the case of a point 655 

source, such as a heating plant. 

While many of the variables affecting attenuation are not under the researcher's control, limited choices remain for 

measurement height, tube dimensions, flow rate, and acquisition frequency. We recommend thus continuous gas measurements 

to be systematically done with high-frequency 3D anemometer, and a flow rate sufficiently large to ensure turbulent flows in 

the sampling tube.  660 

To calculate the surface flux, we estimated storage term. Although the storage term calculated using three heights provided 

useful estimations, caution is warranted due to potential biases from not measuring height at the same time, but also due to the 

limited number of heights sampled. Our results underscore the significance of the storage term, which was as large as the 

turbulent flux at the measurement height. 

Analysing fluxes by wind direction revealed distinct patterns, particularly between the forest (W) and campus site (NE). 665 

Notably, emissions from a heating plant significantly influenced CO2 and CH4 fluxes in colder months, highlighting the 

importance of considering local sources. While our findings align with anticipated patterns across various land uses, accurately 

attributing fluxes to land uses would necessitate additional modelling efforts, which were beyond the scope of this study. 

Overall, this study demonstrates the potential of expanding flux measurements through a relatively inexpensive 

instrumentation addition, offering valuable insights for both ecosystem and atmospheric research. It further shows Eddy 670 

Covariance method has sufficiently matured so that we can use less-than-ideal instrumentation. 

Appendix A 

Wavelet transform is a bandpass filter allowing decomposition of a time series into sub-series defined for a given frequency. 

The following steps briefly explain how to perform a frequency-resolved covariance using wavelets. More details can be found 

in (Farge, 1992; Torrence and Compo, 1998; Farge and Schneider, 2001). 675 
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Any signal f(t) can be decomposed into different scales, which results in the signal itself once added up. The simplest example 

is the Reynolds decomposition that separates a time series into its mean and its instantaneous deviation: 

𝑓(𝑡) = 𝑓′(𝑡) + 𝑓(𝑡)̅̅ ̅̅ ̅̅  (A 1) 

In Eq. 3, the mean, 𝑓(𝑡)̅̅ ̅̅ ̅̅ , is the low-frequency component, with a frequency representative of 1/T, where T is the averaging 

period. Similarly, a time series can be decomposed into J sub-series, each representative of a band of frequencies j: 

𝑓(𝑡) = ∑𝑓(𝑡, 𝑗)

𝐽

𝑗=0

 (A 2) 

The wavelet transform is a way to decompose the signal using a mother wavelet 𝜓, a finite wave function. Considering N 680 

discrete observations with a sampling period 𝛿𝑡 , so that 𝑡 = 𝑛 𝛿𝑡  where n is the time index, we can generate a family of 

wavelets normalized in L²-norm: 

𝜓𝑛,𝑗(𝑛′) = 𝑠𝑗
−1/2

𝜓 [
(𝑛′ − 𝑛)𝛿𝑡

𝑠𝑗
] (A 3) 

Where sj is the scaling factor, usually defined using a geometric progression with a maximum limited by the total sampling 

period 𝑁𝛿𝑡  : 𝑠𝑗 = 𝑠02
𝑗𝛿𝑗 , for 𝑗 = 0,1, … 𝐽 . Here, J is the size of the set of scales, s0 is the smallest resolvable scale, 

approximately 2δt, and δj is the scale factor. The convolution of the signal 𝑓(𝑛) with a scaled mother wavelet 𝜓, yields 685 

𝑊(𝑛, 𝑗), the high pass wavelet coefficient for time series 𝑓(𝑛): 

𝑊(𝑛, 𝑗) = ∑ 𝑓(𝑛′)𝜓𝑛,𝑗(𝑛′)

𝑁−1

𝑛′=0

 (A 4) 

𝑊  is also named details to differentiate from approximation coefficient, result from a low pass filter. From W we can 

reconstruct the signal by first normalizing it: 

𝑓(𝑛, 𝑗) =
𝛿𝑗𝛿𝑡0.5

𝐶𝛿𝜓0(0)
ℜ{𝑊(𝑛, 𝑗)} (A 5) 

Cδ is a scale-independent reconstruction factor depending on the chosen mother wavelet function and 𝑓(𝑛, 𝑗)  is the 

decomposed signal defined in both time and frequency. The fully reconstructed signal is then found by summing to infinity 690 

the different frequencies: 

𝑓(𝑛) =∑𝑓(𝑛, 𝑗)

∞

𝑗=0

 (A 6) 
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We can avoid summing to infinite by acknowledging the low pass filter, which yields an approximation coefficient which can 

be normalized to the low pass part of the signal named A:  

𝑓(𝑛) =∑𝑓(𝑛, 𝑗)

𝐽

𝑗=0

+ 𝐴𝐽 
(A 7) 

At the highest frequency ∑ 𝑓(𝑛, 𝑗)0
𝑗=0 = 0 and 𝐴𝐽 = 𝑓(𝑛). It becomes clear that (A 6) is a particular case for infinity. In the 

intermediate cases, 𝑓(𝑛) is the sum of all its components, A is similar to a time average, and a finite sum of 𝑓(𝑛, 𝑗) is close to 695 

an instantaneous deviation.  

𝑓(𝑛) −
∑ 𝑓(𝑛)𝑇
𝑛=0

𝑇
≈ ∑ 𝑓(𝑛, 𝑓)

1/𝑇

𝑓=∞

 (A 8) 

Where T in the averaging time (e.g. in seconds), f is the frequency (sj
−1, e.g. in Hz). 

On the (co)variance calculation using discrete and continuous wavelets 

We further explain the changes in the covariance calculation when using discrete or continuous wavelets. For variance consider 

the two variables are the same. For unidimensional variables, covariance calculation is straightforward, it is the mean product 700 

of two instantaneous deviations: 

𝐶𝑜𝑣𝑥,𝑦 = (𝑥 − 𝑥̅)(𝑦 − 𝑦̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (A 9) 

The frequency decomposition renders each variable bidimensional and as such their product should account for cross 

covariance.  

𝐶𝑜𝑣𝑥,𝑦 =∑ 𝑥̃𝑗𝑦̃𝑗̅̅ ̅̅ ̅
𝐽

𝑗=0
+∑  𝑥̃𝑗𝑦̃𝑘̅̅ ̅̅ ̅̅

𝑘≠𝑗
 (A 10) 

The orthogonality of discrete wavelets implies independent frequencies, making 𝐶𝑜𝑣𝑥,𝑦 = ∑ 𝑥̃𝑗𝑦̃𝑗̅̅ ̅̅ ̅𝐽
𝑗=0 . Thus, the cross-

covariance problem only appears when using continuous wavelets. Some authors propose bypassing the reconstruction and 705 

calculating the covariance directly using the following equation (Torrence and Compo, 1998): 

𝐶𝑜𝑣𝑥,𝑦 =
𝛿𝑗𝛿𝑡

𝐶𝛿𝑁
∑ ∑ 𝑊𝑥(𝑛, 𝑗)𝑊𝑦(𝑛, 𝑗)

𝐽

𝑗=0

𝑁−1

𝑛=0
 (A 11) 

Note that the equation (A 11) cannot be retrieved from (A 5).  

However, by postulating that the cross-covariance (∑  𝑥̃𝑗𝑦̃𝑘̅̅ ̅̅ ̅̅
𝑘≠𝑗 ) is proportional to the direct part (∑ 𝑥̃𝑗𝑦̃𝑗̅̅ ̅̅ ̅𝐽

𝑗=0 ) at a factor 

determined by the mother wavelet, we can find an empirical factor, named 𝐶𝜑, that corrects the covariance. 
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𝐶𝑜𝑣𝑥,𝑦 = 𝐶𝜑∑ 𝑥̃𝑗𝑦̃𝑗̅̅ ̅̅ ̅
𝐽

𝑗=0
 (A 12) 

 710 

Note that 𝐶𝜑 , like 𝐶𝛿 , is only required for continuous wavelet decompositions in which the wavelet function is not an 

orthogonal base. The covariance correction factor 𝐶𝜑 empirically found for Morlet and DOG wavelets (Coimbra et al., 2023) 

can be seen in Table A1. 

Table A1: Mother wavelets used in this study. Mother wavelet formula, 𝝍(𝜼), empirically derived factors, Cδ and ψ0(0), from (Farge, 

1992) and Cφ (Coimbra et al., 2023). 715 

Name Decomposition 𝜓(𝜂) Cδ 𝜓0(0) Cφ 

Morlet (kψ= 6) Continuous 
eik𝜓𝜂e−

𝜂2

2  0.776 𝜋−1/4 5.271 

DOG (m=2), also known as Marr or 

Mexican Hat 

Continuous 
−1𝑚

𝑑𝑚

𝑑𝜂𝑚
(𝑒−

𝜂2

2 ) 3.541 0.867 16.568 

Daubechies (k=6) Discrete (−1)𝑘𝑎𝑁−1−𝑘 1 1 1 
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Appendix B 

The theorical approach for high-frequency loss corrections requires defining a transfer function, TF, for each of the relevant 

origins of frequency losses, i, and multiplying them to find the total transfer function, TFtotal (Moore, 1996):  720 

𝑇𝐹𝑡𝑜𝑡𝑎𝑙(𝑓) =∏𝑇𝐹𝑖(𝑓) 
(B 1) 

Note that TFs range between 0 and 1 and so the TFws is driven by the most restrictive function for each frequency. Considering 

only the attenuation from the air transport in the tube (TFtube, Leuning and Moncrieff, 1990; Foken et al., 2012) and acquisition 

rate (TFacq, Horst, 1997): 

𝑇𝐹𝑡𝑢𝑏𝑒 =

{
 
 

 
 exp {−160𝑅𝑒−

1
8
𝜋2𝑟5𝑓

2
𝐿

𝑄
 } , 𝑅𝑒 < 2300

exp {−
𝜋3𝑟4𝑓

2
𝐿

6𝐷𝑠𝑄
 } , 𝑅𝑒 ≥ 2300

 (B 2) 

𝑇𝐹𝑎𝑐𝑞 = [1 + (2 𝜋𝑓𝜏𝑤)
2]−1/2 × [1 + (2 𝜋𝑓𝜏𝑠)

2]−1/2 (B 3) 

Where, Re is Reynolds number (-), r is tube radius (m), f is the frequency (Hz), L is tube length (m), Q is volumetric flow rate 

(m3s−1), and τ is the first-order filter’s time constant (s) where 𝜏 = (2 𝜋𝑓𝑎𝑐𝑞)
−1

 and facq is the acquisition frequency (Hz) for 725 

vertical wind speed or scalar. Reynolds number is defined as 𝑅𝑒 =
2𝑄

𝜋𝑟𝑣
, where v is the kinematic viscosity. 

Attenuation also depends on the cospectra. A theoretical approach is proposed in Horst (1997, eq. 11), where  

𝑤′𝑐′̅̅ ̅̅ ̅̅
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑤′𝑐′̅̅ ̅̅ ̅̅
𝑡𝑟𝑢𝑒

= 1 + (2𝜋 𝑛𝑚𝑎𝑥𝜏𝑐𝑢̅/𝑧)
−𝛼 (B 4) 

Where 𝑢̅ is the mean wind speed at height z, nmax is 0.085 in case 𝑧/𝐿 < 0 else 2 − 1.915/(1 + 0.5𝑧/𝐿), and α is 7/8 for 

𝑧/𝐿 < 0 else 1. 

Code availability 730 

Code used in the analysis presented in this paper is available online and can be accessed at 

https://github.com/pedrohenriquecoimbra  

Data availability 

ICOS data for FR-Sac and FR-Fon (forest site used for reference) can be downloaded from the carbon portal: data.icos-

cp.eu/portal.  735 
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