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Abstract. The proportion of flaming and smoldering activity occurring in landscape fires varies with fuel type and fuel 

characteristics, which themselves are influenced by ecology, meteorology, time since the last fire etc. The proportion of 

these combustion phases greatly influences the rate of fuel consumption and smoke emission, along with the chemical 10 

composition of the smoke, which influences the effects on the atmosphere. Earth Observation (EO) has long been suggested 

as a way to remotely map combustion phase, and here we provide the first known attempt at evaluating whether such 

approaches can lead to the desired improvements in smoke emissions estimation. We use intensively measured laboratory 

burns to evaluate two EO approaches hypothesized to enable remote determination of combustion phase and concurrent 

measurements of the smoke to determine how well each is able to improve estimation of smoke emission rates, smoke 15 

composition and the overall rate of fuel consumption. The first approach aims to estimate the sub-pixel ‘effective fire 

temperature’, which has been suggested to differ between flaming and smoldering combustion, and the second detects the 

potassium emission line (K-line) believed only to be present during flaming combustion. We find while the fire effective 

temperature approach can be suited to estimating Fire Radiative Power (FRP), it does not significantly improve on current 

approaches to estimate smoke chemical makeup and smoke emission. The K-line approach does however provide these 20 

improvements when combined with the FRP data, improving the accuracy of the estimated CO2 emission rate by an average 

of 17±4% and 42±15%, respectively, depending on whether the K-line detection is used to simply classify the presence of 

flaming combustion, or whether its magnitude is also used to estimate its relative proportion. Estimates of CO and CH 4 

emission rates were improved to a lesser extent than that of CO2, but the accuracy of the smoke modified combustion 

efficiency (MCE) estimates increased by 30±15% and 46±10%, respectively. MCE is correlated to the emissions factors 25 
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(EFs) of many smoke constituents, so remotely deriving MCE provides a way to tailor these during smoke emissions 

calculations. Whilst we derived and tested our approaches on laboratory burns, we demonstrate their wider efficacy using 

airborne EO data of a boreal forest wildfire where we find that combined used of K-line and FRP data significantly change 

estimated smoke MCE and CO2 and CO emission rates compared to the standard approach. Our findings suggest that 

satellite EO methods that jointly provide K-Line and FRP data could enable marked improvements in the mapping of 30 

landscape fire combustion phase, fuel consumption and smoke emissions rate and composition. 

1. Introduction 

Satellite Earth Observation (EO) is the only approach able to provide global, systematic, and regularly repeated estimates of  

landscape fire trace gas and aerosol emissions (Chuvieco et al., 2019; Wooster et al., 2021). ‘Bottom-up’ EO-based 

emissions estimation approaches rely on calculating the amount of biomass burned, based on burned area (BA) or fire 35 

radiative energy (FRE) measures (Giglio et al., 2013; Kaiser et al., 2012; Wiedinmyer et al., 2011), which is then multiplied 

by the emission factor (EFx) of the chemical species (X) of interest. EFx represents the mass of that species that is emitted per 

unit of fuel burned (g kg-1; Andreae and Merlet, 2001).  More recently developed EO-based approaches now link EO-derived 

fire radiative power (FRP) measures directly to emission rates of a trace gas or particulate species via an emission coefficient 

Ce
X (kg MJ-1; Ichoku and Kaufman, 2005; Mota and Wooster, 2018; Nguyen et al., 2023; Nguyen and Wooster, 2020). 40 

However, no EO approach currently takes into account combustion phase and the proportion of flaming and smoldering 

activity, despite this being known to dramatically influence fire and smoke characteristics (e.g., Freeborn et al., 2008; 

Urbanski, 2014; Zhang et al., 2015). 

The proportion of flaming and smoldering combustion in a landscape fire depends on fuel type and fuel condition – for 

example being influenced by fuel load, fuel density and fuel moisture content for example (e.g., Burling et al., 2010; Garg et 45 

al., 2024; Urbanski, 2013). It is well known that for most chemical species released by landscape burning, the EFx (and the  

Ce
x) change markedly between the flaming and smoldering combustion phase (e.g., Reid et al., 2005; Zhang et al., 2015). 

Therefore, since the proportion of flaming and smoldering combustion varies even between fires burning in the same fuel 
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type, smoke emissions characteristics can also vary widely – which then has an impact on the fire’s effects on atmospheric 

composition (e.g., Mebust and Cohen, 2013; Zheng et al., 2018). 50 

Biome-specific databases of EFX and/or Ce
x do not generally report separate values for flaming and smoldering combustion, 

but rather overall ‘fire-averaged’ values based on laboratory and/or field measurements assumed to include a ‘typical’ 

amount of flaming and smoldering combustion for that fuel type (see Akagi et al., 2011; Andreae, 2019; Andreae and 

Merlet, 2001). Remote sensing measures of FRP reflect an instantaneous observation, possibly at a time when the amount of 

flaming and smoldering combustion may be very atypical of the ‘average’. Furthermore, even ‘fire-averaged’ emission 55 

factors and coefficients likely vary between fires in the same fuel. For these reasons there is increasing interest in provid ing 

more dynamic emission factors and emissions coefficients, initially at least to cope with their presumed seasonal variations  

(Vernooij et al., 2023, 2022). 

There have long been suggestions that remote sensing may be able to provide ways to specify more tailored emissions 

factors or coefficients (e.g. Andreae and Merlet, 2001; Freeborn et al., 2008; Kaufman et al., 1998). The most common 60 

approach suggested uses estimates of sub-pixel fire effective temperature, for example derived via the Dozier (1981) 

approach or similar multispectral analysis methods that can be used with ground or airborne data (e.g. Dennison et al., 2006) 

but also with spaceborne data to analyze fires covering only a very small fraction of the pixel area (e.g., Giglio and Kendall, 

2001). An alternative approach would be to remotely identify a phenomena characteristic of only a single combustion phase, 

and most commonly suggested is the potassium line (K-line) radiative emission associated only with flaming activity (Amici 65 

et al., 2011; Magidimisha and Griffith, 2017; Vodacek et al., 2002).  The current work aims to test these remote sensing 

approaches to determine whether they really can improve smoke emissions rate and smoke composition estimation, in this 

case, of the three most dominant trace gases (CO2, CO and CH4). We use a series of intensively instrumented combustion 

chamber burns for this, and also demonstrate the best approaches on real landscape fires using airborne EO data – providing 

a demonstration that is of intermediate scale to satellite EO. 70 
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2. Background 

Though the burning of biomass involves multiple different combustion phases, almost all the smoke is produced in the 

flaming and smoldering phases (Bertschi et al., 2003; Yokelson et al., 1997).  The flaming phase generally involves higher 

temperatures, and the resulting oxidation of fuel carbon is typically far more complete and leads to a higher CO2 emission 

factor  (Zhang et al., 2015).  EFs of species such as NOX, SO2 and black carbon (BC) are also elevated in the flaming phase 75 

(Andreae and Merlet, 2001; Reid et al., 2005). Smoldering combustion commonly refers to a combination of pyrolysis 

(thermal decomposition of the fuel) and glowing combustion (of char), mostly involving lower temperatures and more 

incomplete oxidation of the fuel carbon compared to flaming. CO2 EFs are lower, but those of species such as CO, CH4, 

organic carbon (OC), and volatile organic compounds (VOCs) are higher (e.g. Zhang et al., 2015; Andreae, 2019; Bertschi et 

al., 2003; Reid et al., 2005; Yokelson et al., 1997, 1996). However, fuel combustion rate is also important to consider in 80 

emissions rate calculations, and is far higher per unit area for flaming rather than smoldering combustion (e.g., Lacaux et al., 

1996; Wooster et al., 2011) . Furthermore, despite EFCO2 being typically 5-15% lower for smoldering than flaming 

combustion, smoldering fires still release the majority of their carbon as CO2  as the emissions factor of CO2 is still higher 

than for any other compound (e.g., Reisen et al., 2018; Zhang et al., 2015). However, the EF of ‘preferentially smoldering’ 

compounds such as CO, CH4, organic carbon (OC), and VOCs are typically many times higher during smoldering than 85 

flaming phase combustion, so along with the fuel consumption rate the amount of smoldering activity plays a very 

significant influence in their emission rate. 

Whilst landscape fires often show periods of only smoldering combustion, periods of ‘flaming-dominated’ activity are, 

typically, relatively short. Far more common are stages with a mixed contribution, where some smoldering is happening 

behind the flaming front (e.g., Bertschi et al., 2003; Burling et al., 2011; Rabelo et al., 2004; Urbanski, 2014; Yokelson et al., 90 

1997). Since combustion rate per unit area is generally far higher in the flaming-dominated phase than the smoldering-

dominated phase, the total production of even ‘preferentially smoldering’ species can often be higher during the flaming 

period rather than during pure smoldering, depending on the area affected by each and their relative durations. This 

complexity has led to metrics like the modified combustion efficiency (MCE), which aims to quantify the balance between 

flaming and smoldering combustion in the smoke production process, defined as: 95 
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𝑀𝐶𝐸 =

Δ𝐶𝑂2

Δ𝐶𝑂2 + Δ𝐶𝑂
 (1) 

where ΔX indicates the excess concentration of CO2 or CO (commonly measured in ppmv). 

Purely flaming combustion results in an MCE close to 1.0 due to minimal CO production, whilst purely smoldering 

combustion can yield smoke with an MCE as low as 0.65 (depending on fuel type; Akagi et al., 2011; Andreae, 2019). 

Smoke MCE has been shown to be negatively correlated with the EFs of many preferentially smoldering species (Bertschi et 

al., 2003; McMeeking et al., 2009; Urbanski, 2013; Yokelson et al., 1996), and understanding the MCE of the fire can 100 

therefore enable more precision to be placed on the resulting fire emissions. However, collecting MCE data on landscape 

fires is challenging even using in situ aircraft sampling due to atmospheric mixing (Yokelson et al., 2013), and whilst 

satellite EO has shown an ability to probe smoke emissions ratios (e.g., Coheur et al., 2009; Ross et al., 2013) it has not yet 

been possible to remotely sense smoke MCE. Currently, therefore, remote sensing approaches potentially able to determine 

the amounts of flaming and smoldering combustion ongoing in a fire are based either on retrieving the fire’s effective  105 

temperature (e.g., Zhukov et al., 2006)  or detection of the flaming-phase K-line signature (e.g., Amici et al., 2011). 

Remotely sensed fire effective temperature estimation was first proposed by Dozier (1981). Observations in two different 

wavebands are used to retrieve a fire’s subpixel effective temperature (Tr) and proportional area (𝑝 ), with the fire assumed to 

be thermally homogeneous and superimposed on a thermally homogeneous background with temperature (Tb) and 

proportional area (1- 𝑝 ). Blackbody behavior is generally assumed, and estimation of Tr and 𝑝  is conducted via solution of: 110 

  𝐿1 = τ1𝑝𝐵(λ1, Tr) + (1 − 𝑝)Lb,1 + 𝐿𝑎𝑡𝑚,1  

 𝐿2 = τ2𝑝𝐵(λ2, Tr) + (1 − 𝑝)Lb,2 + 𝐿𝑎𝑡𝑚,2  

(2) 

(3) 

where L1 and L2 are spectral radiances (Wm-2sr-1m-1) in wavebands λ1 and λ2, τ1 and τ2 are the atmospheric transmittances in 

those wavebands, and Latm,1 and Latm,2 are the atmospherically emitted radiances measured by the sensor in those wavebands. 

Lb,1 and Lb,2 are the radiance contributions from the non-burning uniform background, whose temperature is generally 

estimated from neighboring pixels.  The spectral emission at wavelength λ and retrieved temperature Tr  is given by Planck’s 

Radiation Law: 115 

 
𝐵(λ, 𝑇𝑟 ) =

2ℎ𝑐2

λ5

1

𝑒
ℎ𝑐

𝜆𝑘𝐵𝑇𝑟 − 1

  (4) 
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where ℎ is Planck’s constant (6.62607004 × 10−34 kgm2s-1), 𝑘𝐵 is Boltzmann’s constant (1.38064852 × 10−23 kgm2s-2K-1) 

and 𝑐 the velocity of light in a vacuum (299792458 ms-1). Note that “effective temperature” refers to an estimate of the 

radiant temperature of the fire, rather than the kinetic temperature one might measure with a thermometer. This assumes that 

the fire is a grey body (Johnston et al., 2014) but makes no assumptions with regards to the actual emissivity value. 

Dennison et al. (2006), Dennison and Matheson (2011); Matheson and Dennison (2012), Zhukov et al. (2006) provide 120 

examples of mapping sub-pixel fire effective temperature, which can be expanded to estimate increased thermal component 

fits if more than two wavebands are available, such as in hyperspectral data (Dennison et al., 2006; Dennison and Matheson, 

2011; Giglio and Justice, 2003; Giglio and Kendall, 2001; Waigl et al., 2019). This could potentially determine separate 

flaming and smoldering contributions. However, no studies have yet linked such retrievals to an ability to better estimate 

smoke emission characteristics (Wooster et al., 2021), despite that being a key aim for such data. 125 

The alternative K-line approach is based on the detection of an emission doublet in the near infrared (766.5 nm and 769.9 

nm), which is caused by thermally excited potassium atoms within the burning fuel (Vodacek et al., 2002; Amici et al., 2011; 

Dennison and Roberts, 2009; Magidimisha et al., 2023; Magidimisha and Griffith, 2017). Only flaming phase activity is hot 

enough to produce K-line emission and Amici et al. (2011) thus far provide its only detection from space – defining the 

‘Advanced K Band Difference’ (AKBD) metric to quantify its strength: 130 

 AKBD  = Max|BandKi|  − Bkg (5) 

where Max|BandKi| is the maximum spectral radiance recorded in the 764 nm – 772 nm range (the region that encompasses 

the NIR K-line doublet) and Bkg is that recorded just outside the K-emission region, for example 779nm. The K-line 

signature can be seen superimposed on the background Planckian signal in data from our experiment shown in Fig. 2a. 

3. Laboratory experiment method 

3.1 Experiment setup 135 

Experiments were conducted at King’s College London’s Wildfire Testing Chamber, located at Rothamsted Research, 

Harpenden (UK). The physical arrangement and instruments are detailed in Fig. 1 and Table 1. The remote sensing 

instruments were positioned to view the fuel-bed at nadir (location B in Fig. 1) through appropriately transparent windows 
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(also listed in Table 1) with high heat resistance. Pre-experiment calibrations were undertaken to allow the non-unitary 

transmissivity of the windows to be taken account of during data analysis. 140 

 

Figure 1. Experimental setup for examining fire and smoke characteristics: (A) Fuel-bed; (B) Spectrometers and 

cameras viewing the fuel-bed and nadir through holes in the extraction flue; (C) Gas analyzers, (D) Air flow rate 

sensor. 

 145 

Table 1. Instruments used and their specifications, as well as the window compositions that protected the 

spectrometers and cameras viewing through the holes shown in Fig. 1. 

Location Instrument Window Specifications 

A Digital Scales NA 0.005 kg readability 
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B VIS-SWIR 

spectrometer - 

SVC HR-1024i 

Sapphire 

(AL2O3) 

Spectral Range: 350 nm – 2500 nm 

FWHM: 3.5 nm (700 nm), 9.5 nm (1500 nm), 6.5 nm (2100 nm) 

Bandwidth: 1.5nm (350 nm – 1000 nm), 3.8 nm (1000 nm – 1890 nm), 2.5 nm 

(1890 nm – 2500 nm) 

FOV: 14° foreoptic lens 

Calibration Accuracy: ±5% (400 nm), ±4% (700 nm), ±7% (2000 nm) 

Measurement frequency: 0.14 – 0.25 Hz 

B Thermal camera 

- Optris PI 400 

Zinc 

Selenide 

(ZnSe) 

Spectral Range: 7.5 µm – 13 µm 

Optical Resolution: 382 x 288 pixels 

Framerate: 27 Hz 

Temperature Range: 150 °C – 900 °C 

FOV: 62° x 49° 

f = 8 mm 

Measurement frequency: 1 Hz 

B UV-NIR 

spectrometer - 

Ocean Insight 

OCEAN-HDX-

XR 

Fused 

silica 

(SiO2) 

Spectral Range: 200 nm – 1100 nm 

FWHM: 1.1 nm 

FOV: 30° fiber-optic guide 

Measurement frequency: 1 Hz 

B RGB camera - 

Apeman A79 

Fused 

silica 

(SiO2) 

Resolution: 20 MP 

Framerate: 30 fps 

FOV: 170° 
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C CO2, CO and 

CH4 analyzer - 

Los Gatos 

Research 

Ultraportable 

Emissions 

Analyzer 

NA CO2: 0 – 3000 ppm 

CO: 0 – 1000 ppm 

CH4: 0 – 100 ppm 

H2O: 0 – 99% relative humidity 

Measurement frequency: 1 Hz 

C CO2 and CO 

analyzer - 

GasLab CM-

1000 

NA CO2: 0 – 10000 ppm 

CO: 0 – 5000 ppm 

Measurement frequency: 0.5 Hz 

D Air pressure 

differential 

analyzer - Testo 

440 

NA Pressure differential measuring range: -150 hPa to 150 hPa 

Accuracy: ±0.2 hPa 

Resolution: 0.01 hPa 

Measurement frequency: 1 Hz 

3.2 Fuel 

Three types of fuel were burned during these experiments: oak kindling, pine forest litter, and soybean crop residue. Oak 

kindling was selected for its relative uniformity, though the thickness and dryness of the individual pieces was not identica l 150 

and led to some intra-fire variability in the amount of flaming and smoldering activity. The pine forest litter was a mixture of 

needles, cones and small branches collected from the floor of a UK forest containing mainly Corsican, Maritime, and Scots 

pine. This fuel mix was dried indoors for a month prior to the burns and the samples burned were selected to maintain the 

proportions of needles, cones, and branches found on the forest floor. The soybean residues were sourced from China as an 

example of an agricultural waste product commonly burned in open fields. All fuels were arranged to fit within a 29 cm 155 

diameter circle to fit within the measurement area of all remote sensing instruments deployed. 
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3.3 Fire measurements 

3.3.1 Optical and thermal imagery 

A standard RBG camera recorded video imagery of each fire for context, helping gauge how amounts of flaming and 

smoldering combustion changed over each fire’s duration. A calibrated longwave infrared (LWIR) camera (Optris PI400) 160 

recorded infrared brightness temperature imagery at 1 Hz, with the 3.3 mm pixel size allowing for an assumption of pixel 

thermal homogeneity. A 1 Hz FRP record of the fire could then be derived using the Stefan-Boltzmann law with data from 

each image: 

 FRP = ∑ σ  a Ti
4

𝑖

  (6) 

where 𝜎 is the Stefan-Boltzmann constant (5.670374x10-8 Wm-2K-1), a is the pixel area (1.109x10-5 m2), and 𝑇𝑖  is the pixel 

brightness temperature (K). This sum was over the i pixels within each image that had T > 600 K, which excluded cooling 165 

non-combusting pixels (e.g., Freeborn et al., 2008; Wooster et al., 2011).  

3.3.2 Fire effective temperature and FRP retrieval from spectral fits 

Fire effective temperatures and FRP were also derived using UV-to-SWIR spectral radiance measurements collected at 0.14-

0.25 Hz from a calibrated field spectrometer (SVC HR1024i; Table 1).  Fire effective temperature estimates, akin to those 

coming from the Dozier (1981) ‘dual-band’ approach, were retrieved from the measured spectra (Lλ, measured) – though the 170 

use of hyperspectral data enabled three thermal components to be derived (similar to in Wooster et al., 2005; Dennison et al., 

2006; and Amici et al., 2011). Modelled spectra (Lλ, modelled ) that provided the best fits to the measured spectra were 

constructed from three individually modelled spectral radiances (LFD, LSD, and LC) coming respectively from assumed 

flaming-dominated (FD, range 923-2000 K), smoldering-dominated (SD, 623-1023 K) and cooling (C, 280-623 K) emitters:  

 

Lλ, modelled = ∑   𝑝𝑖  Bλ(𝑇𝑖)

n=3

i

  (7) 

where the fractional areas sum to 1, and Bλ(𝑇𝐼) the Planck radiance emitted by each fractional component was calculated 175 

using Eq. 4. Brightness temperature (Ti) and fractional area (pi) of each component was iterated to provide the best match 

between Lλ, modelled and (Lλ, measured). 
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A blackbody assumption was made during application of Eq. 7, and burns were conducted in the dark to prevent 

contamination by reflected sunlight. Due to the small distances involved in the measurement setup, no atmospheric 

transmission adjustments were required to the spectra. CO2 and H2O absorption and emission regions could be seen in the 180 

measured spectra (e.g., at 1400, 1900 and 2500 nm in Fig. 2a) but were simply excluded from the model fitting process. 

Since little thermal emission occurs in the HR1024i spectral range from targets below ~500 K, the approach is not very well 

suited to retrieving temperatures below this limit. As per Wooster et al. (2005), FRP estimates were derived as the sum of the 

radiative emissions from the retrieved flaming and smoldering components: 

 

𝐹𝑅𝑃 = 𝐴 ∑  σ 𝑝𝑖𝑇𝑖
4

n=2

𝑖

  (8) 

where σ is the Stefan-Boltzmann constant 𝐴 is the FOV area (0.064 m2). This shall be referred to as the FRP retrieved using 185 

the spectral-fitting method, FRPSF. 

Figure 2 shows an example modelled and measured spectra from a single experimental burn, with excellent agreement seen 

outside of the previously mentioned gaseous absorption and emission regions. 

FRP retrievals made using the thermal infrared brightness temperatures from the PI400 appeared to show good agreement 

with those derived from the HR1024i VIS to SWIR spectra (see example in Fig. 3a). However, further validation 190 

investigations are required, such as in daytime retrievals. The data from the PI400 were subsequently used for all analysis 

since they provide a higher measurement frequency, and one that matches those of the AKBD measures (see Sect. 3.3.3). 

The PI400 data also provides spatially mapped FRP data rather than just a single ‘fire-integrated’ value. 

 



12 

 

 195 

Figure 2. Snapshot of an exemplar 23 x 23 cm experimental pine forest litter fire viewed from nadir using the setup 

shown in Fig. 1. Fire is shown at the time of maximum flaming activity: (a) Fire radiative emission spectra as 

measured by the OCEAN-HDX-XR (Ocean Insight, UV-to-NIR) and HR1024i (SVC, UV-to-SWIR) spectrometers, 

with magnitudes adjusted for the FOV difference between the two instruments. Modelled spectra derived from the 

spectral-fitting method described in Sect. 3.3.2 and its three temperature components (retrieved fractional area (%) 200 

and temperature (K) are listed in the legend); (b) Temperature (K) measured by the PI400 (Optris); (c) Fire 

Radiative Power (FRP, kWm-2) derived from the PI400 thermal imagery, as calculated via the Stefan-Boltzmann law 

and omitting pixels below 650 K (see Section 3.3.1); (d) Frame from RGB video camera. 
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Figure 3. Data from the exemplar pine forest litter fire shown in Fig. 2: (a) FRP time-series derived from brightness 205 

temperature imagery collected by the Optris PI400 thermal imager and VIS-to-SWIR spectral collected by the 

HR1024i. Data for a single time-step are shown in Fig. 2a; (b) Comparison of AKBD K-line metric derived from 
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spectra measured by the OCEAN-HDX-XR and HR1024i spectrometers around the location of the potassium 

emission line (see Sect. 3.3.3); (c) Time-series of excess () CO2, CO and CH4 (ppm) concentrations in the smoke from 

this fire, each normalized by their maximum value (given in the legend). The time flaming activity ceased as 210 

determined by the RGB video record is marked by the vertical dashed line. 

3.3.3 K-line measurements 

An OCEAN-HDX-XR spectrometer (Table 2) was used to provide 1 Hz K-line measurements of each fire. The instrument 

measurement diameter was 53 cm at the fuel bed, and the instrument calibrated to provide data in spectral radiance units 

using an Ocean Insight HL-3P-CAL calibration lamp. The resulting spectra were used to measure K-line strength using the 215 

AKBD metric introduced in Sect. 2. 

The HR1024i can also provide K-line spectra, though its 3.5 nm spectral resolution in the K-line region is coarser than the 

1.1 nm of the OCEAN-HDX-XR. Comparison of their AKBD data (e.g., Fig. 3b) showed excellent agreement (R2 of 0.99; 

with a linear best fit of gradient of 0.381±0.002 and negligible intercept).  However, the AKBD measured by the OCEAN-

HDX-XR are more than twice as large as from the HR1024i. This is despite the former’s larger measurement area; this is due 220 

to its higher spectral resolution, which is evident in its ability to better resolve the individual potassium emission lines (see 

Fig. 2a). Since the OCEAN-HDX-XR also provided a higher measurement frequency, its AKBD data were used for all 

subsequent analysis. 

3.4 Smoke measurements 

3.4.1 CO2, CO and CH4 mixing ratios 225 

Trace gas measures of the smoke from every fire was continuously directed via the hood and through the extraction flue 

(Fig. 1), and used to calculate smoke emission rates and MCE. Continuous CO2, CO and CH4 mixing ratio measures were 

taken at an inlet at location C (Fig. 1) using an adapted Los Gatos Research (LGR) Ultraportable Greenhouse Gas Analyzer 

laser absorption spectrometer (described in Zhang et al., 2015). However, for the crop residue fires, the LGR was 

unavailable, so a GasLab CM-1000 was deployed instead. This instrument uses a Non-Dispersive Infrared (NDIR) detector 230 

to assess CO2 mixing ratios, and an electrochemical sensor to assess CO. The differing response times of these two detectors 
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were accounted for using the method of Zhang et al. (2020) such that continuous MCE measurements could be derived using 

Eq. 1. Excess concentrations of CO2, CO and CH4, along with the matching FRP and AKBD data, are shown in Fig. 3c and 

3d for an example pine forest litter fire. 

3.4.2 Trace gas emission rates 235 

To account for any variability in the extraction system, the gas flow rates through the flue were calculated by combining the  

trace gas concentrations (Sect. 3.4.1), 1 Hz pressure difference measurements (dP [Pa]) between the inside and outside of the 

flue using a Testo 440, and the flue gas temperature using two thermocouples. Gas velocity (v [m s-2]) was derived from the 

pressure data using the Bernoulli equation: 

 

𝑣 = √
2𝑑P

ρX

  (9) 

where ρX is the density of species X (kg m-3). Temperatures of the flue gases varied by up to 40 K over the course of 240 

individual fires. Therefore, ρX was adjusted using: 

 
ρ𝑋 =

𝑀𝑀𝑋𝑃

𝑅𝑇𝑇𝐶

  (10) 

where MMX is the molar mass of gas species X, R is the ideal gas constant (8.3145 mol-1K-1), P is pressure, which was 

assumed to be constant of 101 kPa as the pressure difference measurements from the Testo were negligible in comparison, 

and TTC is the temperature recorded by a thermocouple in the flue (in K). The measured emission rate of X, (
𝑑𝑀𝑋

𝑑𝑡
)

𝑚
, in g s-1 

was then calculated by: 245 

 
(

𝑑𝑀𝑋

𝑑𝑡
)

𝑚

= 𝐴𝐶𝑆ρ𝑋𝑣10−6Δ𝑋  (11) 

where ACS is the cross-sectional area of the flue at location D (0.01767 m2) and ΔX is the excess concentration of X (in ppm) 

in the flue and 10-6 is a unit conversion factor for the gas concentration. 

3.4.3 Experimental Procedure 

In total, 12 pine forest litter, 12 oak kindling, and 8 crop residue fires were conducted over a period of 1 week, during which 

ambient air temperature in the Chamber ranged from 9 to 12°C and relative humidity from 71 to 75%. After preparation of 250 
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each fuel bed, the extraction flue and all instruments were turned on and the pre-fire trace-gas ambient concentrations 

calculated as the mean of the sixty 1 Hz concentration measurements taken immediately before each ignition. Ignition was 

made using a blowtorch applied to one edge of the fuel bed, with a small amount of sawdust added to help ignite the oak 

kindling. Measurements only ceased when concentrations of CO2 and CO closely approached those pre-fire. Post-fire, the 

cooling char, ash, and any unburned fuel was removed and the next fuel bed prepared. Fuel mass ranged from 125 g to 250 g 255 

for the pine litter fires, 220 g to 410 g for oak, and 100 g to 200 g for crop residue. Fire duration across the 32 burns ran ged 

from 16 to 42 minutes. 

4. Laboratory experiment results 

4.1 K-line detection 

As with previous work (Amici et al., 2011; Magidimisha and Griffith, 2017; Vodacek et al., 2002), the detection of a K-line 260 

signature coincided with clear flaming combustion seen in the RGB video record. An AKBD  1.5 µWcm-2sr-1nm-1 was 

always recorded by the OCEAN-HDX-XR when flames were visible. A higher MCE was also recorded when the AKBD 

signal was high, indicating that a higher proportion of fuel carbon was being completely oxidized to CO2 than when the 

AKBD was low. We built on these observations to attempt to link the K-line emission signal to quantitative improvements in 

our ability to estimate the trace gas emission. 265 

4.2 Fire effective temperature and spectral fitting 

Figure 4 shows the fire effective temperature and area parameters derived using fits to the spectra of a single pine forest l itter 

fire. Whilst the total FRP from these fits agrees with that derived using the PI400 as already stated (Fig. 3a), the individual 

FRP calculated for the separate flaming and smoldering components do not appear very realistic. The highest combustion 

rate is seen in the period from ignition to when all flaming activity ceased, and it is here that the highest rates of CO 2 270 

production occur (Fig. 3c). However, the ‘flaming FRP’ is reported as far smaller than the ‘smoldering FRP’ even during this 

period (Fig. 4a), even though fuel consumption was clearly dominated by flaming combustion at this time (also shown by the 

CO2 production in Fig. 3c). Therefore, these separate flaming and smoldering FRP components do not appear well matched 

to how each combustion phase is actually contributing to overall fuel consumption. 
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 275 

Figure 4. Time-series of results of the spectral-fitting method for the pine forest litter fire also shown in Fig. 3: (a) 

FRP derived from the two separate fire components (Eq. 6), the first is meant to represent the flaming zone (923 K < 

TFD < 2000 K), the second the smoldering zone (623 K < TSD < 1023 K), and their sum is the total of these two; (b) The 

fractional area, pFD, and temperature, TFD, of the first component representing flaming-dominated combustion; (c) 

The fractional area, pSD, and temperature, TSD, of the second component representing smoldering-dominated 280 
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combustion; (d) The fractional area, pC, and temperature, TC, of the third component representing the cooling non-

fire background. The end of the flaming period, the time when all flames appeared to cease in the RGB camera data, 

is indicated by the vertical dotted line. 

 

Going further, for all fires on which this method was tested, we found that retrievals of the second fire component derived 285 

from the spectral fits and meant to represent the smoldering combustion contribution always dominated the total FRP. In 

contrast, retrieved temperatures in the flaming zone (TFD) were frequently very high, often above 1600 K during the flaming 

period of Fig. 4b for example, but those of pFD (flaming proportional area) very small (e.g., never larger than 0.085%) – 

which led to a low contribution to total FRP. As there is little emission from the cooler smoldering component in the spectral 

region measured, this ‘flaming’ component is derived by fitting at shorter wavelengths and some of this signal is coming 290 

from hot soot in the flames rather than from the burning fuel itself. Parameters such as flame depth and soot concentration, 

which are significant drivers of flame emissivity (Johnston et al., 2014), therefore influence the retrievals. Similar to the 

AKBD measurements, we observed that flames were present while f1  0.0016% (Fig. 4a). However, any daytime 

measurements will require the removal of the reflected solar radiation component present at VIS to SWIR wavelengths 

(discussed further in Sect. 5.1.2). This task that can introduce large uncertainty, especially when dealing with course spatial 295 

resolution imagery where at the shorter wavelengths the solar reflected signal maybe far larger than that from the fire. The 

AKBD calculation is unaffected by this issue since it quantifies the strength of the K-line above the combination of reflected 

solar radiation and Planckian emission signal. 

4.3 Combustion phase emission relationships 

Figures 5a, 5b and 5c show, respectively, how emission rates of CO2, CO and CH4 vary with FRP – in this case for the 300 

example pine forest litter fire. Each data point is colored by MCE, indicating the mix of smoldering, and flaming combustion 

ongoing at each measurement time. High MCE (maximally dominated by flaming combustion) is yellow, and lower MCE 

(maximally dominated by smoldering combustion) is in dark blue. Points having a contemporaneous AKBD signal  1.5 

µWcm-2sr-1nm-1 are outlined, indicating the confirmed presence of flaming combustion via the K-line signal. 
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It is clear from the hysteresis-shaped patterns present in Fig. 5 that any assumption of a purely linear relationship between 305 

trace gas emission rate and FRP is flawed, and that instead such relationships are combustion phase dependent. This agrees 

with previous lab-based studies comparing FRP to CO2 and CO emission rates (e.g., Freeborn et al., 2008). 

Generally, soon after ignition, the fires enter a ‘flaming-dominated’ stage that produces a steep linear increase in CO2 

production with increasing FRP (Fig. 5a). Smoldering can and does occur during this ‘flaming-dominated’ stage, but it is 

consuming very little of the fuel compared to flaming. This is different to the ‘flaming period’ – which we class as the period 310 

of the burn when flames are present as defined via AKBD thresholding. During this time, significant smoldering combustion 

can also occur, particularly as the fire is transitioning away from the flaming-dominated stage. As the smoldering-dominated 

stage begins (no flaming activity), there also appears to be a linear relationship between FRP and CO2 emission, but with a 

gradient far lower than that found during the flaming-dominated stage. During the flaming period, the data of Fig. 5a falls 

between the two linear clusters representing the flaming-dominated and smoldering-dominated stages, with MCE values 315 

indicating a mixed contribution from both flaming and smoldering activity. 

As expected, for the ‘preferentially smoldering’ species CO (Fig. 5b) and CH4 (Fig. 5c), the relationship between FRP and 

trace gas emission rates are opposite in nature to those of the ‘preferentially-flaming’ CO2 (Fig. 5a). The emission rates of 

CO and CH4 increase linearly with FRP, but with a slope significantly lower than that for CO2 during the early flaming-

dominated stage. During the smoldering-dominated stage however, these slopes increase but the data are less well fitted by a 320 

linear relationship than during the flaming-dominated stage. The latter is possibly contributed to by a lower plume buoyancy 

during the smoldering-dominated stage, when some of the smoke may not have made it directly into the extraction flue. 

Based on these data, we developed and tested three different empirical models that use the remotely sensed measures to 

estimate the fires trace gas emission rates. The first model uses only remotely sensed FRP measures - and supposes a ‘fire-

averaged’ relationship between FRP and trace gas emission rate, which is assumed for example within the classical  Fire 325 

Radiative Energy Emissions (FREM) approach developed for use with satellite FRP data (Mota and Wooster, 2018; Nguyen 

et al., 2023; Nguyen and Wooster, 2020). The second two models use the K-line measures in addition to FRP and are aimed 

at providing a more nuanced trace gas emission rate estimate by considering the different relations seen during flaming and 

smoldering combustion. We used data from 23 ‘training’ fires across all fuel types to develop the parameters of each model. 
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Nine were randomly selected from each of the pine forest litter and oak kindling burns, and five from the crop residue burns. 330 

Three fires of each fuel type were then used to evaluate, or ‘test’, the models. 

 

Figure 5. Relationships between trace gas emission rate and FRP for (a) CO2, (b) CO, (c) CH4, and (d) total carbon 

flux in moles (i.e., moles of CO2, CO and CH4). FRP here is derived from the PI400 brightness temperature imagery 

as described in Section 3.3.1. These data are from a single pine forest litter training fire (Fire 11), and each point is 335 

colored by its MCE at the time of measurement, and those when AKBD > 1.5 µWcm-2sr-1nm-1 (as derived from the 

OCEAN-HDX-XR) indicating the presence of some flaming activity (flaming period) are distinguished from 
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smoldering-dominated points by their outline. Emissions coefficients for flaming-dominated (MCE > 0.975), flaming-

identified (AKBD ≥ 1.5 µWcm-2sr-1nm-1), fire-average and smoldering-dominated (AKBD < 1.5 µWcm-2sr-1nm-1), 

which were calculated from the ‘training’ fires (including Fire 11) and are presented in Table 2. 340 

4.4 Emission models account for combustion phase 

4.4.1 Model 1: fire-average 

As with the FREM approach this model assumes a simple linear relationship between FRP and trace gas emission rate of 

species X, (
𝑑𝑀𝑋

𝑑𝑡
)

𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑
. 

 
(

𝑑𝑀𝑋

𝑑𝑡
)

𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑

= 𝐶𝐴
𝑋𝐹𝑅𝑃  (12) 

where the average emission coefficient CA
X, was calculated by dividing the sum of all emission rate measures by the sum of 345 

all FRP measures. This model acts as a baseline to which the performance of the further two models that incorporate K-line 

information could be compared. CA
X values for the three fuels are presented in Table 2. 

 

Table 2: Emission coefficients, CCPh
X, for the trace gas emission rates of CO2 and CO (and CH4 where measured), for 

each combustion phase (CPh) scenario (fire-average, flaming-dominated, flaming-identified, smoldering-dominated) 350 

for pine forest litter, oak kindling and crop residue fires. Units are g s-1 MW-1. 

Trace Gas Emission Coefficients (g s-1 MW-1) 

  Fire-average (A) Flaming-

dominated (FD) 

Flaming-

identified (FI) 

Smoldering-

dominated (SD) 

Pine forest litter CO2 880 ± 2  1560 ± 12 1100 ± 4 523 ±2  

CO 33.4 ± 0.1  15.0 ± 0.1 25.8 ± 0.1 45.5 ± 0.1 

CH4 2.03 ± 0.01  0.586 ± 0.008 1.53 ± 0.005  2.82 ± 0.01 

Oak kindling CO2 888 ± 2  1950 ± 44 1030 ± 3 464 ± 2 

CO 22.8 ± 0.1  3.58 ± 0.08 18.0 ± 0.1 37.0 ± 0.1 
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CH4 0.792 ± 0.002 0.0741 ± 0.002 0.749 ± 0.002 0.922 ± 0.003 

Crop residue CO2 804 ± 6 1670 ± 40 

 

982 ± 10 434 ± 5 

CO 42.4 ± 0.4 16.4 ± 1.1 43.3 ± 0.6 40.5 ± 0.8 

4.4.2 Model 2: FRP and AKBD magnitude (FAM) 

In this second model, the emission rate of trace gas species X was modelled as the sum of that coming from separately 

considered flaming and smoldering activity: 

 
(

𝑑𝑀𝑋

𝑑𝑡
)

𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑

=  𝐶𝐹𝐷
𝑋 𝐹𝑅𝑃𝐹𝐷 + 𝐶𝑆𝐷

𝑋 𝐹𝑅𝑃𝑆𝐷 (13) 

where FRPFD and FRPSD are the contributions of the flaming-dominated (FD) and smoldering-dominated (SD) components 355 

of the fire to total FRP (i.e., FRPFD + FRPSD = FRP). CFD
X and CSD

X are the flaming-dominated and smoldering-dominated 

emission coefficients between FRP and the emission rate of species X. Values for CFD
X were derived by ratioing the total 

amount of species X emitted by the total FRP released for data during the time when MCE exceeded a threshold that 

produced the highest R2 for a linear fit (e.g., MCE > 0.975 for pine). For the smoldering emission coefficients (CSD
X) only 

data when AKBD < 1.5 µWcm-2sr-1nm-1 were used since this confirmed the absence of flaming combustion. Examples are 360 

shown in Fig. 5, with the derived emissions coefficients for each fuel shown in Table 2. 

This model requires distinguishing the relative contribution of each combustion phase to the total FRP recorded at any 

particular time. By assuming that FRPFD is directly proportional to AKBD (i.e. FRPFD = mk AKBD, where mk is a constant) 

Eq. 13 becomes: 

 
(

𝑑𝑀𝑋

𝑑𝑡
)

𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑

=  𝐶𝐹𝐷
𝑋 (𝑚𝑘

⬚ 𝐴𝐾𝐵𝐷) + 𝐶𝑆𝐷
𝑋 (𝐹𝑅𝑃 − 𝑚𝑘

⬚ 𝐴𝐾𝐵𝐷) (14) 

where AKBD > 1.5 µWcm-2sr-1nm-1 to exclude noise. mk values were determined by solving Eq. 14 with the measured 365 

AKBD, FRP and emission rates of the training fires using a least-squares approach. Mean and standard errors for the three 

fuels were: 4.99±0.04 W(µWcm-2sr-1nm-1)-1 (pine), 5.90±0.32 W(µWcm-2sr-1nm-1)-1 (oak) and 3.25±0.79 W(µWcm-2sr-1nm-

1)-1 (crop residue). Although these standard errors do not overlap, the values of mk are rather close to one another, and this 

was unexpected given that different fuels are likely to contain different concentrations of potassium. However, use of a 
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single fuel-independent mk is very useful as it means any future application of the method would not need to know the fuel 370 

type that is burning. Therefore, we selected the mean mk, along with its propagated uncertainty, of 4.71±0.28 W(µWcm-2sr-

1nm-1)-1 for use with all fuels to in the performance assessment stage, which was based on the nine test fires. Since this model 

relies on quantifying the strength of the potassium emission signal, we refer to it herein as the FRP and AKBD Magnitude 

(FAM) method or Model 2. 

4.4.3 Model 3: FRP and AKBD identification (FAI) 375 

As with the FAM model, this third model also considers the K-emission and FRP of the fire, but only uses the K-line 

presence or absence, rather than its magnitude. The rational for this is that NIR wavelength radiation maybe significantly 

scattered by smoke in thick wildfire plumes, perhaps altering the measured AKBD magnitude.  The model therefore does not 

attempt to separate FRPFD and FRPSD, but instead multiplies the total FRP by different emission coefficients depending on 

whether or not a K-line is detected: 380 

 (
𝑑𝑀𝑋

𝑑𝑡
)

𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑
=   𝐶𝐹𝐼

𝑋 𝐹𝑅𝑃, when AKBD ≥ 1.5 µWcm-2sr-1nm-1 

                             =   𝐶𝑆𝐷
𝑋 𝐹𝑅𝑃, when AKBD < 1.5 µWcm-2sr-1nm-1 

(15) 

(16) 

where CSD
X is the same smoldering-dominated FRP-emission rate gradient from the FAM method in Eq. 13 for when no 

flaming is identified. Then, for when some flaming combustion is detected, FRP is instead multiplied by a ‘flaming-

identified’ ratio, CFI
X. This was calculated by dividing the total emission of X by the total FRP when AKBD > 1.5 µWcm -2sr-

1nm-1, i.e. during the flaming periods of the training fires. Examples for the three trace gases are shown in Fig. 5. The 

average across all fires for every fuel type tested are presented in Table 2. 385 

4.5 Emission model evaluation and intercomparison 

The performance of the three different remote sensing-based models in estimating trace gas emission rates were evaluated, 

with results for one of the pine forest litter fires shown in Fig. 6.  Figure 6a shows the FRP time series, and Fig. 6b the 

AKBD time series. Using combinations of these data, the conventional, fire-average Model 1 underestimates CO2 production 

compared to reality during the early stages of a fire when flaming activity dominates, and then overestimates it during the 390 

subsequent smoldering stage. This can be seen in Fig. 6c, for example, and is a consequence of the relationship found 
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between FRP and CO2 emission rate described in Sect. 4.3 and Fig. 5a. Likewise, the results for CO and CH4 production act 

in the opposite direction to those of CO2, these being generally overestimated during the flaming-dominated stage and 

underestimated during the smoldering stage (see Supplementary Materials). 

In addition to the total measured FRP, Fig. 6a also presents the estimated contribution of flaming and smoldering combustion 395 

to the FRP signal – based on the FAM (Model 2) approach. The FRP is initially totally dominated by flaming combustion, 

but variable amounts of smoldering combustion then commence and eventually become dominant. This pattern appears 

much more realistic than the flaming and smoldering contributions to FRP calculated using the spectral-fitting approach 

(Sect. 4.2), which significantly underestimates flaming phase contributions to overall FRP.  Model 2 also produces an 

estimated trace gas emission rate time series that is in far better agreement with the trace gas measures than are those from 400 

the fire-average Model 1. The comparison in Fig. 6d indicates that RMSE for the FAM model is less than half that of the 

fire-average approach, and the average RMSE reduction is reported in Table 3. For CO2 these reductions were very 

significant; 58±4% (pine); 46±4% (oak) and 35±13% (crop residue). For CO and CH4 they are less significant, and the FAM 

(Model 2) approach showed little ability to improve upon the ability to estimate CO emission rates of the oak fires compared 

to Model 1 (-1.2±14.4 %). While the FAM approach produced a smaller instantaneous error for estimating CO than the fire -405 

average approach for two of the three test fires, for the third the estimate was much poorer (see Fig. A6), which affected the 

average performance. However, there was some improvement for the other two fuel types, and in general Model 2 improves 

CO and CH4 emission rate estimation compared to Model 1 - but to a far lesser extent than for CO2. However, for MCE the 

improvements provided by Model 2 over Model 1 are very significant, even for the oak fires. The reduction in RMSE 

compared to the fire-average approach ranges from 40±7% (soy) to 54±6% (pine). 410 

Like the FAM approach, the FAI method (Model 3) also uses AKBD measures - but now just in a binary ‘on/off’ fashion, as 

detailed in Sect. 4.4.3. The approach proves significantly more accurate in terms of trace gas emission rate estimation than 

does the ‘fire-average’ approach (Model 1) but does not perform as well as the FAM approach. For example, the reduction in 

RMSE for instantaneous MCE estimations is lower, ranging from 17±6% (soy) to 37±12% (pine). 

Overall, our results from these combustion chamber burns indicate that FRP-based estimates of trace gas release rates can be 415 

greatly improved via the addition of K-line measurements. We also tested modified versions of the Model 2 (FAM) and 3 
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(FAI) approaches that estimated fuel combustion rate prior to trace gas emissions, but the performance was almost identical 

to that without this additional step (see Appendix B).  This work indicates that the relationship between FRP and combustion 

rate differs significantly between smoldering and flaming combustion.  

 420 

Figure 6. FRP, AKBD and trace gas emission rate time series for an exemplar pine forest litter ‘test’ fire (Fire 3). (a) 

FRP (W) calculated from the PI400 thermal imagery, along with the estimated flaming and smoldering components 
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derived from this and the complementary AKBD measures; (b) AKBD (µWcm-2sr-1nm-1) derived from spectra 

recorded by the OCEAN-HDX-XR spectrometer; trace gas emission rate of CO2 (gs-1) compared to that estimated 

with (c) the fire-average approach (Model 1); (d) the FAM approach (Model 2); (e) the FAI approach (Model 3); and 425 

(f) measured and modelled MCE. The end of the flaming period as determined by the RGB video camera record is 

denoted by the vertical dotted line. 

 

Table 3: Mean RMSE between the measured and three modelled emission rates and MCE for each fuel type. Also 

includes the mean difference in RMSE for the FAM (Model 2) and FAI (Model 3) approaches compared to the fire-430 

average (Model 1) method (%). 

  Approach Used to Estimate Emissions 

Fuel Trace Gas 

Species and 

MCE 

Model 1: 

fire-average 

Model 2: FAM Model 3: FAI 

Mean 

RMSE 

Mean 

RMSE 

Mean 

difference 

with fire-

average (%) 

Mean 

RMSE 

Mean 

difference 

with fire-

average (%) 

Pine 

forest 

litter 

CO2 (gs-1) 0.18±0.02 0.10±0.02 -46±7 0.13±0.02 -27±3 

CO (mgs-1) 3.9±0.3 3.5±0.5 -12±6 3.7±0.6 -6.1±9.2 

CH4 (mgs-1) 0.49±0.04 0.37±0.04 -26±2 0.44±0.02 -9.6±5.6 

MCE 0.048±0.003 0.022±0.002 -54±6 0.029±0.004 -37±12 

Oak 

kindling 

CO2 (gs-1) 0.45±0.14 0.24±0.08 -46±4 0.40±0.13 -14±3 

CO (mgs-1) 6.1±0.5 6.1±1.1 -1.2±14.4 5.7±0.9 -8.8±7.5 

CH4 (mgs-1) 0.43±0.04 0.41±0.03 -4.9±1.3 0.43±0.06 -2.6±4.6 
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MCE 0.056±0.003 0.032±0.001 -43±3 0.035±0.005 -37±7 

Crop 

residue 

CO2 (gs-1) 0.32±0.03 0.19±0.03 -35±13 0.28±0.02 -10±1 

CO (mgs-1) 8.0±1.3 5.7±0.3 -23±12 7.0±0.6 -7.7±8.5 

MCE 0.052±0.007 0.030±0.001 -40±7 0.042±0.002 -17±6 

Average 

across 

all fuels 

CO2   -42±15  -17±4 

CO   -12±20  -7.5±14.6 

CH4   -15±5  -6.1±7.2 

MCE   -46±10  -30±15 

 

5. Applications to airborne data 

5.1 Methodology 

5.1.1 Airborne data 435 

The results in Sect. 4 show the benefits of combining remotely sensed FRP and AKBD measures when estimating trace gas 

emission rates of small-scale laboratory fires. However, ultimately, we aim at applications based on satellite EO measures 

and real landscape burning. Whilst satellite-derived K-line measurements from space have only been demonstrated once 

(Amici et al., 2012), the increasing launch of spaceborne imaging spectrometers provides the possibility for more routine 

observations with the necessary spatial/spectral resolution. Whilst we wait for those data, we here demonstrated the approach 440 

using airborne EO of real wildfires burning in the boreal forests of northern Ontario, Canada. The airborne remote data used 

comes from the Specim FENIX VIS-to-SWIR hyperspectral imager, covering the same spectral range with the same FWHM 

spectral resolution in the K-line region as the HR1024i, meaning we could apply essentially the same approaches and models 

developed in our laboratory study (Sect. 3.3.2 and 3.3.3). 
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5.1.2 FRP and K-line retrievals 445 

Our FRP retrieval process required slight modification for the airborne EO application, in order to account for the reflected  

solar radiation present in the daytime imagery. For this, areas of water were masked from the scene and the active fire pixel s 

detected using the HFDI index (Dennison and Roberts, 2009). All ‘non-fire’ pixels were then categorized into ‘burned’ and 

‘unburned’ using the classification process of Waigl et al. (2019). Mean ‘burned’ and ‘unburned’ spectra were calculated 

using 200 pixels of each class, and these incorporated into the spectral-fitting model (Eq. 6) applied to each active fire pixel: 450 

 

Lλ, measured = 𝑝𝑢𝐿λ, 𝑢 + 𝑝𝑏𝐿λ, 𝑏 + ∑  ε τ 𝑝𝑖  Bλ(𝑇𝑖)

n=3

i

  (17) 

where Lλ, u and Lλ, b are the mean radiance calculated in the neighboring unburned and burned pixels at wavelength λ and pu 

and pb are their area fractions of the pixel. All fractional areas sum to 1. The final component is the same as that used 

previously. 

For inclusion in Eq. 17, the MODTRAN atmospheric radiative transfer model (Berk et al., 1999) was used to estimate 

atmospheric transmittance (τ ) from the surface to the aircraft altitude of 2500 m, assuming a 1976 US standard atmosphere, 455 

a 23 km visibility and an atmospheric CO2 concentration of 420 ppm. As with the laboratory data, only wavelengths above 

1200 nm were included in the spectral fitting approach and application of Eq. 16 to each active fire pixel, in order to reduce 

the influence of atmospheric scattering by smoke. Per-pixel FRP was again calculated from the derived pi and Ti values using 

the Stefan-Boltzmann law (Eq. 7). Figure 7c shows measured and modelled spectra of a single example active fire pixel, and 

as with the HR1024i data (Fig. 2a) the two agree extremely well. 460 

As this FRP retrieval method relies mostly on the second, smoldering temperature component (LSD), it is likely to still be 

valid despite the unknown influence of reflected solar radiation at the smaller wavelengths on LFD. Although further 

validation efforts are required to confirm this. On the other hand, relying on a non-zero value for the fractional area of LFD to 

indicate flaming combustion is no longer valid. The retrieved pFD for many pixels was often zero, whilst the magnitude of the 

AKBD parameter indicated flaming combustion was present. The opposite was also true: many pixels with a significant pFD 465 

had a very low or zero AKBD. Therefore, AKBD was more trusted than pFD for indicating the presence of flaming 

combustion since the measurement was not influenced by reflected sunlight. 
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Figure 7. Daytime airborne VIS-SWIR data taken on 11th August 2018 using a Specim FENIX hyperspectral imager 

flown over a boreal forest wildfire burning in Northwestern Ontario, Canada: (a) Map showing fire location 470 

(51.293° N, 94.805° W ); (b) Infrared color composite image comprised of data collected in bands centered at 2.2, 1.6 

and 1.1 microns (RGB) with spatial resolution of 4m, the scene is 1020 m x 2160 m; (c) Exemplar spectra (VIS to 
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SWIR) of an active fire pixel (location shown in the infrared color composite (b)), with the best matched modelled 

spectra derived using the spectral-fitting approach (Eq. 16), along with the individual components that sum to that 

spectra: LFD (fire, flaming-dominated), LSD (fire, smoldering-dominated), Lb (background/cooling fuel), and the 475 

reflected sunlight components LU (unburned) and LB (burned). 

The emission coefficients for the pine forest litter fuel, shown in Table 2, were used to convert the derived per -pixel FRP 

values to trace gas emission rates. For the FAM approach, the proportionality constant (mk) linking AKBD and flaming FRP 

(Eq. 13) was taken from the mean of 0.0201 ± 0.0012 W(µWcm-2sr-1nm-1)-1 determined for the three different fuels, with this 

value including an adjustment for differences between the pixel size and FWHM of the FENIX and HR1024i instruments. 480 

The same value was used in all results presented in Section 4 (and the Appendix).  

5.2 Airborne data results 

Figure 8a shows a true color composite of the wildfire, complementing the infrared color composite shown in Fig. 7. Thick 

smoke blows away from the fire front, masking much of the land and supporting the decision to base FRP retrieval on 

wavelengths longer than 1200 nm less affected by Mie scattering (Sect. 5.1.2). By contrast, the longer NIR and SWIR 485 

wavelengths are far less affected, and the land and fire can be viewed clearly through the smoke (Fig. 8a). Figure 7b maps 

the FRP of each active fire pixel based on the spectral fitting method (see the example at a single pixel shown in Fig. 8b). 

Non-fire pixels are here colored depending on their proportion burned – pB and pU (Eq. 17). Overall, the imagery shows five 

fire front heads having high-FRP and likely flaming activity advancing against the wind, with lower FRP areas in the 

(presumed largely smoldering) zone behind. 490 

Figure 8c maps AKBD, used to class fire pixels as flaming or smoldering. The AKBD map indicates that flaming activity is 

indeed present in the high FRP fire front pixels, and only a few lower FRP spots of flaming activity exist in the largely 

smoldering zone. Applying the FAM approach, Fig. 8e, 8f and 8g show estimated CO2, CO and CH4 emission rates for the 

fire, and Fig. 8h the MCE. Higher MCE smoke is emanating from the flaming fronts, and lower MCE from the smoldering 

zone apart from the few spots still flaming. 495 
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Figure 8. 4 m spatial resolution airborne imagery and derived fire and smoke characteristics of the wildfire shown in 

Fig. 7. This scene is 700 m x 700 m wide.  (a) RGB color composite to compare to the SWIR color composite shown in 

Fig. 7b; (b) FRP derived using spectral-fitting approach (Eq. 16), with non-fire pixels colored depending on whether 

they are classed as burned (brown) and unburned (green) via the method discussed in Sect. 5.1.2 , masked out water 500 
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pixels of a lake in the bottom right of the scene are shown in blue; (c) AKBD derived using Eq. 5 (Sect. 2); (d) 

Combustion phase of each active fire pixel derived from an AKBD threshold of 0.57 µWcm -2sr-1nm-1; emission rate 

derived using the FAM approach of (e) CO2; (f) CO and (g) CH4; along with (h) the MCE estimated using the same 

approach.  

The total emission rate of CO2 for the entire fire is estimated using the FRP and AKBD data by the FAM (Model 2) as 505 

20.2±0.1 kgs-1, with a relatively similar 22.9±0.2 kgs-1 estimated from Model 2 (FAI). Each is significantly lower than the 

33.5±0.2 kgs-1 estimated using the Model 1 (FRP only) approach with the ‘fire-averaged’ emissions coefficient, essentially 

because this approach overestimates CO2 emission rate when smoldering combustion is dominant (see Fig. 5a and 6c). The 

degree of overestimation could have been worse because only 1.4% of the detected active fire pixels in the airborne image of 

Fig. 8 contain flaming activity. 510 

Since the majority of the fuel consumption is coming from smoldering combustion, the FAM and FAI approaches estimate 

higher emission rates for CO and CH4 than does the fire-average approach. For CO the models estimate the following: 

1270±10 gs-1 (fire-average), 1720±10 gs-1 (FAM) and 1630±10 gs-1 (FAI), and for CH4: 77.2±0.6 gs-1 (fire-average), 107±1 

gs-1 (FAM), and 100±1 gs-1 (FAI). Therefore, whilst flaming combustion contributes around 2.4% of total CO2 production, it 

contributes only around 0.3% and 0.2% of CO and CH4 production, respectively. Flaming combustion is therefore 515 

responsible for around 2% of the fuel consumption rate.  

Since the wildfire smoke contained copious amounts of particulates (Fig. 8a), altered (and even missed) AKBD 

measurements may have resulted from Mie scattering. Therefore, this may make the FAI approach more appropriate than the 

FAM approach. Overall, while the trace gas emission rate estimates from the FAM and FAI approaches are relatively similar 

(535±6 and 592±9 mols-1 of carbon), they are very different to those of the fire-average approach (811±10 mols-1 of carbon). 520 

Their application accounts for the fact that the fire is mostly smoldering – information that would otherwise be missed. 

6. Summary and conclusions 

Combustion phase and the proportion of flaming and smoldering activity occurring in landscape fires varies with fuel type 

and fuel characteristics. This, in turn, influences the rate of fuel consumption and smoke emission, along with the smoke 
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emissions chemical composition via its effect on the emissions factors (EFs) of the individual emitted chemical species. 525 

There is increasing interest in tailoring the EFs applied within fire emissions estimates, for example to cope with the 

presumed seasonal variations in emissions factors (Vernooij et al., 2023, 2022). Earth observation has long been suggested 

as a way to do this, by remotely mapping combustion phase to improve global smoke emissions estimation. We have 

provided the first attempt at evaluating whether such methods actually lead to the desired improvements, using laboratory 

burns of three fuel types to test two approaches of determining combustion phase that (i) use remotely sensed retrievals of 530 

sub-pixel fire temperature, and (ii) utilization of potassium emission line (K-line) signatures that only occur during flaming 

combustion.  

Whilst the first approach produced fire temperature estimates that were able to provide accurate FRP values, the individual 

fit parameters were not easily related to the smoke emissions characteristics.  On the other hand, measurements of the K-line 

emission strength were related to the emission rates of CO2, CO and CH4, leading us to develop two empirical models that 535 

used (Model 2) the magnitude of the K-line emission strength, and (Model 3) only its identification and combined these with 

the FRP data to better estimate fire smoke emissions rate and smoke chemical composition. 

When compared to the standard FRP-only approach (Model 1) used to represent classical smoke emission estimate methods, 

the combination of FRP and K-line data significantly increased the accuracy of the resulting emission rate estimates of the 

trace gases examined. It also significantly improved estimation of the modified combustion efficiency (MCE) of the fires 540 

smoke plumes, which directly relates to the contribution of flaming and smoldering combustion to the smoke. We did not 

find the ability to remotely determine sub-pixel fire effective temperature to provide similar improvements. 

The FRP and K-line magnitude approach (Model 2) reduced the RMSE of the MCE estimates for the emitted smoke by 

between 54±6% and 40±7%, depending on fuel type, when compared to the FRP only ‘standard’ approach (Model 1). The 

equivalent RMSE reductions seen for Model 3 were lower, but still significant (-37±12%, -37±7%, and -17±6%, 545 

respectively). These results provide evidence that complementary FRP and K-line data could be used widely to improve fire 

emissions estimation, not only for the gases tested here but also for many others since MCE is well correlated to the EF of 

many species (Bertschi et al., 2003; McMeeking et al., 2009; Urbanski, 2013; Yokelson et al., 1996). Our findings point to 

the potential for using this method with future spaceborne high spectral resolution data that can map the K-line from space at 
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the same time as thermal remote sensing is used to retrieve the fires FRP. According to our findings, such complementary 550 

data shows for the first time a proven ability to determine sub-pixel fire combustion phase which can provide an ability to 

significantly improve fire emission estimation. We then demonstrate the value of the most effective approach on airborne 

remote sensing data of real wildfires, pointing the way to its ultimate application to potentially improving global fire 

emissions estimation through its application to spaceborne observations. 
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Appendices 745 

Appendix A – spectral -fitting model 

Reducing the modelled spectra to a single thermal component for the fire resulted in far poorer fits than with two 

components, particularly at shorter wavelengths, and increasing the number of thermal components delivered results 

having negligible fractional area and thus no detectable improvement in the modelled spectra.  Thus, two fire thermal 

components were seen as the optimum choice – and allowed a high-quality fit to the measured spectra and a strong ability 750 

to estimate total FRP, but the retrieved fire temperatures could not be used to reliably estimate extent of flaming and 

smoldering activity. 

Appendix B – alternative approaches going via combustion rate 

As detailed in Section 1, most conventional remote sensing approaches to estimating fire emissions rely on first estimating 

the fuel mass burned. Therefore, FAM and FAD approaches involving this step were also tested as an alternative to the 755 

more direct approaches evaluated in Section 4.4. Combustion rate (gs-1) was determined by first estimating total carbon 

flux (Figure 5d) in moles and multiplying this by 12 gmol-1, the resulting figure agreeing well with the mass loss obtained 

from the scales data. Both emission factors and relationships between FRP and combustion rate were calculated for the 

four combustion types: fire-average, flaming-dominated, flaming-identified and smouldering. Models analogous to FAM 

and FAD were then tested. These estimated combustion rate, which was then multiplied by emission factors to give 760 



43 

 

emission rates. These were then compared to the measured rates. The results were almost identical to those presented in 

Section 4.5 as the methods are also identical, except for the step of converting to combustion rate. This method did, 

however, indicate that the relationship between measured FRP and rate of combustion was different between the two 

combustion phases. 
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