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Abstract 15 

The ocean-surface downward longwave radiation (Rl) is one of the most fundamental 16 

components of the radiative energy balance, and it has a remarkable influence on air–sea 17 

interactions. Because of various shortcomings and limits, a lot of empirical models were 18 

established for ocean-surface Rl estimation for practical applications. In this paper, based on 19 

comprehensive measurements collected from 65 moored buoys distributed across global seas 20 

from 1988 to 2019, a new model for estimating the all-sky ocean-surface Rl at both hourly and 21 

daily scales was built. The ocean-surface Rl was formulated as a nonlinear function of the 22 

screen-level air temperature, relative humidity, cloud fraction, total column cloud liquid, and ice 23 

water. A comprehensive evaluation of this new model relative to eight existing models was 24 

conducted under clear-sky and all-sky conditions at daytime/nighttime hourly and daily scales. 25 

The validation results showed that the accuracy of the newly constructed model is superior to 26 

other models, yielding overall RMSE values of 13.44 and 8.34 W/m2 under clear-sky conditions, 27 

and 15.64 and 10.27 W/m2 under all-sky conditions, at hourly and daily scales, respectively. Our 28 

analysis indicates that the effects of the total column cloud liquid and ice water on the ocean-29 

surface Rl also need to be considered besides cloud cover. Overall, the newly developed model 30 

has strong potential to be widely used. 31 

Keywords:Ocean surface, longwave radiation, empirical model, buoy 32 

1 Introduction 33 

The downward longwave radiation (Rl) at the ocean surface is the thermal infrared (4–34 

100 μm) radiative flux emitted by the entire atmospheric column over the ocean surface (Yu et 35 

al., 2018).The ocean-surface Rl is among the most important components of the heat flux across 36 

the ocean–atmosphere interface, which, in turn, shapes the climate state of both the atmosphere 37 

and ocean (Caniaux, 2005; Fasullo et al., 2009; Fung et al., 1984). Therefore, an accurate 38 

estimate of the ocean-surface Rl is crucial for studies of air–sea interactions and the climate and 39 

oceanic systems.  40 

Although the ocean-surface Rl is measured at most buoy sites, the available ocean-surface 41 

Rl measurements can not meet the needs of various applications because of the small number of 42 

buoys currently employed (especially moored buoys) and their sparse distribution across global 43 

oceans. Another way to get the Rl at the ocean surface is by using satellite-based or model 44 

reanalysis products. The ocean-surface Rl from satellite-derived products, such as the 45 

International Satellite Cloud Climatology Project (ISCCP) (Rossow & Zhang, 1995; Young et al., 46 

2018) and Clouds and the Earth’s Radiant Energy System Synoptic Radiative Fluxes and Clouds 47 

(CERES/SYN1deg) (Doelling et al., 2013; Rutan et al., 2015) is usually generated using these 48 

satellite data and a radiative transfer model, which simulates the radiative transfer interactions of 49 

light absorption, scattering, and emission through the atmosphere with the input of given 50 

atmospheric parameters. However, radiative transfer models are not widely used in practice 51 

because of their complexity and the difficulties associated with collecting all essential inputs. 52 

The ocean-surface Rl provided in model reanalysis products, such as the fifth generation of the 53 

European Centre for Medium-Range Weather Forecasts atmospheric reanalysis of the global 54 

climate (ERA5) (Hersbach et al., 2020) and the Modern-Era Retrospective analysis for Research 55 

and Applications, Version 2 (MERRA2) (Gelaro et al., 2017), is produced by assimilating 56 

various observations into an atmospheric model to get the optimal estimates of the state of the 57 

https://isccp.giss.nasa.gov/describe/overview.html
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atmosphere and the surface (Gelaro et al., 2017). Previous studies indicated that Rl estimates 58 

from satellite-based products are generally in better agreement with buoy measurements than 59 

those obtained from reanalysis products (Pinker et al., 2014; Pinker et al., 2018; Thandlam & 60 

Rahaman, 2019). However, applications of the ocean-surface Rl from these two kinds of products 61 

are limited due to their coarse spatial resolutions (most of them are coarser than 1º), limited 62 

periods (especially satellite-based products), and discrepancies in accuracy and consistency 63 

(Cronin et al., 2019). Hence, many parameterization and empirical models for estimating ocean-64 

surface Rl that can easily be implemented in practical use have been established during the past 65 

few decades (Bignami et al., 1995; Josey, 2003; Zapadka et al., 2001). Most of the commonly 66 

used Rl estimation models were established using the relationship between Rl and the relevant 67 

meteorological variables (i.e., air temperature, humidity, column integrated water vapor (IWV), 68 

and cloud parameters) or oceanic parameters (i.e., bulk sea surface temperature), which are 69 

usually obtained from in situ measurements or model simulations (Li & Coimbra, 2019; Li et al., 70 

2017; Paul, 2021). It is known that most Rl estimation models were originally developed for the 71 

land surface and were applied to the ocean surface directly without any alterations by assuming 72 

the atmospheric conditions are nearly the same over ocean and land surfaces (Bignami et al., 73 

1995; Clark et al., 1974; Frouin et al., 1988; Josey, 2003). However, this assumption increases 74 

the uncertainty in Rl estimates because of the significantly different water vapor profiles over 75 

ocean and land surfaces (Bignami et al., 1995). A few models built specifically for Rl estimation 76 

at the ocean surface (Bignami et al., 1995; Josey, 2003; Zapadka et al., 2001) were usually 77 

developed using limited observations collected from buoy sites or cruise ships distributed within 78 

a specific region; hence, the robustness of these models were in doubt when applied globally. For 79 

example, Josey (2003) proposed a model for Rl estimation at mid-to- high latitude seas with a 80 

satisfactory validation accuracy, but this new model performed worse over tropical seas with a 81 

tendency to underestimate Rl by up to 10–15 W/m2. Moreover, most of the existing Rl estimation 82 

models only work under clear-sky conditions, which are especially rare over ocean surfaces. 83 

Furthermore, most of these models only derive Rl at instantaneous scales, yet the Rl at the daily 84 

scale is more preferred across a range of applications. Therefore, a new, easily implemented 85 

model that can derive accurate and robust Rl estimates at the global ocean surface under all-sky 86 

conditions at various temporal scales (e.g., instantaneous and daily) is required. More details 87 

about the existing Rl estimation models are given in Section 2. 88 

In addition, according to W Wang and Liang (2009b), the uncertainty of the ocean-surface 89 

Rl estimation should be less than 10 W/m2 for climate diagnostic studies. However, the 90 

performances of the most commonly used Rl estimation models at the global ocean surface were 91 

not thoroughly evaluated in previous studies because of the few available in situ measurements. 92 

Fortunately, being aware of the significance of the energy budget in air–sea interactions 93 

(Centurioni et al., 2019), more and more platforms for radiative measuring have been built across 94 

global ocean surfaces during the past decades, so relatively comprehensive ocean-surface Rl 95 

measurements can be collected today, which provide a good opportunity for modeling and 96 

comprehensive evaluations. 97 

Overall, the main goal of this research is to establish a new empirical model for 98 

calculating the all-sky ocean-surface Rl at instantaneous and daily scales based on globally 99 

distributed moored buoy measurements and other ancillary information. A comprehensive 100 

evaluation is conducted on the newly developed model relative to eight commonly used models 101 

for ocean-surface Rl estimation under clear- and all-sky conditions at hourly and daily scales. 102 

The organization of this paper is as follows. A review of the eight commonly used Rl estimation 103 
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models is presented in Section 2. Section 3 introduces the data sets used in this research and the 104 

methods, including the new model development and model evaluation. Section 4 shows the 105 

results of the model validation, comparison, and analysis. The key conclusions and discussions 106 

are provided in Section 5. 107 

2 Review of Previous Models  108 

Many models were proposed for Rl calculation under various sky conditions at different 109 

temporal scales in previous studies. In this study, eight widely used models were selected for 110 

evaluation and Table 1 shows their basic information. According to the sky conditions under 111 

which these models could be used, the eight Rl estimation models were divided into two classes: 112 

Rl models under clear-sky conditions and under all-sky conditions, respectively. Details of the 113 

eight models are provided one by one in the following section. Note that the downward direction 114 

is defined as positive in this study. 115 

Table 1 116 

Eight Existing Models for Ocean-surface Rl Estimation, with Variables Explained in Table 2. 117 

Sky 

Condition 

Model Abbr Designed 

temporal 

scale 

Reference 

 

 

 

 

 

Clear-sky 

Rl=𝑎σTa
4(1+𝑏√e) Mod1 Monthly Brunt 

(1932) 

 

Rl=σTa
4{1-𝑎exp(-𝑏(273-Ta)

2
)} 

Mod2 5–15 minute Idso and 

Jackson 

(1969) 

Rl=aσTa
4(e/Ta)

1/7
 Mod3 Instantaneous Brutsaert 

(1975) 

Rl=aσTa
4[1-exp(-eTa/2016)] Mod4 Daily Satterlund 

(1979) 

Rl=σTa
4[1-(1+ε)exp{-(1.2+3ε)1/2}] 

ε=46.5(
e

Ta

) 

Mod5 Instantaneous Prata 

(1996) 

 

 

 

All-sky 

Rl=
εσTs

4-εσTs
4(a+b√e)(1-λC

2)+4εσTs
3(Ts-Ta)

1-αl

 
Mod6 Daily Clark et al. 

(1974) 

Rl=σTa
4(a+be)(1+dC

2
) Mod7 Hourly Bignami et 

al. (1995) 

Rl=σ{Ta+aC
2
+bC-d+g(D+f)}

4
 Mod8 Hourly Josey 

(2003) 

2.1 Under clear-sky condition 118 

Among the eight models, there are five Rl estimation models that could only be used 119 

under clear-sky conditions.  120 

Brunt (1932) developed the first Rl estimation model (named Mod1) for land surfaces, 121 

which relates the monthly mean Rl to the screen-level water vapor and air temperature, as 122 

Equation (1) shows: 123 

 Rl=𝑎1σTa
4(1+𝑏1√e) (1) 124 

 where a1 and b1 are empirical coefficients, Ta is the monthly mean screen-level air 125 

temperature (K), e is the monthly mean screen-level water vapor pressure (mbar), and σ is the 126 
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Stefan–Boltzmann constant, defined as 5.67×10
-8

W/(m2·K4). In the study of Brunt (1932), the 127 

two coefficients a1 and b1 were suggested as 0.52 and 0.125 based on observations collected from 128 

Benson, South Oxfordshire, England. The validation results of Mod1 showed a correlation 129 

coefficient as high as 0.97 based on the collected samples. However, Swinbank (1963) pointed 130 

out that the validation results of Mod1 for other regions where variations in the humidity and Ta 131 

were different from those in Benson were worse. Despite these limitations, as the first empirical 132 

Rl estimation model in a simple format, Mod1 has been widely used to construct the coupling 133 

between hydrological and atmospheric models (Habets et al., 1999; Lohmann et al., 1998). 134 

Different from Mod1, the model developed by Idso and Jackson (1969) (named Mod2) 135 

was based on the theoretical consideration that the effective emittance of an atmosphere is solely 136 

temperature-dependent; hence, the screen-level Ta is the only input of Mod2 for calculating Rl: 137 

 Rl=σTa
4{1-𝑎2exp(-𝑏2(273-Ta)

2
)} (2) 138 

 where a2 and b2 are empirical coefficients, which were defined as 0.261 and 7.770×10-4, 139 

respectively, by Idso and Jackson (1969) based on experimental data at four sites located in 140 

Arizona, Alaska, Australia, and the Indian Ocean, obtained at intervals of 5 to 15 minutes. Idso 141 

and Jackson (1969) thought that Mod2 might be efficient at all latitudes for different seasons, as 142 

it has been developed by using observations from diverse locations. Since publication, Mod2 has 143 

been employed in relevant researches like evaporation estimation (Cleugh et al., 2007; Vertessy 144 

et al., 1993) and ocean-ice modeling (Saucier et al., 2003). 145 

Afterwards, Brutsaert (1975) proposed a simple model for computing Rl by directly 146 

solving the Schwarzschild’s transfer equation (Schwarzschild, 1914) under clear skies and 147 

standard atmospheric conditions (i.e., the U.S. 1962 standard atmosphere). This model is denoted 148 

as Mod3, and is described as follows: 149 

 Rl=𝑎3σTa
4(e/Ta)

1/7
 (3) 150 

where a3 is defined as a constant equal to 1.24, as determined during the Schwarzschild’s 151 

transfer equation solving process. Explicit physical theory is reflected in Mod3. The term 152 

(e/Ta)
1/7, regarded as the atmospheric emissivity, tends to zero when the water vapor content is 153 

very little. However, Prata (1996) indicated that the atmospheric emissivity tends to a certain 154 

constant value even without water vapor, such as values from 0.17 to 0.19 when only CO2 is 155 

present (Staley & Jurica, 1972). The estimates from Mod3 are usually used as the necessary 156 

inputs of hydrological models (Pauwels et al., 2007; Rigon et al., 2006) and climate models 157 

(Mills, 1997). 158 

Aase and Idso (1978) found that Mod2 and Mod3 performed poor when Ta was below 159 

freezing. To address this issue, Satterlund (1979) proposed a model (named Mod4) to compute Rl 160 

by reformatting Ta and e, as follows: 161 

 Rl=𝑎4σTa
4[1-exp(-eTa/2016)] (4) 162 

where 𝑎4 is an empirical coefficient and defined as 1.08 by Satterlund (1979) based on 163 

collected daily Rl measurements at one site in Sidney, Montana, USA. After validation and 164 

comparison, Satterlund (1979) concluded that Mod4 outperformed Mod2 and Mod3 under 165 

extreme conditions in terms of temperature and humidity and performed comparably with the 166 

two models for other cases. As such, the Rl estimates from Mod4 have been used in studies such 167 

as snow pack evolution (Douville et al., 1995) and hydrological models (Schlosser et al., 1997). 168 

https://en.wikipedia.org/wiki/South_Oxfordshire
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However, because the model does not contain a constant term, the application of Mod4 should be 169 

done with caution if the surface water vapor pressure is very close to zero. 170 

With the development of radiation measuring instruments and technology, several new Rl 171 

estimation models have been proposed, such as the model proposed by Prata (1996) (named 172 

Mod5), as follows: 173 

 Rl=σTa
4 [1-(1+46.5(

e

Ta
))exp {- (𝑎5+46.5𝑏5(

e

Ta
))

1/2

}] (5) 174 

where a5 and b5 are empirical coefficients, defined as 1.2 and 3.0 in the study of Prata 175 

(1996) and Robinson (1947; 1950). As with Mod1–Mod4, Mod5 is also dependent on Ta and e 176 

but contains a majorly revised right term (in the square brackets), which is regarded as the 177 

emissivity. After extensive validation and comparison, Prata (1996) claimed Mod5 outperformed 178 

or performed similar to other Rl estimation models, including Mod1–Mod4, in areas within the 179 

polar region, mid-latitudes, and tropical regions. Hence, Mod5 has been applied widely, from 180 

studies of snowmelt modeling (Jost et al., 2009) to urban energy budget (Nice et al., 2018; 181 

Oleson et al., 2008). 182 

To sum up, all five Rl estimation models (Mod1–Mod5) that only work under clear-sky 183 

conditions take Ta and/or e as inputs. Such an approach is in agreement with the research of 184 

Kjaersgaard et al. (2007) who found that Rl is mainly emanated from the low-level atmosphere 185 

that can be adequately characterized in terms of Ta and humidity under clear-sky conditions 186 

(Diak et al., 2000; Ellingson, 1995; Prata, 1996). Moreover, the five models were all established 187 

by using measurements from different regions at various timescales, and they can be employed at 188 

any timescale (see Table 1) regardless of the temporal resolution of the original measurements 189 

used for modeling. 190 

2.2 Under all-sky condition 191 

 Three Rl estimation models that can work under all-sky conditions were evaluated in this 192 

paper. Comparing to the above five models, ancillary information (e.g., clouds) should be taken 193 

into account in addition to Ta and e in the three models, and the three models were developed 194 

specifically for ocean surfaces. 195 

Based on the model developed by Clark et al. (1974) for the all-sky net longwave 196 

radiation at the ocean surface (Rlnet, the difference between the downward and upward longwave 197 

radiation) calculation, Josey (2003) proposed a revised model (named Mod6) to estimate the all-198 

sky ocean-surface Rl by getting rid of the ocean-surface upward longwave radiation as:  199 

 Rl=
ε𝑠σSST4-ε𝑠σSST4(𝑎6+𝑏6√e)(1-λC2)-4ε𝑠σSST3(SST-Ta)

1-αs
 (6) 200 

where ε𝑠 is the sea surface emissivity, defined as a constant value of 0.98, and SST is the 201 

sea surface temperature (K); hence, the term ε𝑠σSST4 is the upward longwave radiation at the 202 

ocean surface. α𝑠 is the sea surface longwave radiation reflectivity, defined as a constant value of 203 

0.045, C is the cloud cover (0–1; dimensionless), λ is a latitude-dependent coefficient that 204 

represents the cloud amount, and a6 and b6 are empirical coefficients. Based on measurements 205 

(i.e., Rl, Ts, and C) collected from the Chemical and Hydrographic Atlantic Ocean Section 206 

(CHAOS) in the northeast Atlantic in 1998, a6 and b6 were determined as 0.39 and -0.05 (Clark et 207 

al., 1974; Josey, 2003), and λ at a given latitude can be taken from Josey et al. (1997). Josey 208 
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(2003) validated Mod6 and the results showed that Mod6 tended to overestimate the 209 

instantaneous Rl measurements from CHAOS by 11.70 W/m2. The estimates from Mod6 have 210 

been applied in hydrodynamic models (Grayek et al., 2011) and atmospheric boundary layer 211 

models (Deremble et al., 2013). 212 

Based on hourly cruise measurements (i.e., Rl, Ta, and C) collected in the Mediterranean 213 

Sea during the period from 1989 to 1992, Bignami et al. (1995) proposed an empirical model to 214 

calculate the ocean-surface all-sky Rl (named Mod7) as follows: 215 

 Rl=σTa
4(𝑎7+𝑏7e)(1+𝑐7C

2
) (7) 216 

where a7, b7, and c7 are empirical coefficients defined as 0.684, 0.0056, and 0.1762, 217 

respectively. Bignami et al. (1995) presented validated RMSE values for Mod7 which ranged 218 

from ~14 W/m2 at the hourly scale to ~9 W/m2 at the daily scale. Mod7 has been utilized by the 219 

Mediterranean Forecasting System for predictions of currents and biochemical parameters 220 

(Pinardi et al., 2003), coupled ocean–atmosphere climate models (Dubois et al., 2012) as well as 221 

generation of the Atlantic Ocean heat flux climatology (Lindau, 2012). 222 

Also based on the measurements collected from CHAOS, Josey (2003) assessed the 223 

accuracy of Mod7 and found that this model tended to underestimate the all-sky Rl by 12.10 224 

W/m2 at the instantaneous scale. After analyzing the shortcomings of Mod6 and Mod7, Josey 225 

(2003) proposed a new model (named Mod8) for all-sky ocean-surface Rl calculation through a 226 

revision of Ta by using the same samples: 227 

 Rl=σ{Ta+𝑎8C
2
+𝑏8C-𝑐8+𝑑1(D+𝑒1)}

4
 (8) 228 

where a8, b8, c8, d1, and e1 are empirical coefficients determined as 10.77, 2.34, 18.44, 229 

0.84, and 4.01, respectively, D is the dew point depression, and Ta is the temperature (K) (see 230 

Equation (11)). Estimates of Rl obtained with Mod8 agreed to within 2 W/m2 in the mean bias of 231 

10 minute measurements at middle-high latitudes. The estimates from Mod8 have been used as 232 

essential input in simulations of ocean–atmosphere interactions in the Arctic shelf (Cottier et al., 233 

2007). 234 

Overall, it was thought that variations in the all-sky ocean-surface Rl were related to Ta, e, 235 

and cloud information (e.g., cloud cover and cloud amount) in previous studies. However, Fung 236 

et al. (1984) pointed out that other relevant cloud information, such as the cloud base height 237 

(CBH) and cloud optical thickness, also have a significant influence on ocean-surface longwave 238 

radiation. Therefore, more efforts should be made to increase the Rl estimation accuracy under 239 

all-sky conditions. 240 

3 Data and Methodology 241 

In order to develop a new all-sky ocean-surface Rl estimation model, the meteorological 242 

and radiative observations from 65 moored buoys and the cloud parameters from the ERA5 243 

reanalysis product from 1988 to 2019 were applied. Afterwards, the newly developed model and 244 

the eight commonly used models (Mod1–Mod8) were evaluated against the moored Rl 245 

measurements under clear- and all-sky conditions at hourly/daily scales 246 
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3.1 Data and pre-processing 247 

Table 2 lists all the variables employed in this paper and their information. The 248 

instantaneous timescale can be defined as timescales ranging from a 3 minute average to hourly 249 

average (Bignami et al. (1995); K Wang and Liang (2009a); hence, two timescales, hourly and 250 

daily, were considered in this study for model evaluation as in previous studies (Bilbao & de 251 

Miguel, 2007; Kjaersgaard et al., 2007; Sridhar & Elliott, 2002). Note that Mod1 was also used 252 

at the two timescales (Guo et al., 2019) though it was originally established with monthly 253 

samples. More details about the data are given below. 254 

Table 2 255 

Variables: Explanations and Sources 256 

Abbreviation Full name Time scales Unit Source 

RH Relative humidity Daily/hourly % In situ 

e Water vapor Daily/hourly hPa Calculated 

Ta 2-m air temperature Daily/hourly K In situ 

Ts Sea surface temperature Daily/hourly K In situ 

D Dew point depression Daily/hourly K Calculated 

CI Clearness index Daily/hourly 0-1 Calculated 

C Fractional cloud cover Daily/hourly 0-1 Calculated 

clw Total column cloud liquid water Daily/hourly g/m2 ERA5 

ciw Total column cloud ice water Daily/hourly g/m2 ERA5 

Rl Downward longwave 

radiation 

Daily/hourly W/m2 In situ 

R𝑔 Downward shortwave 

radiation 

Daily/hourly W/m2 In situ 

DSRtoa Extraterrestrial solar 

radiation (DSRtoa) 

Daily/hourly W/m2 Modeled 

3.1.1 Measurements from moored buoys 257 

All measurements were collected from 65 moored buoy sites, whose latitudes range from 258 

47°S to 59.5°N, as shown in Figure 1. The majority of moored buoy sites were located in 259 

tropicial seas (23.5°S–23.5°N), and relatively few buoys were in the high-latitude seas of the 260 

Northern Hemisphere (>50°N) and the mid-high latitude seas of the Southern Hemisphere 261 

(>30°S).  262 
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 263 

Figure 1. Spatial distribution of the 65 moored buoys. 264 

The moored buoy sites in this study belong to five well-known observation 265 

network/programs, including the Upper Ocean Processes Group (UOP), Tropical Atmosphere 266 

Ocean/Triangle Trans-Ocean Buoy Network (TAO/TRITON), Pilot Research Moored Array in 267 

the Tropical Atlantic (PIRATA), Research Moored Array for African–Asian–Australian Monsoon 268 

Analysis and Prediction (RAMA), and OceanSITES. Launched by the Woods Hole 269 

Oceanographic Institution (WHOI), UOP mainly focuses on studying the physical processes of 270 

the air-sea interface and the epipelagic, and its buoys are equipped with oceanographic and 271 

meteorological sensors. The UOP measurements accurately quantify annual cycles of wind stress 272 

and net air-sea heat exchange in the Southern Ocean (Schulz et al., 2012). Twenty-two sites form 273 

the UOP, and data from all were used in this study. TAO/TRITON (McPhaden et al., 1998) in the 274 

tropical Pacific, PIRATA (Bourlès et al., 2008) in the tropical Atlantic, and RAMA in the tropical 275 

Indian Ocean (McPhaden et al., 2009) are all part of the Global Tropical Moored Buoy Array 276 

(GTMBA) program (McPhaden et al., 2010). Extensive quality control was done by GTMBA 277 

prior to dissemination of the data (Freitag, 1999; 2001; Lake, 2003; Medovaya et al., 2002), and 278 

they have been used for monitoring, understanding, and forecasting the El Niño–Southern 279 

Oscillation (ENSO) and monsoon variability (McPhaden et al., 2009). Data from 35 GTMBA 280 

sites (TAO, 21; PIRATA, 7; RAMA, 7) were used in this study. The OceanSITES network is 281 

composed of buoys funded by oceanographic researchers across the globe. The goal of the 282 

OceanSITES program is to facilitate the use of high-quality multidisciplinary data from fixed 283 

sites in the open ocean (Cronin et al., 2019). Eight sites from OceanSITES were utilized, 284 

specifically: OS_PAPA, OS_KAUST, OS_NTAS, OS_KEO, OS_ARC, OS_JKEO, 285 

OS_STRATUS, and OS_WHOTS. In this study, the routine measurements made at moored 286 

buoys, including radiative measurements (e.g., ocean-surface downward shortwave radiation Rg) 287 

and meteorological measurements (e.g., Ta and RH) were collected and used; other variables 288 

(e.g., e, D, and CI) were calculated from these measurements. More information regarding these 289 

data sets is found in Table 3.  290 

Table 3 291 
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Descriptions of Different Networks 292 

Network/Progra

m 

No. of 

sites 

Period Observation 

frequency 

Variables URL 

UOP 22 1988-

2017 

1 hour Rl, Rg, 

Ta,RH 

http://uop.whoi.edu/index.htm

l 

TAO/TRITON 21 2000-

2019 

10 min Rl, Rg, 

Ta,RH 

https://www.pmel.noaa.gov/ta

o/drupal/disdel/ 

RAMA 7 2004-

2019 

10 min Rl, Rg, 

Ta,RH 

https://www.pmel.noaa.gov/ta

o/drupal/disdel/ 

PIRATA 7 2006-

2019 

10 min Rl, Rg, 

Ta,RH 

https://www.pmel.noaa.gov/ta

o/drupal/disdel/ 

OceanSITES 8 2000-

2018 

1 hour Rl, Rg, 

Ta,RH 

http://www.oceansites.org/ 

3.1.1.1 Radiative measurements 293 

At each moored buoy, Rl is routinely measured by an Eppley Precision Infrared 294 

Radiometer (PIR) with a nominal accuracy of ±1% (Richard E. Payne & Anderson, 1999), and 295 

Rg is routinely measured by an Eppley Laboratory precision spectral pyranometer (PSP) with a 296 

calibration accuracy of ±2% (Freitag, 1994). The PIR and PSP are deployed approximately 3 m 297 

above sea level. All measurements are quality controlled by their providers. To ensure data 298 

quality, a two step approach was implemented; 1) only observations flagged as ‘high quality’ by 299 

the data providers were considered, and 2) data was manually inspected by the authors for any 300 

irregularities. Additionally, the Rl measurements above 450 W/m2 were removed, as suggested 301 

by Josey (2003). 302 

 As pointed out by Pascal and Josey (2000), the main errors in measuring Rl are from the 303 

shortwave leakage and differential heating of the sensor. These errors (∆Rl) in Rl observations 304 

can be corrected according to Pascal and Josey (2000). However, this correction was not applied 305 

in our study, as (a) differential heating corrections had already been performed by the data 306 

providers, and (b) the Rl spikes associated with sensor degradation were not present across all 307 

deployments, making a universal correction inappropriate. We also compared the results with 308 

and without the correction and found that the conclusions remained unchanged. 309 

All Rl measurements whose sampling frequency was less than one hour were aggregated 310 

into hourly means as long as 80% of the measurements in one hour were available, and the 311 

hourly data were aggregated into daily means as long as 24 hourly data in one day were 312 

available. 313 

Note that the errors of the measured Rg
 induced by buoy rocking motions, sensor tilting, 314 

and aerosol accumulation (Medovaya et al., 2002) were too small to be considered here. In total, 315 

47,266 samples at the daily scale and 1,275,308 samples at the hourly scale during the period 316 

from 1988 to 2019 were used in this study. For better comparison, the hourly samples used for 317 

independent validation were further divided into daytime (Rg > 120 W/m2) and nighttime 318 

conditions (Rg ≤ 120 W/m2), with 147,981 samples in daytime and  210,057 in nighttime. 319 

3.1.1.2 Meteorological and oceanic variables 320 

 Two meteorological measurements, RH and Ta, were collected at the moored buoy sites. 321 

The instrument used for measuring RH and Ta is a Rotronic MP-100F, deployed about 3 m above 322 

the sea level. The instrument produced accuracies of 2.7% and 0.2 K (Lake, 2003) for RH and 323 

http://uop.whoi.edu/index.html
http://uop.whoi.edu/index.html
https://www.pmel.noaa.gov/tao/drupal/disdel/
https://www.pmel.noaa.gov/tao/drupal/disdel/
https://www.pmel.noaa.gov/tao/drupal/disdel/
https://www.pmel.noaa.gov/tao/drupal/disdel/
https://www.pmel.noaa.gov/tao/drupal/disdel/
https://www.pmel.noaa.gov/tao/drupal/disdel/
http://www.oceansites.org/
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Ta, respectively, which are also too small to influence the accuracy of the Rl estimation. Similar 324 

to the radiative measurements, RH and Ta were both strictly screened and then aggregated into 325 

hourly and daily means. 326 

On the other hand, the sea surface temperature (SST) was measured at about 1 m below 327 

the sea level using a high-accuracy conductivity and temperature recorder (SBE37/39; Sea Bird 328 

Electronics) with an accuracy of 0.002 K. According to Donlon et al. (2002), there is a strong 329 

correlation between body SST and skin SST. Although wind speed has a significant effect on this 330 

relationship, a constant correction offset can be applied when the wind speed exceeds 6 m/s  331 

(Alappattu et al., 2017). In fact, 83% of the samples had wind speeds above 4 m/s, and as 332 

suggested by Vanhellemont (2020), the bulk SST measured at moored buoys can be adjusted to 333 

the skin SST by using a correction offset of 0.17 K. 334 

3.1.1.3 Calculation of other variables  335 

Three variables, including e, D, and CI, were calculated with the RH, Ta, and Rg, 336 

measurements separately. Therefore, these three variables at hourly and daily scales were 337 

obtained from the corresponding measurements. Specifically, the daily (hourly) mean e was 338 

calculated from the daily (hourly) RH using the following equation: 339 

 e=6.1121
RH

100
exp(

17.502Ta

Ta+240.97
) (10) 340 

Note that Equation (10) only works when Ta is in the range -30–50 ℃ (Buck, 1981), and 341 

Ta should be in items of ℃. 342 

The daily (hourly) dew point depression D was calculated according to Josey (2003) and 343 

Henderson‐Sellers (1984) as: 344 

 D= 34.07+4157/ln(2.1718*10
8
/e) - Ta (11) 345 

The clearness index (CI) is calculated as the ratio of the surface Rg to the extraterrestrial 346 

solar radiation (DSRtoa) (Ogunjobi & Kim, 2004). CI generally represents the atmospheric 347 

transmissivity affected by permanent gases, aerosols, and the optical thickness of the clouds 348 

(Alados et al., 2012; Flerchinger et al., 2009; Gubler et al., 2012; Jiang et al., 2015; Meyers & 349 

Dale, 1983), and it is widely used in radiation related researches (Iziomon et al., 2003; Jiang et 350 

al., 2016; Jiang et al., 2015; Richard E Payne, 1972). The value of CI is between 0 and 1, where a 351 

larger CI value represents a clearer sky. The hourly CI can be calculated as follows: 352 

 CI =  
Rg

DSRtoa
 (12) 353 

However, during nighttime, the hourly CI cannot be calculated by Equation (12) directly 354 

because of a lack of Rg values; hence, it was calculated based on a 24-hour solar radiation 355 

window centered on the hourly observation as suggested by Flerchinger et al. (2009). The daily 356 

CI was calculated as the average of all hourly CI values in a day for the sake of considering 357 

atmosphere variations at nighttime.  358 

In this paper, CI was utilized to determine the condition as clear-sky when its value was 359 

greater than 0.7 at both hourly and daily scales. Additionally, it was found that the cloud cover 360 

derived from CI would help to improve the model performance after multiple experiments, 361 

especially at nighttime. Therefore, CI was also used to calculate the cloud cover. Specifically, the 362 

cloud fraction was linearly interpolated between C = 1.0 at a CI value of 0.4 for complete cloud 363 
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cover to C = 0.0 at a CI value of 0.7 for cloudless, both at daily and hourly scales according to 364 

Flerchinger et al. (2009). Because of the different calculation of CI during daytime and 365 

nighttime, the uncertainty in the calculated cloud cover was different; hence, the Rl estimates at 366 

the hourly scale were further examined at daytime and nighttime. Therefore, all meteorological 367 

factors (RH, Ta, e, and D) at daily and at hourly scales were respectively prepared accordingly. 368 

3.1.2 Cloud parameters from the ERA5 reanalysis data set 369 

As described above, the cloud cover represented by the fraction (C) is usually taken into 370 

account when estimating Rl affected by clouds. However, in this study, two more cloud-related 371 

parameters, including clw and ciw (see Table 2), from the ERA5 reanalysis product were also 372 

considered in the modeling. The total amount of liquid water per unit area in the air column from 373 

the base to the top of the cloud is called the total column cloud liquid water (clw), and its chilled 374 

counterpart (ice) is called the total column cloud ice water (ciw) (Nandan et al., 2022). ERA5 is 375 

the fifth generation atmospheric reanalysis product, and it was produced based on 4D-Var data 376 

assimilation using the Integrated Forecasting System (IFS) with an enhanced spatial resolution 377 

(0.25°) and time resolution (hourly) compared to its previous version ERA-interim (Hoffmann et 378 

al., 2019) from 1979 to present. Clouds in ERA5 are represented by a fully prognostic cloud 379 

scheme, in which cloud fractions and cloud condensates obey mass balance equations (Tiedtke, 380 

1993). The ERA5 clw values are in good agreement with those obtained from radiosonde 381 

observations (Nandan et al., 2022). Overall, relative to ERA-interim, ERA5 shows reduced 382 

biases in the total ice water path versus other satellite-based observational products. Therefore, 383 

the two cloud parameters were extracted from the locations of the 65 moored buoy sites directly 384 

at the hourly scale, and then their daily means were calculated by averaging the 24 valid hourly 385 

values. ERA5 cloud product is available on the Climate Data Store (CDS) cloud server 386 

(https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset). 387 

Overall, 70% of the samples at each moored buoy site, including 33,151 daily samples 388 

and 917,270 hourly samples, were randomly selected for new model training and calibration of 389 

the eight previous models (Mod1– Mod8). The other 30% of the data at each site, including 390 

14,115 daily samples and 358,038 hourly samples (daytime: 147,981; nighttime: 210,057), were 391 

used for model validation. 392 

3.2. Methodology 393 

A new model that could estimate ocean-surface Rl under all-sky conditions at both hourly 394 

and daily scales was developed based on the moored measurements and ERA5 cloud parameters. 395 

Moreover, the eight evaluated Rl models were all recalibrated so as to evaluate the model’s 396 

accuracy objectively. Based on the corresponding validation samples, the Rl values produced by 397 

the nine models were compared under clear-sky and all-sky conditions at hourly and daily scales, 398 

where the comparison at the hourly scale was further divided into daytime and nighttime values. 399 

3.2.1 New Rl estimation model development  400 

As mentioned above, Ta and the humidity-related factors (e.g., RH) were enough to 401 

characterize the variations in Rl under clear-sky conditions. However, for cloudy skies, Rl is 402 

enhanced by the cloud base emitting (T Wang et al., 2020; Yang & Cheng, 2020). Cloud cover is 403 

one of the most commonly used cloud-related parameters. In addition, theoretically, the cloudy-404 

sky Rl is significantly influenced by the cloud’s base temperature, which is determined by the 405 

file:///L:/F/工作总结/长波辐射材料准备/sss
https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset
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CBH; hence, CBH is thought to be necessary in determining Rl under cloudy-sky conditions 406 

(Viúdez-Mora et al., 2015). However, it is difficult to obtain the CBH accurately, especially for 407 

partly cloudy skies (Zhou & Cess, 2001) because of the unavailability of the cloud’s geometrical 408 

thickness (Yang & Cheng, 2020). Therefore, other parameters that could provide information on 409 

the CBH were explored. In the study of Hack (1998), a physical correlation between clw and 410 

CBH was revealed for most cases, while clw was successfully used as an effective surrogate of 411 

the CBH in the study of Zhou and Cess (2001). However, Zhou et al. (2007) pointed out that the 412 

effects of ice clouds on Rl should also be considered when the atmospheric water vapor is low or 413 

at high latitudes, which means that ciw also needs to be taken into account. Inspired by these 414 

studies, clw and ciw, both in logarithmic form, were introduced in the development of a new 415 

model named Modnew, in which Rl under all-sky conditions at the ocean surface was related to 416 

five parameters including Ta, RH, clw, ciw, and C. Modnew was trained by the corresponding 417 

training samples at hourly and daily scales. Details of the development of the new model 418 

presented in the present study are given in Section 4.1. 419 

3.2.2 Model performances evaluation 420 

Table 4 lists the different cases for the Rl model comparison. As shown in Table 4, the 421 

nine evaluated models (Mod1–Mod8 and Modnew) were all used for clear-sky Rl estimation at 422 

both hourly and daily scales, while only four models (Mod6–Mod8 and Modnew) were evaluated 423 

under all-sky conditions. Three metrics were employed to present the model accuracy: R2, the 424 

root-mean-square error (RMSE), and bias. Generally, all three statistics were calculated to 425 

evaluate the accuracy of different models, but the RMSE values had larger weights. 426 

Table 4 427 

Detailed Information of the Six Cases Considered in the Model Evaluation 428 

Case Training 

samples 

Validation 

samples 

Evaluated  model 

 
Clear-sky 

Hourly Daytime 176,510 40,805 Mod1-Mod8, Modnew 

Nighttime 35,125 Mod1-Mod8, Modnew 

Daily 3,443 1,447 Mod1-Mod8, Modnew 

 
All-sky 

Hourly Daytime 917,270 147,981 Mod6-8, Modnew 

Nighttime 210,057 Mod6-8, Modnew 

Daily 33,151 14,115 Mod6-8, Modnew 

4 Results and Analysis 429 

In this section, Modnew is introduced first, and then the validation results of the nine 430 

evaluated models under various cases are compared and analyzed. Lastly, further analyses are 431 

conducted on Modnew. 432 

4.1 Modnew development 433 

As mentioned above, the ocean-surface Rl in Modnew is related to five parameters (Ta, 434 

clw, RH, C, and ciw) for hourly and daily scales under all-sky conditions. To understand better 435 

the contribution made by each variable on Rl, the five parameters were introduced into Modnew 436 

gradually. Taking the daily all-sky Rl as an example, Rl was first only characterized by the fourth 437 

power of Ta based on the Stefan–Boltzmann law as follows: 438 

 Rl = anew𝜎Ta
4+bnew (13) 439 
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where anew and bnew are empirical coefficients, determined as 0.85 and 14.96, respectively, 440 

based on the daily training samples. Then, the correlations between the model residuals in Rl 441 

(referred to as ∆Rl) that define the difference between the in situ Rl measurements and the Rl 442 

estimates from Equation (13) and other four parameters (clw, RH, C, and ciw) were explored one 443 

by one. The results are found in Figure 2. 444 

 445 

Figure 2. The scatter plots between the model residuals, ∆Rl, from Equation (13) and (a) clw, (c) 446 

RH, (e) C, and (g) ciw. Panels (b), (d), (f), and (h) are their corresponding box plots. In the left 447 

column, the color bar represents points per unit area. In the right column, the dots indicate the 448 

mean value of the ∆Rl (ME), while the vertical lines represent the standard error of the mean 449 

(SEM). 450 

Figures 2(a), 2(c), 2(e), and 2(g) present scatter plots between ∆Rl and clw, RH, C, and 451 

ciw, respectively. In order to show their relationships better, the corresponding box plots, in 452 

which the mean of ∆Rl and its standard error (SEM) for each bin of the four parameters (in 10% 453 

increments) were calculated and presented in Figures 2(b), 2(d), 2(f), and 2(h), respectively. 454 
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Specifically, ∆Rl varied with clw and ciw in a logarithmic relationship (Figures 2(b) and 2(h), 455 

respectively), and with RH (Figure 2(d)) and C (Figure 2(f)) in approximately linear 456 

relationships. Wefound that by introducing the C, RH, clw and ciw in Equation (13) gradually, 457 

the RMSE error was reduced from 17.48 W/m2 with Equation (13) to 12.61 W/m2, 10.92 W/m2, 458 

10.11 W/m2 and 9.87 W/m2, and the level of R2 increased accordingly from 0.64 to 0.81, 0.86, 459 

0.88 and 0.89, respectively. Hence, clw, RH, C, and ciw were introduced into Equation (13) in 460 

their appropriate forms and the final equation was taken as Modnew:   461 

Rl  = anew𝜎Ta
4 + bnewC + cnew ln(1 + clw)  + dnew ln( 1 + ciw) + enewRH + fnew462 

  (14) 463 

where anew, bnew, cnew, dnew, enew, and fnew are empirical coefficients. In this study, these 464 

coefficients were determined as 1.06, 39.05, 4.91, -2.06, 0.91, and -177.53 respectively. Figure 465 

3(a) shows that the overall training accuracy of the estimated all-sky ocean-surface Rl from 466 

Modnew was satisfactory, yielding an R2 of 0.89, RMSE of 9.99 W/m2, and nearly no bias. 467 

Afterwards, Equation (14) was used to determine the hourly ocean-surface Rl based on the 468 

corresponding hourly training samples (see Table 4). The hourly results shown in Figure 3(b) 469 

were satisfactory, with an R2 of 0.78, RMSE of 15.72 W/m2, and nearly no bias. Note that the Rl 470 

measurements whose values were larger than 450 W/m2 were thought to be unreasonable and 471 

were manually removed (see Section 3.1). 472 

 473 

 474 

Figure 3. Overall training accuracy of the all-sky daily Rl at (a) daily and (b) hourly scales. In 475 

panels a and b, the color bar represents points per unit area. 476 
 477 

 By considering the influence of the calculated cloud cover on the Rl estimates, the hourly 478 

results were separated into daytime and nighttime, respectively, as shown in Figure 4. The 479 

training accuracy of the daytime sample was higher than that at nighttime, with R2 values of 0.89 480 

and 0.78 and RMSE values of 13.88 and 16.28 W/m2, respectively. It was assumed that the larger 481 
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uncertainties in the hourly ocean-surface Rl at nighttime were possibly owing to the estimated 482 

cloud cover, which might have an influence on Modnew in the form of overestimating Rl. 483 

Overall, the performance of Modnew was very good, both at daily and hourly scales for all-sky 484 

Rl estimation at the ocean surface. 485 

 486 

Figure 4. Overall training accuracy of the all-sky hourly Rl during (a) daytime and (b) nighttime. 487 

The color bars represent points per unit area.  488 

4.2 Model comparison results 489 

Based on the independent validation samples, Mod1–Mod8 and Modnew were validated 490 

one by one and compared for various cases (Table 4). Before that, the eight existing models were 491 

calibrated using the corresponding training samples, which means that Mod1–Mod5 were 492 

calibrated with the clear-sky training hourly/daily samples, while Mod6–Mod8 were calibrated 493 

with the all-sky training hourly/daily samples, i.e., the same as Modnew. Afterwards, these 494 

models were validated against the matched validation samples for each case. The updated 495 

coefficients of Mod1–Mod8 and the coefficients of Modnew for hourly and daily scales are 496 

given in Table 5. For better illustration, the comparison results are presented for clear- and all-497 

sky conditions in the following paragraphs. 498 

Table 5 499 

Coefficients of the Nine Models Used for Hourly/Daily Ocean-surface Rl Estimation. The Values 500 

in Parentheses are the Uncertainties of the Fitted Parameters 501 

Models a b c d e f 

Hourly 

Mod1 0.64(±3.7 ˟10-4) 0.07(±1.5 ˟10-4) / / / / 

Mod2 0.226(±2.12 ˟10-

4) 

8.25˟10-4(±0.01) / / / / 

Mod3 1.23(±7.68 ˟10-

5) 

/ / / / / 
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Mod4 1.08(±6.6 ˟10-5) / / / / / 

Mod5 1.35(±0.02) 2.73(±0.006) 0.5(±0.004) / / / 

Mod6 0.287(±1.4 ˟10-

4) 

-0.028(±2.85 ˟10-

5) 

/ / / / 

Mod7 0.829(±2 ˟10-4) 0.002(±1.05 ˟10-6) 0.066(±5.87 

˟10-4) 

/ / / 

Mod8 -3.81(±0.083) 7.73(±0.081) -261.68(±

0.32) 

0.99(±0.01) 256.67(±

0.032) 

/ 

Modnew 1(±3 ˟10-4) 30(±0.06) 3.99(±0.007) -1.08(±0.003) 0.95(±0.01) -145.96(±0.14) 

Daily 

Mod1 0.66(±0.004) 0.06(±0.001) / / / / 

Mod2 0.22(±0.003) 7.32˟10-4(±0.18) / / / / 

Mod3 1.23(±5 ˟10-4)  / / / / 

Mod4 1.074(±5 ˟10-4) / / / / / 

Mod5 1.95(±0.09) 2.02(±0.25) 0.5(±0.02) / / / 

Mod6 0.36(±0.002) -0.04(±3 ˟10-4) / / / / 

Mod7 0.742(±0.002) 0.004(±8 ˟10-5) 0.1(±0.01) / / / 

Mod8 -0.15(±0.02) 7.5(±0.19) -11(±0.59) 0.05(±0.009) 0.05(±0.006) / 

Modnew 1.06(±0.002) 39.05(±0.17) 4.91(±0.05) -2.06(±0.04) 0.91(±0.008) -177.53(±1.15) 

4.2.1 Clear sky  502 

All models, including the eight previous models (Mod1–Mod8), and the newly developed 503 

model (Modnew), could be used under clear-sky conditions at both hourly and daily scales with 504 

the updated coefficients given in Table 5. 505 

4.2.1.1 Hourly scale 506 

Table 6 shows the validation results of the nine models under clear-sky conditions at the 507 

hourly scale. Meanwhile, the validation results of Mod1–Mod8 with their original coefficients 508 

(see Section 2) are also presented in Table 6, using the same validation samples for comparison. 509 

Table 6 510 

Overall Validation Accuracy of the Nine Ocean-surface Rl Models under Clear-sky Conditions at 511 

the Hourly Scale. The Values in Parentheses for Mod1–Mod8 are the Validation Results Found 512 

Using Their Original Coefficients 513 

Models R2 RMSE(W/m2) bias(W/m2) 

Mod1 0.80 (0.80) 13.57 (17.01) -0.43 (-9.49) 

Mod2 0.74 (0.74) 15.38 (19.03) -0.41 (-11.21) 

Mod3 0.80 (0.80) 13.65 (13.74) -0.60 (1.34) 

Mod4 0.77 (0.77) 14.46 (14.51) -0.26 (-1.09) 

Mod5 0.79 (0.80) 13.66 (15.41) -0.52 (6.76) 

Mod6 0.80 (0.67) 13.58 (19.93) -0.45 (3.42) 

Mod7 0.80 (0.80) 13.46 (22.59) -0.42 (-18.11) 

Mod8 0.80 (0.81) 14.69 (44.52) -0.06 (-41.74) 

Modnew 0.82 13.44 -1.90 

The validation results illustrate that most models estimated the clear-sky hourly ocean-514 

surface Rl with a similar accuracy, with R2 values ranging from 0.74 to 0.82, RMSE values 515 
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ranging from 13.44 to 15.38 W/m2, and bias values ranging from -1.9 to -0.06 W/m2 (Table 6). 516 

All eight existing models with the calibrated coefficients had a higher accuracy than those with 517 

the original coefficients; in particular, the RMSE of Mod8 decreased by ~30 W/m2. The 518 

magnitude of the bias of Mod1–Mod8 also decreased after recalibration, with the magnitudes of 519 

the biases of Mod1–Mod8 being much smaller than that of  Modnew, which was trained with the 520 

all-sky hourly samples. Among the nine models, the newly developed Modnew performed the 521 

best, with the largest R2 of 0.82, the smallest RMSE of 13.44 W/m2.  522 

Then, the hourly validation results of the nine models were further examined using the 523 

daytime and nighttime values separately, which are shown in Figure 5. The performance of all 524 

modelsin estimating the hourly clear-sky Rl during the daytime was much better than that at 525 

nighttime, with RMSE values at daytime and nighttime ranging from ~12.02 to 14.86 W/m2 and 526 

14.39 to 17.49 W/m2, respectively. In addition, among the five clear-sky models, Mod2 based 527 

only on air temperature shows the lowest accuracy in terms of RMSE during both daytime and 528 

nighttime. Among the nine models, Modnew had the most stable performance in hourly Rl 529 

estimation under clear-sky conditions during both daytime and nighttime with similar RMSE 530 

values of 12.99 and 14.39 W/m2, respectively, where in particular its nighttime Rl estimation 531 

accuracy was the best among the nine models. However, no accuracy improvement was found 532 

when training Mod6 through Modnew using only clear-sky hourly samples. 533 

 534 

Figure 5. Validation accuracy of the estimated Rl under clear-sky conditions at the hourly scale 535 

for the nine models represented by RMSE (left axis) and bias (right axis). 536 

4.2.1.2 Daily scale 537 

As for the results at the daily scale, the nine evaluated models were trained with the 538 

corresponding daily training samples (see Table 4) and validated against the in situ 539 

measurements. As shown in Table 7, the estimation accuracy of the daily clear-sky ocean-surface 540 

Rl from nearly all previous models improved significantly after recalibration, where the RMSE 541 
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values and the magnitudes of the bias decreased by up to ~4 W/m2 and ~10 W/m2, respectively, 542 

except for Mod7. The Mod2 still exhibited lower accuracy than the other four clear-sky models, 543 

with the highest validated RMSE value of 11.57 W/m2. The performance of Modnew was the 544 

best among the nine models, with the smallest validated RMSE value of 8.34 W/m2 and bias of 545 

0.59 W/m2.  Similar to the results at the hourly scale, we did not observe accuracy improvements 546 

for Mod6 to Modnew when trained using only clear-sky daily samples. 547 

Table 7 548 

Overall Validation Accuracy of the Nine Ocean-surface Rl Models under Clear-sky Conditions at 549 

the Daily Scale. The Values in Parentheses for Mod1–Mod8 are the Validation Results Found 550 

Using Their Original Coefficients 551 

Models R2 RMSE(W/m2) bias(W/m2) 

Mod1 0.89 (0.90) 9.75 (12.78) 0.31 (-6.69) 

Mod2 0.85(0.85) 11.57 (14.01) 0.36 (-8.04) 

Mod3 0.90(0.90) 9.97 (10.98) 0.04 (4.36) 

Mod4 0.88(0.88) 10.58 (10.85) 0.48 (2.45) 

Mod5 0.89 (0.89) 9.68 (9.97) 0.33 (2.27) 

Mod6 0.88 (0.88) 10.16 (14.81) 0.41 (10.63) 

Mod7 0.88 (0.88) 10.00 (17.15) 0.34 (-13.81) 

Mod8 0.90 (0.87) 10.56 (37.48) 0.68 (-34.95) 

Modnew 0.92 8.34 0.59 

4.2.2 All sky 552 

4.2.2.1Hourly scale 553 

Table 8 gives the overall validation results of the all-sky hourly scale ocean-surface Rl 554 

from the four models against the independent validation samples with the updated and original 555 

coefficients, respectively.   556 

Table 8 557 

Overall Validation Accuracy of Four Ocean-surface Rl Models under All-sky Conditions at the 558 

Hourly Scale. The Values in Parentheses for Mod6–Mod8 are the Validation Results Found 559 

Using Their Original Coefficients 560 

Models R2 RMSE(W/m2) bias(W/m2) 

Mod6 0.66 (0.63) 19.07 (27.94) 1.17 (-14.05) 

Mod7 0.68 (0.68) 18.39 (19.80) -0.13 (3.45) 

Mod8 0.74 (0.48) 16.66 (40.74) 0.11 (-32.25) 

Modnew 0.77 15.64 -0.04 

Compared to the results in Table 6, the estimation accuracies under all-sky conditions 561 

shown in Table 8 were generally worse, with lower R2 values (0.66–0.77) and bigger RMSE 562 

values (15.64–19.07 W/m2), which indicates that the uncertainty in the cloud information was the 563 

major reason for the increased uncertainty in the Rl estimation. As in previous results, the three 564 

previous models, Mod6–Mod8, performed much better after recalibration, with decreased RMSE 565 

values up to ~24 W/m2 and their bias values tended to 0. Modnew performed the best, with an 566 

RMSE of 15.64 W/m2 and a bias of -0.04W/m2, followed by Mod8. 567 
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 568 
Figure 6. Validation accuracy of the estimated Rl under all-sky conditions at the hourly scale for 569 

Mod6-Mod8 and Modnew represented by RMSE (left axis) and bias (right axis). 570 

The hourly results in Table 8 were examined for daytime and nighttime values, as shown 571 

in Figure 6. The results show that the estimation accuracies of the four models were overall 572 

better during the daytime than at nighttime, with smaller RMSE values for the former. 573 

Specifically, during daytime hours, the accuracy of Modnew was similar to that of Mod8, with 574 

RMSEs of 14.34 and 15.29 W/m2, respectively, which were better than those of Mod6 and 575 

Mod7, which yielded RMSEs of 15.85 and 16.30 W/m2, respectively. However, Mod7 performed 576 

a little bit better than Mod6 during the nighttime, although its overall performance was the worst. 577 

It is speculated that the larger uncertainties in the all-sky ocean-surface Rl values at nighttime 578 

can possibly be attributed to the cloud information at nighttime, which was difficult to estimate 579 

accurately compared to the daytime cloud information. 580 

4.2.2.2 Daily scale 581 

Figure 7 shows the overall validation accuracies of the all-sky daily ocean-surface Rl 582 

values from the four models. Compared with Mod6–Mod8, Modnew had the best performance, 583 

with an validated RMSE of 10.27 W/m2, a bias of 0.10 W/m2, and an R2 of 0.88, followed by 584 

Mod8, which yielded an RMSE of 11.96 W/m2, a bias of -0.18 W/m2, and an R2 of 0.85.  585 

However, Mod8 had a tendency to overestimate low values (<300 W/m2), as did Mod6 and 586 

Mod7. 587 
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 588 

Figure 7. Overall validation result of the calculated all-sky daily ocean-surface Rl from the four 589 

models against the independent moored measurements. The color bars represent points per unit 590 

area. 591 

Overall, it is speculated that Modnew performed better than Mod6–Mod8 because of the 592 

introduction of two cloud-related parameters (clw and ciw) into the model in addition to the 593 

cloud fraction. In order to demonstrate this speculation better, the relationship between the 594 

estimation errors in the daily all-sky ocean-surface Rl of the four models and clw, which was 595 

used to represent the CBH, was further analyzed. The corresponding mean of the estimation 596 

errors in the daily all-sky ocean-surface Rl and its SEM for each bin of clw in logarithmic format 597 

(in 10% increments) were calculated, as presented in Figure 8. 598 
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 599 

Figure 8. The averaged Rl estimation errors and its SEM of Mod6 – Mod8 and Modnew varied 600 

with clw in logarithmic format.  601 

From the results in Figure 8 it can be seen that the Rl estimation errors of Mod6–Mod8 602 

were negative linearly related to increasing log(1+clw); such behavior is not seen for Modnew. 603 

This indicates that the cloud information related to the variations in daily ocean-surface Rl are 604 

not fully characterized by only the cloud fraction. Although Mod8 performed better than Mod6 605 

and Mod7 because of the introduction of the dew point depression to compensate for the 606 

difference between the surface temperature and cloud base temperature, the contributions of the 607 

cloud base emission to Rl still cannot be thoroughly expressed over the ocean surface. Hence, 608 

Modnew performed superior to other models because it also takes clw as input. Moreover, ciw 609 

was also introduced in Modnew to ensure its robust performance at high latitudes.  610 

4.3 Further analysis on Modnew 611 

Based on the direct validation results described above, Modnew satisfactorily estimated 612 

the ocean-surface Rl under both clear- and all-sky conditions at both hourly and daily scales. 613 

Hence, further analysis of this new model, such as testing its performance robustness and a 614 

sensitivity analysis, was conducted, and the results are given below. 615 

4.3.1 Modnew performance analysis 616 

In order to examine the robustness of its performance, the spatial distributions of the 617 

validation accuracies of the all-sky Rl estimates from Modnew at the moored buoy sites are 618 

presented in Figures 9(a–b) for hourly and daily scales, respectively. Note that the moored buoy 619 

data from which the number of provided validation samples were less than 50 were excluded to 620 

provide a more objective comparison. 621 
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 622 

 623 

Figure 9. Validation accuracies of Modnew on the hourly scale (a) and daily scale (b) at different 624 

sites represented by the RMSE values. The two moored buoys in the shaded boxes in (b) are 625 

UOP_SMILE88 (38°N, 123.5°W) and UOP_SUB_NW (33°N, 34°W). 626 

The spatial distribution of the validation accuracy (represented by RMSE) of the Rl 627 

estimates from Modnew was similar for the hourly and daily data. Their RMSE values got larger 628 

from tropical to the high latitude seas, although the daily Rl estimates were generally more 629 

accurate than the hourly ones, and the validation accuracy for sites at open seas was more 630 

accurate than that within coastal seas. For a better illustration, two time series of the estimated 631 

daily ocean-surface Rl from Modnew at two sites were randomly selected and shown in Figure 632 

10, and the one from Mod8 was added for comparison, as well as the corresponding scatter plots. 633 

The two buoys, TAO_03 (0°N, 140°W) and OS_PAPA (50°N, 145°W), are in equatorial and 634 

mid-high latitude seas, respectively. The temporal variations in the all-sky daily Rl estimates 635 

from the two models both captured the variations in the moored Rl measurements very well, but 636 
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the ones from Modnew were closer to the measurements at high values and low values, 637 

especially at the OS_PAPA site. The validation accuracy of Modnew was higher than that of 638 

Mod8 at both sites, and Modnew performed better for tropical seas, with validated RMSE values 639 

of 6.76 and 10.21 W/m2, respectively, which was assumed that more samples used for modeling 640 

were collected at tropical seas and this would influence the model performance at mid-high 641 

latitude seas. 642 

 643 

Figure 10. Time series and scatter plots of the Rl estimates and the moored Rl measurements at 644 

the (a–b) TAO_03 (0°N, 140°W) and (c–d) OS_PAPA (50°N, 145°W) sites. The red points and 645 

blue points represent Modnew and Mod8, respectively. 646 

However, it was noted that Modnew performed poor at some sites, such as 647 

UOP_SMILE88 (38°N, 123.5°W) and UOP_SUB_NW (33°N, 34°W) (see the shaded boxes in 648 

Figure 9). The estimation errors in the daily Rl from Modnew at the two moored buoys were 649 

calculated, as shown in Figure 11, and the ones from the other three all-sky models, Mod6–650 

Mod8, are shown for comparison. It can be seen that the four evaluated all-sky models all 651 

worked poorly at the two sites, all giving overestimations. A possible explanation may be 652 

attributed to the differences in the characteristics of the atmospheric boundary layer over the two 653 

sites relative to the open sea. Specifically, UOP_SMILE88 is deployed on the northern California 654 

shelf, which is influenced by air temperature inversions (ATIs) (Dorman et al., 1995), and 655 

UOP_SUB_NW is deployed near the eastern flank of the Azores anticyclone system (Moyer & 656 

Weller, 1997). As such, the atmospheric conditions of the two sites are different from those over 657 

the open sea, which would affect the estimation of Rl made with models whose coefficients were 658 

determined by samples collected mostly from sites located in the open sea. Therefore, more 659 

samples should be collected within these seas to help to improve the ocean-surface Rl estimation 660 

accuracy in these areas. 661 
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 662 

 663 

Figure 11. Box plots of the Rl estimation errors from models Mod6, Mod7, Mod8, and Modnew 664 

at UOP_SMILE88 (38°N, 123.5°W) and UOP_SUB_NW (33°N, 34°W). The top edge, center, 665 

and bottom edge of the box represent the 75th, 50th (median), and 25th percentiles, respectively. 666 

The whiskers indicate the maximum and minimum values within 1.5 times the interquartile range 667 

(IQR), and the circles denote outliers. 668 

4.3.2 Sensitivity analysis 669 

In order to quantify the impact of each parameter on the calculated Rl in Modnew, the 670 

SimLab software (http://simlab.jrc.ec.europa.eu) was used to conduct a global sensitivity 671 

analysis. All inputs in Modnew (Ta, RH, C, clw, and ciw) were entered into the software 672 

separately, and then 2,000 ocean-surface Rl values were calculated using Modnew by taking 673 

2,000 combinations of these parameters as inputs. Afterwards, the Fourier amplitude sensitivity 674 

test (FAST) method (Saltelli et al., 1999) in the SimLab software was employed to conduct a 675 

sensitivity analysis based on the inputs, and the corresponding estimated Rl values were used for 676 

a sensitivity analysis using the total sensitivity index (TSI). The TSI indicates each parameter’s 677 

total contribution to the output variance when the interactions of other parameters are also 678 

considered, and was used to quantify the sensitivity of each parameter. Table 9 shows the TSI of 679 

each parameter in Modnew. Specifically, Ta had the most important effect on Rl with the largest 680 

TSI of 41.26%, followed by C (25.6%) and RH (21%). Therefore, the performance of Modnew 681 

mainly depended on the accuracy of the Ta, C, and RH. The TSI of clw was the fourth highest 682 

with 8%, but it is essential to supplement cloud information that cloud cover alone cannot 683 

provide, especially for cloud-sky conditions. In terms of ciw, its TSI was just 0.008, which was 684 

possibly because only a few samples at high-latitudes were used in this study.  685 

Table 9 686 

http://simlab.jrc.ec.europa.eu/


 

26 

 

FAST Sensitivity Indices of the First Order for Each Input Variable in Modnew 687 

Ta RH C Clw ciw 

0.4126 0.21 0.256 0.08 0.008 

 688 

5 Conclusions 689 

Due to the significance of Rl at the ocean surface, many empirical models have been 690 

established for ocean-surface Rl calculation based on observations by relating Rl to some climatic 691 

factors, such as Ta, RH, and so on. However, most models were developed only for clear days, 692 

and for those models that can calculate the all-sky Rl, only the cloud cover is taken into account, 693 

which is thought to be insufficient for characterizing the influence of clouds on Rl, especially for 694 

ocean surfaces where cloudy skies are common. Indeed, most previous Rl estimation models 695 

were developed only within a specific region based on limited observations, and some for just 696 

land surfaces. Consequently, there was a need to perform comprehensive evaluations of these 697 

models, including their ability to predict Rl over global seas.  698 

In this study, the newly developed Modnew model estimates all-sky ocean-surface 699 

downward longwave radiation (Rl) by incorporating key atmospheric and cloud parameters: 700 

screen-level air temperature (Ta), relative humidity (RH), fractional cloud cover (C), total 701 

column cloud liquid water (clw), and total column cloud ice water (ciw). Ta governs the thermal 702 

radiation emitted by the atmosphere, as described by the Stefan–Boltzmann law. RH modifies the 703 

atmospheric emissivity by representing the water vapor content. C quantifies the cloud's overall 704 

presence, while clw and ciw capture the thermal contributions of liquid and ice clouds, 705 

respectively, enabling a more accurate characterization of cloud radiative effects. The Modnew 706 

model relies on specific atmospheric and cloud-related parameters for accurate Rl estimation. 707 

While inputs such as Ta and RH are commonly obtained from in situ measurements, critical 708 

cloud-related parameters (i.e. clw and ciw) are typically derived from satellite products or 709 

reanalysis datasets, such as ERA5. These parameters are essential for capturing the radiative 710 

properties of clouds, which in situ measurements alone cannot reliably provide. Therefore, 711 

satellite data or reanalysis products are indispensable for supplying these inputs. This model, as 712 

well as eight comparison models, was used to estimate the all-sky ocean-surface Rl at both 713 

hourly and daily scales based on comprehensive observations collected from 65 globally 714 

distributed moored buoys from 1988 to 2019. In contrast to previous models, Modnew 715 

incorporates more cloud-related parameters (i.e., clw and ciw) into the model besides just cloud 716 

cover. Modnew and the eight previous Rl models were assessed against the moored values for 717 

various cases, including clear- and all-sky conditions at daytime and nighttime and at hourly and 718 

daily scales. After careful analysis, several major conclusions could be drawn, as follows: 719 

(1) The eight previous models performed much better after calibration of their 720 

coefficients with the global observations for almost all cases, except Mod7 in some situations. 721 

(2) For the clear-sky ocean-surface Rl estimation, all models performed better at daytime 722 

than that at nighttime. Among all models, Modnew was the most robust, yielding RMSE values 723 

of 12.99 W/m2 and 14.39 W/m2 at daytime and nighttime for the hourly scale, respectively.  724 

(3) For the all-sky ocean-surface Rl estimation, the performance of the four evaluated 725 

models was generally worse compared to that under clear-sky conditions, which further 726 

demonstrated that the uncertainty in the all-sky Rl estimation was highly dependent on accurate 727 
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cloud information. Specifically, at the hourly scale, the validated RMSE values of the four 728 

models ranged from 15.64 to 19.07 W/m2, with better performance at daytime. At the daily scale, 729 

the RMSE values ranged from 10.27 to 13.09 W/m2. Modnew also performed the best in these 730 

cases, with an overall validated RMSE of 15.64 and 10.27 W/m2 and bias values of -0.04 and 731 

0.10 W/m2, respectively. It is worth noting that Modnew performed similarly during both 732 

daytime and nighttime at the hourly scale. 733 

In summary, the performance of Modnew was superior to other previous models for 734 

ocean-surface Rl estimation for any case, which was mainly because of the introduction of more 735 

cloud-related information (clw and ciw). Further analysis of Modnew illustrated the significance 736 

of the two parameters as well as cloud cover. However, all results again emphasized that the 737 

accuracy of nearly all the empirical models was highly dependent on the spatial distribution, 738 

quality, and quantity of the samples used for modeling. For instance, Modnew worked better at 739 

open seas in tropical regions where more samples were available compared to other regions. 740 

Therefore, many more samples at different regions, such as in coastal regions and high-latitude 741 

seas, should be collected in the future to improve model performance. Moreover, more accurate 742 

cloud information especially at nighttime is essential to decrease the uncertainty in the estimated 743 

Rl at the ocean surface. 744 
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