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Abstract. While traditional thermal infrared retrieval algorithms based on radiative transfer models 

(RTM) could not effectively retrieve the cloud optical thickness of thick clouds, machine learning based 10 

algorithms were found to be able to provide reasonable estimations for both daytime and nighttime. 

Nevertheless, stand-alone machine learning algorithms are occasionally criticized for the lack of explicit 

physical processes. In this study, RTM simulations and a machine learning algorithm are synergistically 

utilized using the optimal estimation (OE) method to retrieve cloud properties from thermal infrared 

radiometry measured by Moderate Resolution Imaging Spectroradiometer (MODIS). In the new 15 

algorithm, retrievals from a machine learning algorithm are used to provide a priori state for the iterative 

process of OE method, and an RTM is used to create radiance lookup tables that are used in the iteration 

processes. Compared with stand-alone OE which is ineffective to retrieve the cloud optical thickness of 

thick clouds, the cloud properties retrieved by the new algorithm show an overall better performance by 

using statistic a priori information obtained by machine learning algorithm. Compared with stand-alone 20 

machine-learning based algorithm, the radiances simulated based on retrievals from the new method 

align more closely with observations, and physical radiative processes are handled explicitly in the new 

algorithm. Therefore, the new method combines the advantages of RTM-based cloud retrieval methods 

and machine-learning models. These findings highlight the potential for machine-learning-based 

algorithms to enhance the efficacy of conventional remote sensing techniques.  25 

1 Introduction 

Clouds play an important role in the earth’s energy budget by altering radiation patterns at both the 

surface and the top of the atmosphere (TOA) (Liou and Davies, 1993; Stubenrauch et al., 2006). Cloud 
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properties change in response to variations in greenhouse gases, aerosol concentrations, and global 

surface temperature, leading to large uncertainties in climate change projections (Forster et al., 2021; 30 

Sassen et al., 2007). Grasping the variations in cloud properties is crucial for a comprehensive 

understanding of cloud dynamics and their radiative impacts on global climate change. The advancement 

of science and technology has positioned satellite remote sensing as a pivotal tool for monitoring cloud 

behaviors across diverse spatial and temporal scales. Active satellites like CloudSat and CALIPSO 

(Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) offer unparalleled cloud profiling 35 

capabilities (Marchand et al., 2008; Sassen et al., 2009). Conversely passive satellites, renowned for their 

extensive swath observations, are widely applied in a range of atmospheric research. 

In recent decades, numerous efforts have been made to retrieve cloud properties using passive 

satellite instruments (Lai et al., 2019; Li et al.,2023; Min et al., 2020; Minnis et al., 2011; Poulsen et al., 

2012; Tan et al., 2022; Zhao et al., 2012). A common method involves combining data from visible (VIS) 40 

and near-infrared (NIR) channels to construct lookup tables (LUT) for daytime cloud microphysical 

properties, such as cloud optical thickness (COT) and cloud effective radius (CER) (Painemal and 

Zuidema, 2011; Twomey et al., 1980; Nakajima et al., 1990). This approach is grounded in the principle 

that cloud reflectance in non-absorbing VIS wavelengths predominantly depends on COT, while 

reflectance in absorbing NIR wavelengths is closely related to cloud effective radius (Arking and Childs, 45 

1985; Rossow et al., 1989). Additionally, distinguishing liquid water from ice clouds using NIR channels 

(e.g., 1.65 μm) has also proven beneficial for deriving cloud top height (CTH) (Harshvardhan et al., 2009; 

Menzel et al., 2008; Pilewskie et al., 1987). Nonetheless, these VIS/NIR-based methodologies are 

confined to daytime operations owing to their reliance on incident solar radiation, absent during nighttime 

hours. 50 

Alternatively, night-time cloud properties can be retrieved using thermal infrared (TIR) radiometry 

from passive satellite. Inoue (1985) employed the split-window method, leveraging brightness 

temperature (BT) and BT differences across various window channels, to derive COT and CER. 

Subsequently, numerous improvements and enhancements have been made to this method (Hamada and 

Nishi, 2010; Iwabuchi et al., 2018; Yang et al., 2005). Wang et al. (2016a) implemented an optimal 55 

estimation-based (OE) algorithm with Moderate Resolution Imaging Spectroradiometer (MODIS) 

infrared (IR) observations for cloud property retrieval, demonstrating the suitability of IR channels for 
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thin ice cloud properties during both daytime and nighttime (Wang et al., 2016b). In addition, the CO2-

slicing method, which utilizes adjacent ~15 μm CO2 absorption channels, is able to retrieve CTH 

effectively (Smith et al., 1974; Menzel et al., 1983). The atmospheric window IR measurements, such as 60 

at 11 μm, are also useful for CTH determination by comparing with the ambient atmospheric temperature 

profile (Garrett et al., 2009; Hong et al., 2007). However, IR window methods are less effective for 

optically thick clouds as their BT approaches asymptotic values (Garrett et al., 2009; Iwabuchi et al., 

2016). While far infrared channels (>15 μm) are useful for ice clouds with substantial optical thickness 

(Libois et al., 2017), these far infrared channels are rarely measured by satellites during the last decade. 65 

Moreover, the retrieval methods based on plane-parallel cloud radiative transfer (RT) models face global 

application challenges due to their high computational demands (Wang et al., 2013). 

Recently, machine learning techniques such as random forests, artificial neural network, and deep 

learning have gained significant traction in remote sensing (Bai et al., 2021; Guo et al. 2022; Shi et 

al.,2020; Tan et al.,2023; Yuan et al., 2020; Zhao et al., 2023). Häkansson et al. (2018) used a neural 70 

network algorithm to retrieve cloud top properties from several passive polar orbit sensors, greatly 

improving CTH retrievals. Advanced machine learning algorithms have particularly enhanced CTH 

retrievals for high and thin clouds (Min et al., 2020). Wang et al. (2022) developed a convolutional neural 

network (CNN)-based framework (TIR-CNN), utilizing TIR radiometry from MODIS to retrieve COT, 

CER, and CTH. The retrieved results show good agreements compared to both passive and active cloud 75 

products and is effective during both daytime and nighttime (Wang et al., 2022, 2023). Tana et al. (2023) 

obtained cloud detection and cloud microphysical properties with high spatial-temporal resolutions from 

TIR spectral channels of Himawari-8 using a machine learning algorithm. Zhao et al. (2023) applied a 

deep-learning ResUnet model for retrieving cloud phase (CLP), COT, CER, and CTH using Fengyun-

4A satellite observations.  80 

However, the reliance of these machine learning methods on mathematical and statistical 

approaches typically leads to an implicit assimilation of the relationships between cloud properties and 

radiance observations, making it difficult to trace how input data is transformed into output predictions. 

A great number of cloud property users favor remote sensing products that offer explicit physical 

interpretations. Therefore, enhancing traditional inversion algorithms with machine learning algorithms 85 

can be beneficial. 
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In this study, we combine traditional radiative transfer simulations with TIR-CNN retrievals using 

the OE method (OE-CNN-IR) to retrieve COT, CER, and CTH from MODIS, which is effective under 

both daytime and nighttime conditions. The Community Radiative Transfer Model (CRTM) is utilized 

to simulate MODIS IR observations and generate LUT for cloud properties. The TIR-CNN retrievals are 90 

employed as a priori state, and an iterative process based on gradient descent is performed to get an 

optimal estimation. The performance of the proposed OE-CNN-IR model is subsequently compared with 

a stand-alone OE method utilizing fixed a priori state. Details of the data and the enhanced OE-CNN-IR 

method are presented in Section 2. Section 3 outlines the retrieval results and their evaluation against 

cloud products from passive and active sensors. Conclusions are summarized in Section 4.  95 

2 Data and Methodology 

2.1 Data 

2.1.1 MODIS data 

This study utilizes global data observed by MODIS instrument on the Aqua satellite. Aqua-MODIS 

continuously monitors the earth-atmosphere system with 36 spectral bands ranging from 0.405 to 14.385 100 

µm. The Aqua-MODIS official Collection 6.1 (C6.1) products (MYD021KM, MYD03, MYD35, 

MYD06 and MCD12C1), with the spatial resolution of 1 km, available at 

https://ladsweb.modaps.eosdis.nasa.gov/search/, have been selected for this study. These products, with 

spatial resolution of 1km and 5km, are chosen for their widely accepted quality (Wang and Christopher, 

2003). In this study, the TIR radiation from Aqua-MODIS collection 6.1 (C6.1) Level 1B calibrated 105 

radiances products (MYD021KM) are converted to BTs using the Planck function. All channels with 

wavelength greater than 6.5μm are used, except that the 30th channel (primarily used for ozone retrievals) 

is not used to avoid uncertainties induced by ozone. Additionally, atmospheric parameters from MYD03 

and MYD06, including surface temperature, land surface type, and cloud phase, are used as ancillary 

data for LUT construction and forward radiative simulations. The product in Table 1, reported in Cloud 110 

Phase Optical Properties is the daytime-only phase used in the MYD06 cloud optical retrievals and Cloud 

Phase Infrared is a daytime and nighttime product derived from three IR window channel pairs. Cloud 

Phase Optical Properties is used in daytime to determine cloud types while Cloud Phase Infrared is used 

in nighttime only in our paper. Cloud optical and physical parameters such as COT, CER and CTH from 

https://ladsweb.modaps.eosdis.nasa.gov/search/
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MYD06 serve to verify the accuracy of daytime retrievals. All parameters are aligned to a 5-kilometer 115 

spatial resolution grid, ensuring uniformity in data and variables. To validate the applicability of the 

inversion algorithm, retrievals are compared to MYD06 data from one day each month in 2009  (January 

1, February 10, March 12, April 11, May 11, June 10, July 10, August 9, September 8, October 8, 

November 7, and December 7. The default spacing between adjacent days is 30, and the spacing is set to 

be 40 if a date lies in the same month as previous date), capturing the variability of atmospheric conditions 120 

throughout a seasonal cycle and facilitating a comprehensive evaluation across different scenarios. The 

total sample size of MYD06 for comparison is ~4.7 million. The retrievals are performed over the whole 

globe, and the data between 60°S-60°N are used in the validation. Table 1 summarizes the data and 

parameters used in our retrieval model. 

Table 1. Summary of MODIS data sources and preprocessing parameters. 125 

Product name Spatial Resolution Variables Unit 

MYD021KM 1 km Band 27 (6.5-6.9μm) - 

Band 28 (7.2-7.5μm) - 

  Band 29 (8.4-8.7μm) - 

  Band 31 (10.8-11.3μm) - 

  Band 32 (11.8-12.3μm) - 

  Band 33 (13.2-13.5μm) - 

  Band 34 (13.5-13.8μm) - 

  Band 35 (13.8-14.1μm) - 

  Band 36 (14.1-14.4μm) - 

  radiance W/(m2μm sr) 

MYD03 1 km Sensor Zenith ° 

Solar Zenith ° 

Land/Sea Mask - 

MYD06 1km 

 

 

Cloud Effective Radius μm 

Cloud Optical Thickness - 

Cloud water path kg/m2 
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5km 

 

Cloud Phase Optical 

Properties 

- 

Cloud Phase Infrared - 

Cloud Top Pressure hPa 

Surface Temperature K 

2.1.2 Lidar-radar Detection cloud products  

Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), a space-based lidar instrument onboard 

the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite, provides 

vertical profiles of clouds and aerosols in earth's atmosphere. CALIOP can perform observations at both 

daytime and nighttime, overcoming the limitations of passive optical instruments, but it could not 130 

penetrate thick clouds. The Cloud Profiling Radar (CPR) aboard the CloudSat satellite is a radar system 

that sends out microwave pulses and measures the reflected energy from clouds. This technique is 

particularly suited to at determining the structure and ice content within clouds, but fails to detect thin 

clouds. The DARDAR product (Delanoë and Hogan, 2010), integrating data from both CALIOP and 

CPR, offers a comprehensive atmospheric column view that neither instrument can achieve 135 

independently. This extensive dataset includes information on cloud top and base heights, optical 

thickness, ice content, and aerosol layers. In our study, the ice cloud product of DARDAR in 2009 is 

used to evaluate the inversion results during both daytime and nighttime conditions, and ~0.54 million 

pixels are collocated in the comparison processes. 

2.2 Development of the retrieval algorithm 140 

The core algorithm of our inversion method is the optimal estimation method, which utilizes the CRTM 

as the forward model and incorporates CNN results as a prior information. Figure 1 illustrates the 

architecture of our retrieval models. Initially, temperature, humidity and ozone from the Fifth Generation 

of the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA5) (Hersbach 

et al., 2020) are used to construct lookup tables for each 0.25°x0.25° spatial grid box. These LUTs 145 

enumerate the BT for each channel corresponding to varying COT, CTH and CER. Subsequently, the OE 

method is performed to retrieve cloud properties. The OE method can get the optimal solution by 

accounting for all spectral information. However, the iteration may have started a long way from the 
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solution in nonlinear problem and the cost function decrease is much slower. Start with a better first guess 

rather than climatology value can make the process converges much more quickly (Rodgers, 2000). The 150 

deep learning methods can achieve high accuracy, and once trained, they offer very fast prediction speeds. 

However, due to the nature of neural networks, deep learning results often lack interpretability, leading 

to the perception of deep learning as a black box model. In OE-CNN-IR approach, the TIR-CNN derived 

cloud properties provide a priori state for iterative processes, which are subsequently refined through 

iterative minimization of the objective cost function, while the climatology values were used as starting 155 

points in OE-IR. This method iteratively adjusts parameters to reconcile radiative transfer simulations 

with observed data. Further details are presented below. 

 

Figure 1. The architecture of the retrieval model. (a) The establishment of look-up table. (b) The iteration 

steps in the optimal estimation progress.  160 

2.2.1 Forward Model 

The CRTM, developed by the U.S. Joint Center for Satellite Data Assimilation (JCSDA), spans a broad 

spectrum of channels from visible to microwave. It is widely used in simulating radiances at the top of 

the atmosphere for various satellite sensors, owing to its flexible interface, sophisticated radiative transfer 

processes, and efficient numerical computation(Han et al., 2006). The model divides the atmosphere into 165 

a series of vertical layers, and the temperature, pressure and composition of each layer is assumed to be 

homogenous. CRTM solves the radiative transfer equations throughout the atmosphere. Its precision and 

reliability have been extensively validated by ground-based and satellite observations(Zou et al., 2016). 

Considering that the optical properties of ice cloud crystals in CRTM and MODIS product is different 

due to differences in particle habit assumptions (Yi et al., 2016; Yao et al., 2018), the volumetric 170 

extinction cross section in CRTM is adjusted by a scaling factor (0.4), resulting in simulated brightness 

temperatures that are consistent with observations (Figs. 6(a,b,c)). For each grid cell, the CRTM 
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simulates TIR radiances corresponding to a set of COT, CER, and CTH values at each location, from 

which a LUT is subsequently constructed. Table 2 provides a detailed list of the cloud properties and 

ancillary parameters used in these calculations. 175 

Table 2. Geometries and cloud properties selected to calculate the cloud lookup tables 

 Variable Names  Notes 

Reference cloud 

properties 

COT 0.01, 0.03, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 

0.60, 0.70, 0.80, 0.90, 1.00, 1.20, 1.40, 1.60, 

1.80, 2.00, 2.50, 3.00, 3.50, 4.00, 4.50, 5.00, 

5.50, 6.00, 6.50, 7.00, 7.50, 8.00, 8.50, 9.00, 

9.50, 10.0, 12.0, 15.0, 20.0, 25.0, 30.0, 50.0 

 CER (μm) 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 

70, 75, 80, 85, 90 

 CTH (km) 0.1, 0.8, 1.15, 1.5, 2, 2.5, 3.5, 5, 6.25, 8, 10, 12, 

14, 16 

Model parameter Surface temperature 

(K) 

MYD06 

 Land type MCD12C1, IGBP 

 Cloud type MYD06, Cloud Phase 

 Temperature 

profile(K) 

ERA5, Temperature 

 Water vapor 

profile(g/kg) 

ERA5, Specific humidity 

 Ozone profile(g/kg) ERA5, Ozone mass mixing ratio 

 

The outputs of the forward model can be expressed as a function of cloud properties and ancillary 

parameters: 

𝑌 = [𝐵𝑇1𝐵𝑇, 𝐵𝑇2, … … , 𝐵𝑇𝑚]𝑇 = 𝐹[𝑋(𝐶𝑂𝑇, 𝐶𝐸𝑅, 𝐶𝑇𝐻), 𝑃] + 𝑒,                                 (1) 180 
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where Y is a vector consisting of m MODIS IR observations of BT, P is a vector encompassing various 

ancillary variables, including air temperature, water vapor concentration, ozone concentration profiles, 

surface emissivity spectrum, and surface temperature, and e is an error term.  

Figure 2 depicts the variation in CRTM output (F) (expressed in BT) as a function of ice cloud 

properties, derived from a simulation using the atmospheric profile dated June 10, 2009, at 00:00 UTC, 185 

at coordinates 175.87°E longitude and 60.55°N latitude. In Fig. 2(a), with fixed CER and CTH, the TOA 

BTs in MODIS IR bands generally decrease with increasing COT. Notably, for COT>10, the slopes 

approach zero, causing challenges in inversion accuracy. In the case of fixed COT and CTH (Fig. 2(b)), 

TOA BTs decrease with increasing CER values when CER is below 10 μm across all channels, followed 

by minor oscillations in most channels, except that band 29 shows significant variations. In Fig. 2(c), for 190 

CTH values under 11 km, TOA BTs are negatively correlated with CTH noticeably. 

Figure 3 shows the relationship between TOA BTs and liquid cloud properties, which reveals a 

weaker response to changes in COT and CER compared to ice clouds. Nevertheless, TOA BTs decrease 

noticeably with increasing liquid cloud CTH. In summary, CTH is the most accurately determinable 

variable for both ice and liquid clouds due to the high sensitivity of TOA BTs to CTH. For ice clouds, 195 

COT values below 10 generally allow for more accurate retrieval of cloud properties in theory. However, 

retrieving CER for ice clouds poses greater challenges due to the complexity of ice particle size 

distribution and shape. Liquid clouds, conversely, show no strong sensitivity of TOA BTs to both COT 

and CER, and it is more difficult to accurately retrieve these cloud properties solely based on TOA BT 

observations. 200 
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Figure 2. Radiative transfer model simulations for ice clouds. The atmospheric profile is from the coordinates 

with a longitude of 175.87°E and a latitude of 60.55°N, on June 10, 2009, at 00:00 UTC. (a) TOA BTs as a 

function of COT, when CER and CTH is set to 20 μm and 10 km, respectively. (b) BT as a function of CER, 

when COT and CTH is set to 5 and 10km, respectively. (c) BT as a function of CTH, when COT and CER is 205 

set to 5 and 20 μm, respectively. 
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Figure 3. Same as Fig. 2, but for liquid clouds.  

2.2.2  The Convolutional Neural Network Infrared method 

The convolutional neural network using thermal infrared (TIR-CNN) model is trained with solar-210 

independent variables (thermal infrared radiances, viewing zenith angles, and altitude) as inputs and uses 

standard MYD06 products (COT, CER and CTH in the daytime) as targets. To capture a comprehensive 

range of the Earth's surface and viewing geometries while accounting for seasonal variations, Wang et al. 

(2022) collected full-year granules from 2010 to create the training dataset. Products with a 10-day 

interval from 2011 were selected as the validation dataset during the training phase. Additionally, the 10-215 

day interval data from 2009, which is independent of both the training and validation datasets, served as 

the testing dataset. The granules were divided into samples sized 256 × 256 km. After preprocessing, 

there are 1,888,680 samples in the training dataset, 191,520 in the validation dataset, and 382,760 in the 

testing dataset. This TIR-CNN model is an asymmetric architecture, featuring an equal number of 

encoding and decoding layers arranged sequentially. The basic convolutional block consists of two 2D 220 

convolutional layers with 3 × 3 kernels. Each convolutional layer is followed by a batch normalization 

layer and a leaky rectified linear unit (Wang et.al.,2022). Through training, the model can capture context 
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and learn the complex nonlinear relationship between the input variables and targets, which can be 

applied in the cloud property retrievals during both daytime and nighttime. The convolutions in the TIR-

CNN model are beneficial in considering statistic information from neighbor fields in training. 225 

Theoretically, spatial distributions, optical and microphysical properties of clouds are all determined by 

the meteorological backgrounds, so cloud properties are statistically connected to their horizontal 

distributions. In addition, the effective radius of ice cloud particles are functions of cloud temperature. 

The CNN-based deep learning architecture is able to capture the statistical features among adjacent pixels 

of satellite observations as a solution for retrieving cloud optical and micro-physical properties (Wang et 230 

al., 2022, 2023), so it is able to provide more information than traditional algorithms that retrieve cloud 

properties from infrared radiances of individual pixels. The benefits of machine learning in IR cloud 

retrievals have also been demonstrated independently by the results of Tana et al. (2023) and Zhao et al. 

(2023). 

 235 

2.2.3  Optimal Estimation-Based Retrieval Method 

The OE-based retrieval method, as introduced by (Rodgers, 2000), is designed to derive the best estimates 

of atmospheric quantities (such as temperature, humidity, aerosol concentration, or trace gas 

concentrations) by minimizing the discrepancy between observed measurements and the model 

simulations. This method combines information from both the measurement data and a priori knowledge, 240 

typically obtained from atmospheric models or ancillary data sources. A key strength of the OE method 

is its capability in addressing complex atmospheric retrieval challenges, enabling simultaneous retrieval 

of multiple parameters in contexts where physical processes are nonlinear and highly coupled. It provides 

a rigorous and statistically robust method to estimate atmospheric parameters, along with quantifying the 

associated uncertainties. 245 

The OE method aims to identify the most probable state variables by minimizing a cost function J: 

𝐽 = [𝐹(𝑋, 𝑃) − 𝑌]𝑇𝑆𝑦
−1[𝐹(𝑋, 𝑃) − 𝑌] + [𝑋 − 𝑋𝑎]𝑇𝑆𝑎

−1[𝑋 − 𝑋𝑎],                                   (2) 

where 𝑋𝑎  and 𝑋  are the prior and posterior state vectors, respectively. Sy and Sa are the covariance 

matrices of the observation-to-simulation differences and the uncertainty of the prior state vector, 

respectively. When the uncertainties of a priori state are large (e. g., OE-IR), the cost function J is 250 

primarily influenced by the first term in OE-IR. If the uncertainties of a priori state are small, then the 
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second term is also important in the iteration process (e. g., OE-CNN-IR). Then we employ an iterative 

process to find an optimal solution based on observed data and a priori state. Mathematically, the gradient 

descent method for (i+1)’th iteration is implemented by: 

𝑋𝑖+1 = 𝑋𝑖 − 𝜃
𝜕𝐽𝑖,𝑛

𝜕𝑋𝑖,𝑛
 ,                                        (3) 255 

where  

𝜕𝐽𝑖,𝑛

𝜕𝑋𝑖,𝑛
=

𝐽(𝑋𝑖,𝑛+𝛿𝑥𝑛)−𝐽(𝑋𝑖,𝑛)

𝛿𝑥𝑛
  ,                                                         (4) 

and 𝜃 represents a learning rate and n represents the n-th cloud parameters (COT, CER and CTH), and 

𝜃 is set to be the same for all three variables. In this paper, 𝜃 is initially set to 0.05 for the first 200 

iterations and after those initial 200 iterations, the learning rate is then reduced to 0.01 for the subsequent 260 

100 iterations. 𝛿𝑥𝑛 represent the small increase in n cloud parameters and 𝐽(𝑋𝑖,𝑛 + 𝛿𝑥𝑛) are calculated 

using LUTs. 

In this paper, stand-alone OE-IR method relies on a fixed a priori value for its iterative process, whereas 

OE-CNN-IR utilizes results from TIR-CNN as it’s a priori state for further refinement. These methods 

illustrate the integration of traditional optical estimation techniques with advanced machine learning 265 

models to potentially enhance the accuracy and reliability of atmospheric measurements. 

Figure 4 shows the iterative variations in cost function, COT, CER and CTH for both OE-IR and OE-

CNN-IR under various conditions. Both algorithms show a significant decrease with an increasing 

number of iterations and all iterations can achieve successful convergence. However, the initial value for 

OE-CNN-IR is lower than OE-IR. For smaller cot values (COT < 10), OE-CNN-IR and OE-IR exhibit 270 

consistent effects on COT and CTH, converging with close values. For both methods, the CER depends 

on a priori state. A distinct difference is that OE-CNN-IR starts with a significantly lower cost than OE-

IR and maintains more stability throughout the iteration process. For larger COT values (COT > 10), the 

CTH of these two methods converge to same value, despite of differences in a priori state. The COT of 

OE-IR struggles to iterate towards the expected target during the iteration process, while OE-CNN-IR 275 

maintains stably around the a priori values. The iterative results indicate that both methods perform well 

on COT and CTH for small COT values. However, for large COT values, the OE-IR method is unable to 

produce accurate results under these conditions. In contrast, the OE-CNN-IR is able to retrieve COT of 

thick clouds effectively. 
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Figure 4. The change of cost function and cloud parameters in the iteration processes, with OE-IR in Red and 

OE-CNN-IR in Blue. Left pictures are for an illustrative ice cloud layer with a small optical thickness case 

and right pictures are for a large optical thickness case.  

2.3 Metrics for performance evaluation 

In this study, the magnitude of calculation errors, systematic bias errors, and linear correlation between 285 

outputs and standard values are quantitatively assessed using three key statistical metrics: root mean 

squared error (RMSE), mean bias error (MBE), and the Pearson correlation coefficient (r). 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−𝑓𝑖)2𝑁

𝑖=1

𝑁
 ,                (5) 

𝑀𝐵𝐸 =
∑ 𝑓𝑖−𝑦𝑖

𝑁
𝑖=1

𝑁
 ,                                                                        (6) 

𝑟 =
∑ (𝑓𝑖−𝑓̅)(𝑦𝑖−𝑦̅)𝑁

𝑖=1

√(∑ (𝑓𝑖−𝑓̅)2𝑁
𝑖=1 )√(∑ (𝑦𝑖−𝑦̅)2𝑁

𝑖=1 )

 ,                                                                    (7) 290 

where N is the total number of calculated points, y and f are the true and estimated values, respectively. 

3 Results and discussion 

3.1 Case studies of OE-CNN-IR and OE-IR retrievals 

To illustrate the daytime efficacy of the proposed method, a granule from Aqua-MODIS, captured at 

03:00 UTC on June 10, 2009, has been chosen. This particular granule spans the southwestern Pacific 295 

Ocean, encompassing the geographical region from 0° to 20°S latitude and from 150°E to 175°E 

longitude, as depicted in Fig. 5.  

Figures 5 (a-c) show the spatial distribution of BT for each respective channel. These measurements 

reveal variations in thermal radiation, which correlated with cloud properties specific to the wavelengths 

of the channels used. Figures 5(d-f) show the cloud physical properties as derived using standard MODIS 300 

retrieval algorithms. The COT, CER, and CTH from the MYD06 product provide a benchmark for 

comparison with other inversion methods. The analysis of BT from channels 29, 31, and 32 shows a clear 

negative correlation with both COT and CTH, and regions with higher BT typically correspond to clouds 

with smaller optical thickness and lower cloud top heights. This is in line with the principle that thinner 

clouds permit more infrared radiation to escape from the earth's surface and atmosphere, leading to higher 305 

observed BT. Furthermore, the analysis indicates that clouds with higher BT generally have lower 

altitudes. The patterns in Fig. 5, which display cloud properties derived from various inversion techniques, 
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corroborate the physical relationships illustrated in Figs. 2 and 3. Figures 5 (g-i) present the retrieval 

results from the deep learning algorithm TIR-CNN method. The CNN-derived retrievals are not only 

consistent with MYD06 products in spatial patterns, but also agree well with the magnitudes of results. 310 

Figures 5 (j-l) present the retrieval results from the OE-CNN-IR method, showing similar spatial 

distributions to the standard MYD06 products for COT and CTH. However, significant differences are 

noted in CER retrieved by OE-CNN-IR and MYD06 products. This finding aligns with the work of  

Wang et al. (2016), which highlighted substantial discrepancies in CER retrieval when using OE-IR 

versus VNIR/SWIR/MWIR methods. Specifically, the C6 MYD06 cloud particle size information 315 

presented here is inferred from the 2.1 μm reflectance, which may capture signals reflected from the 

lower parts of a cloud (Zhang et al., 2009).  

 Figures 5 (m-o) show the results retrieved using the traditional OE-IR method with climatological 

priori states, which employs climatological values of COT, CER and CTH as a priori state for OE iteration. 

In case where COT values are below 10, the OE-IR COT closely match MYD06 products, indicating that 320 

it is able to capture the COT of thinner clouds. However, the inability of OE-IR to retrieve COT values 

greater than 10 suggests a limitation in the technique's sensitivity to optically thicker clouds, aligning 

with findings from Wang et al. (2016). This threshold effect arises from the TIR BT independence to 

COT in thick clouds (as shown in Fig. 2a). The performance of CTH retrievals using the OE-IR method 

is comparable to that of the OE-CNN-IR method while the inversion of CER is not very effective due to 325 

limitations in the physical mechanisms.   
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Figure 5. Comparison of cloud properties obtained from the OE-CNN-IR model, OE-IR model and standard 

MODIS products for an illustrative daytime granule on 10 June. 2009 (03:00 UTC). (a, b, c) are BT image of 

MODIS band 29,31 and 32, respectively. (d, e, f) are the COT, CER, and CTH from the MYD06 product, 330 

respectively. (g, h, i) are the COT, CER, and CTH from the CNN-IR model, respectively. (j, k, l) are the COT, 

CER, and CTH from the OE-CNN-IR model, respectively. (m, n, o) are the COT, CER, and CTH from the 

OE-IR model, respectively.    

Figure 6 compares MODIS observed BTs with simulated BTs derived from CRTM. We utilized the bands 

27 to 29 and 31 to 36 as listed in Table 1. However, for the sake of clarity in presentation, we only display 335 

bands 29, 31, and 33 in the Figure 6. Figures 6(a-c) show CRTM-simulated radiances using baseline 
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MODIS cloud products, serving as a control scenario for comparative analysis. The correlation 

coefficients for channels 29, 31, and 32 are 0.877,0.905 and 0.891, respectively, indicating CRTM's 

proficiency in simulating MODIS cloud products. However, there is a persistent negative MBE across 

these channels. Figures 6(d-f) present a comparison between observations and BT simulated by CRTM 340 

and TIR-CNN retrievals, with outcomes that are analogous to those depicted in Figs. 6(a-c). The 

pronounced correlation indicates that CNN-based inputs proficiently replicate the spatial and radiometric 

features of clouds, showing high consistency with MODIS MYD06 products. When OE-CNN-IR or OE-

IR cloud property retrievals are used to simulate BT, the correlation coefficients between the simulated 

BT and observations increases significantly, and the absolute values of MBE and RMSE decreases 345 

significantly (as shown in Figs. 6g-l). The OE-CNN-IR model incorporates the OE iterations, which 

reduce the discrepancy between simulated and observed BT. The results indicate that retrievals of the 

OE-CNN-IR methods align more closely with BT observations compared to the stand-alone TIR-CNN 

model.  

 350 



19 

 

 

Figure 6. Comparison between MODIS BT observations and simulated BT based on MODIS cloud properties 

(upper), TIR-CNN priori inputs (middle), OE-CNN-IR estimations (lower) and OE-IR estimations(bottom), 

based on an illustrative granule of 10 June 2009 (Fig. 5). The first column is the comparison between the 

simulation and observation of band 29, the middle column is for band 31, and the right column is for band 32. 355 

 

Fig. 7 illustrates a nighttime case of cloud parameter retrievals using TIR-CNN, OE-CNN-IR and 

OE-IR methods. The data for this analysis is sourced from a randomly selected granule captured on 

February 10th, 2009, at 21:00 UTC. Figs. 7(a-c) display the BTs at channels 29, 31, and 32, and Figs. 

7(d-f) shows the COT, CER, and CTH retrieved by the TIR-CNN algorithm. The relationship between 360 

COT and CTH with BT at night is generally consistent with that during the day. Figs. 7(g-i) shows the 

COT, CER, and CTH retrieved by the OE-CNN-IR algorithm. The OE-CNN-IR retrievals align well with 

the high and low-value areas in the BT images, indicating that OE-CNN-IR effectively discerns the 

intricate spatial variations in cloud properties during nighttime conditions. Figs. 7(j-l) display the cloud 

parameters retrieved using the OE-IR method. In this analysis, the predominance of values falls below 365 

10, which signifies a more constrained retrieval scope when contrasted with the OE-CNN-IR method. 

Nevertheless, the distribution of CTH derived from OE-IR closely mirrors that obtained from OE-CNN-

IR, affirming its dependability for estimating the top height of clouds. Additionally, both methods exhibit 

comparable distributions in CER. 
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370 

Figure 7. Comparison of cloud properties obtained from the OE model and standard MODIS products for an 

illustrative nighttime granule on 10 February 2009 (21:00 UTC). (a) BT image of MODIS band 29. (b) BT 

image of MODIS band 31. (c) BT image of MODIS band 32. (d, e, f) are the COT, CER, and CTH from the 

TIR-CNN, respectively. (g, h, i) are the COT, CER, and CTH from the OE-CNN-IR model, respectively. (j, k, 

l) are the COT, CER, and CTH from the OE-IR model, respectively. 375 

3.2 Comparison between retrievals and MYD06 products in the daytime 

Figure 8 presents scatterplots that provides pixel-level comparisons of cloud property retrievals from 

OE-CNN-IR and OE-IR against the MYD06 ice cloud products over ocean for 2009. The left column of 

Fig. 8 offers a detailed pixel-by-pixel comparison for COT, CER, and CTH between OE-CNN-IR and 

the MYD06 ice cloud products. The middle column displays comparisons between MYD06 cloud 380 

products and OE-IR retrievals. The right column displays the probability density functions obtained from 

MYD06 products, OE-CNN-IR and OE-IR derived results. The color scale in these plots indicates the 
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number of observations in each grid, visually representing data point density. Due to the large 

uncertainties of MODIS in retrieving COT in polar regions, retrieval constraints have been established. 

These include limiting the Solar Zenith Angle (SZA) to less than 60 degrees and restricting latitudes to 385 

between 60°S and 60°N, thereby ensuring consistency and reliability in these comparisons. In Fig.8(a), 

the correlation coefficient between OE-CNN-IR COT and MYD06 COT is 0.835, indicating a strong 

positive correlation. In comparison, OE-IR achieves a COT correlation coefficient of 0.667 against 

MODIS products, indicating a slightly weaker relationship than that reported in Wang et al. (2016). In 

Fig.8(c), the distributions provided by MYD06, OE-CNN-IR, and OE-IR are relatively similar for COT 390 

values less than 10. The OE-CNN-IR retrievals contains a lot of cases with COT>15, which is consistent 

with MODIS, but OE-IR retrievals do not contain clouds with COT>15. The underestimation of COT for 

thick clouds by OE-IR is consistent to Wang et al. 2016. Therefore, it is concluded that both OE-CNN-

IR and OE-IR show consistent performance for COT below 10, but OE-CNN-IR performs much better 

for thicker clouds. With respect to CER, both algorithms demonstrate moderate to weak correlation 395 

coefficients, reflecting the inherent physical constraints of the retrieval process. Nonetheless, OE-CNN-

IR outperforms OE-IR with a correlation coefficient of 0.794, suggesting enhanced performance. In 

Fig.8(f), the results from OE-IR appear to be concentrated around a priori value of 30 μm, whereas the 

results from OE-CNN-IR maintain a distribution that is more similar to that of MYD06. For CTH 

retrieval, both OE-CNN-IR and OE-IR demonstrate good performance, with correlation coefficients of 400 

0.871 and 0.808, respectively. Overall, the statistical analysis in Fig. 8 underscores the retrieval capability 

of OE-CNN-IR, particularly for COT and CER, compared to stand-alone OE-IR. 

Figure 9 expands the ice cloud analysis from Fig. 8 to encompass liquid and ice clouds over both 

land and ocean, offering a more comprehensive evaluation of the retrieval algorithms across varied cloud 

conditions. In the case of liquid clouds above 10, the BT is not sensitive to COT, leading to most OE-IR 405 

COT retrievals clustering around value of 10. This indicates difficulties in effectively retrieving COT for 

liquid clouds, so the OE-IR method has been used to retrieve cloud properties of ice clouds only. In 

contrast, the performance of OE-CNN-IR is much better. This shows OE-CNN-IR can be improved by 

using TIR-CNN outputs as a priori state, allowing for accurate retrievals even in situation of lower BT 

sensitivity, as observed in liquid clouds. Regarding CER, the gradient of CER with respect to BT of liquid 410 

clouds tends toward zero. These artifacts signal the limitations of the retrieval algorithm under minimal 
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BT gradient conditions. Despite these challenges for CER, both OE-CNN-IR and OE-IR perform 

exceptionally well in retrieving CTH, with r of 0.913 and 0.931, respectively. These high correlations 

reflect the algorithms' effectiveness in estimating CTH.  

 415 

Figure 8. Scatterplots of the pixel level comparisons between the retrievals and MYD06 products for ice clouds 

over oceans. (left column) Pixel-by-pixel comparisons of COT, CER, and CTH from OE-CNN-IR with the 

MYD06 ice cloud products over ocean in 2009. (middle column) Scatterplots of the pixel level comparisons 

between the MYD06 cloud products and OE-IR comparable retrievals. (right column) The probability density 

functions obtained from MYD06 products, OE-CNN-IR and OE-IR derived results are presented. Color 420 

shadings denote the number of observations in each respective pixel. All comparable retrievals are 

constrained to cases with SZA < 60° and latitude between 60°S and 60°N. 
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Figure 9. Same as Fig. 8, but includes liquid clouds over ocean, and ice and liquid clouds over land. 

3.3 Comparison with products from active sensors  425 

Under nighttime conditions, where standard MYD06 cloud products do not offer cloud optical properties, 

the evaluation is supplemented by incorporating near-real-time data from active sensors (DARDAR, 

derived from CloudSat/CALIPSO observations). To align with MODIS observations, single-layer 

measurements from CALIPSO are spatially matched by restricting their distance to less than 333 meters, 

the distance between adjacent CALIPSO footprints. Additionally, the temporal difference is restricted to 430 

under 90 seconds. Spatially and temporally co-located samples from 2009 are employed to evaluate the 

performance and generalization capabilities of the OE model during night conditions. These criteria are 

applied to achieve the closest possible data correspondence between the two different instruments, 

facilitating a meaningful assessment of the OE model's nighttime performance. 
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Figure 10 presents a detailed comparison of COT retrievals for ice clouds using OE-CNN-IR and 435 

OE-IR methods, benchmarked against DARDAR cloud products. The comparisons are confined to 

latitudes between 60°N and 60°S to ensure a comprehensive assessment across both daytime and 

nighttime conditions. The daytime correlation coefficient for OE-CNN-IR versus DARDAR COT is 

0.651, with slightly lower nighttime correlation of 0.583. These values are similar to the correlation 

between MYD06 COT and DARDAR COT (0.647). In contrast, OE-IR exhibits lower correlation 440 

coefficients, with 0.546 during the day and 0.503 at night. Nevertheless, the RMSE of OE-IR is lower 

than that of OE-CNN-IR. Notably, the OE-CNN-IR method demonstrate better performance for COT > 

10. This suggests that OE-CNN-IR is more adept at capturing the variability of thicker ice clouds, which 

is important for understanding cloud radiative effects and their implications for weather and climate 

systems. 445 

 
Figure 10. Comparisons of OE-CNN-IR COT, OE-IR COT and DARDAR COT for ice clouds over oceans. 

(a-c) are comparisons between OE-CNN-IR COT and DARDAR products. (d-f) are comparisons between 

OE-IR COT and DARDAR products. The left column is for daytime comparisons, the middle column is for 

nighttime comparisons, and the right column is for all-day comparisons. 450 

4 Conclusions 

This study introduces a cloud property retrieval method based on optimal estimation (OE-CNN-IR), 

which integrates traditional radiative transfer simulations with a machine-learning method. Designed for 

retrieving COT, CER, and CTH, this method is applicable for passive satellite imagery under both 
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daytime and nighttime conditions. Retrievals from a machine learning algorithm (TIR-CNN) are used to 455 

provide a priori values for OE iteration, and an RTM is used to create radiance lookup tables that are 

used in the iteration processes. Subsequently, the retrievals are iteratively adjusted to minimize 

discrepancies between the IR observations and radiative transfer model simulations. The efficacy of OE-

CNN-IR is validated against MYD06 products and active sensor cloud products, and the results are 

compared to a stand-alone optimal estimation model (OE-IR).  460 

The validation results reveal that the OE-CNN-IR method outperforms stand-alone OE-IR model, 

especially for cloud optical thickness of thick clouds. Correlation coefficients with MYD06 products 

have exhibit marked improvements: correlation coefficients for COT increases from 0.667 to 0.835, 

correlation coefficients for CER increases from 0.348 to 0.794, and correlation coefficients for CTH 

increases from 0.808 to 0.871. In nighttime evaluations, the OE-CNN-IR method consistently 465 

outperforms the traditional OE model when compared with DARDAR COT. The consistency between 

OE-CNN-IR retrievals and MYD06 products is as good as that of stand-alone machine-learning retrieval 

algorithm (i. e., TIR-CNN), and the radiance simulations based on OE-CNN-IR retrievals exhibit greater 

consistency with actual observations, as depicted in Fig. 6. Furthermore, the algorithm explicitly 

addresses physical processes, aligning with the preferences of scientists who advocate for physically 470 

based methodologies. While the OE-CNN-IR method in this study is primarily applied to Aqua-MODIS 

imagery, it can be potentially applied to other sensors with similar infrared (IR) channels. For instance, 

it can be readily adapted to geostationary satellites, given their analogous wavelength ranges(Tana et al., 

2023; Zhao et al. 2023). In the future, the combination of machine-learning algorithms and traditional 

radiative transfer simulations might be further developed in other fields of remote sensing.  475 
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