Preprints
https://doi.org/10.5194/amt-2024-98
https://doi.org/10.5194/amt-2024-98
18 Sep 2024
 | 18 Sep 2024
Status: this preprint is currently under review for the journal AMT.

The Airborne Chicago Water Isotope Spectrometer: An Integrated Cavity Output Spectrometer for Measurements of the HDO/H2O Isotopic Ratio in the Asian Summer Monsoon

Benjamin W. Clouser, Laszlo C. Sarkozy, Clare E. Singer, Carly C. KleinStern, Adrien Desmoulin, Dylan Gaeta, Sergey Khaykin, Stephen Gabbard, Stephen Shertz, and Elisabeth J. Moyer

Abstract. We describe a new version of the Chicago Water Isotope Spectrometer (ChiWIS), designed for airborne measurements of vapor-phase water isotopologues in the dry upper troposphere and lower stratosphere (UTLS) aboard research aircraft. This version of the instrument is a tunable diode laser (TDL), off-axis integrated cavity output spectrometer (OA-ICOS). The instrument was designed to measure the HDO/H2O ratio in the 2017 Asian Summer Monsoon flight aboard the M-55 Geophysica during the StratoClim campaign, and so far has also flown aboard the WB-57F in the 2021 and 2022 ACCLIP campaigns. The spectrometer scans absorption lines of both H2O and HDO near 2.647 μm wavelength in a single current sweep, and has an effective path length of 7.5 km under optimal conditions. The instrument utilizes a novel non-axially-symmetric optical component which increases the signal-to-noise ratio by a factor of 3. Ultra-polished, 4-inch diameter cavity mirrors suppress scattering losses, maximize mirror reflectivity, and yield optical fringing significantly below typical electrical noise levels. In laboratory conditions, the instrument has demonstrated a 5-second measurement precision of 3.6 ppbv and 82 pptv in H2O and HDO, respectively.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Benjamin W. Clouser, Laszlo C. Sarkozy, Clare E. Singer, Carly C. KleinStern, Adrien Desmoulin, Dylan Gaeta, Sergey Khaykin, Stephen Gabbard, Stephen Shertz, and Elisabeth J. Moyer

Status: open (until 27 Nov 2024)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on amt-2024-98', Anonymous Referee #3, 24 Sep 2024 reply
  • CC1: 'Comment on amt-2024-98', Farahnaz Khosrawi, 22 Oct 2024 reply
    • AC1: 'Reply on CC1', Benjamin Clouser, 23 Oct 2024 reply
  • RC2: 'Comment on amt-2024-98', Anonymous Referee #2, 30 Oct 2024 reply
Benjamin W. Clouser, Laszlo C. Sarkozy, Clare E. Singer, Carly C. KleinStern, Adrien Desmoulin, Dylan Gaeta, Sergey Khaykin, Stephen Gabbard, Stephen Shertz, and Elisabeth J. Moyer

Data sets

StratoClim Campaign Data StratoClim Team https://halo-db.pa.op.dlr.de/mission/101

ACCLIP Campaign Data ACCLIP Team https://www-air.larc.nasa.gov/cgi-bin/ArcView/acclip

Benjamin W. Clouser, Laszlo C. Sarkozy, Clare E. Singer, Carly C. KleinStern, Adrien Desmoulin, Dylan Gaeta, Sergey Khaykin, Stephen Gabbard, Stephen Shertz, and Elisabeth J. Moyer

Viewed

Total article views: 398 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
219 61 118 398 15 3 4
  • HTML: 219
  • PDF: 61
  • XML: 118
  • Total: 398
  • Supplement: 15
  • BibTeX: 3
  • EndNote: 4
Views and downloads (calculated since 18 Sep 2024)
Cumulative views and downloads (calculated since 18 Sep 2024)

Viewed (geographical distribution)

Total article views: 394 (including HTML, PDF, and XML) Thereof 394 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 15 Nov 2024
Download
Short summary
The water molecule comes in several different varieties, which are nearly indistinguishable in daily life. However, slight differences between the water molecule types can be exploited to achieve better scientific understanding of parts of Earth's atmosphere. In this work we describe the design, construction, and operation of an instrument meant to measure these molecules aboard research aircraft up to altitudes of 20 kilometers.