Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
Volume 10, issue 4
Atmos. Meas. Tech., 10, 1575–1594, 2017
https://doi.org/10.5194/amt-10-1575-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 10, 1575–1594, 2017
https://doi.org/10.5194/amt-10-1575-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 25 Apr 2017

Research article | 25 Apr 2017

High-resolution urban observation network for user-specific meteorological information service in the Seoul Metropolitan Area, South Korea

Moon-Soo Park et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Publications Copernicus
Download
Short summary
The philosophy, background, and details of high-resolution urban observation network to meet the need of reducing damages caused by extreme weather phenomena such as heavy rain/snow fall, strong wind, heat/cold waves, or road ice in the Seoul Metropolitan Area (SMA), Korea (UMS-Seoul), is introduced. Two case studies demonstrate that the observed data have a great potential to help to understand the boundary-layer structures more deepl and provide useful meteorological information in the SMA.
The philosophy, background, and details of high-resolution urban observation network to meet the...
Citation