Articles | Volume 10, issue 3
https://doi.org/10.5194/amt-10-955-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/amt-10-955-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Investigating differences in DOAS retrieval codes using MAD-CAT campaign data
Enno Peters
CORRESPONDING AUTHOR
Institute of Environmental Physics, University of Bremen, Bremen, Germany
Gaia Pinardi
Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
André Seyler
Institute of Environmental Physics, University of Bremen, Bremen, Germany
Andreas Richter
Institute of Environmental Physics, University of Bremen, Bremen, Germany
Folkard Wittrock
Institute of Environmental Physics, University of Bremen, Bremen, Germany
Tim Bösch
Institute of Environmental Physics, University of Bremen, Bremen, Germany
Michel Van Roozendael
Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
François Hendrick
Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Theano Drosoglou
Aristotle University of Thessaloniki, Thessaloniki, Greece
Alkiviadis F. Bais
Aristotle University of Thessaloniki, Thessaloniki, Greece
Yugo Kanaya
Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Japan
Xiaoyi Zhao
Department of Physics, University of Toronto, Ontario, Canada
Kimberly Strong
Department of Physics, University of Toronto, Ontario, Canada
Johannes Lampel
Institute of Environmental Physics, University of Heidelberg, Heidelberg, Germany
Max Planck Institute for Chemistry, Mainz, Germany
Rainer Volkamer
Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA
Theodore Koenig
Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA
Ivan Ortega
Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA
now at: National Center for Atmospheric Research (NCAR), Boulder, CO, USA
Olga Puentedura
National Institute for Aerospace technology, INTA, Madrid, Spain
Mónica Navarro-Comas
National Institute for Aerospace technology, INTA, Madrid, Spain
Laura Gómez
National Institute for Aerospace technology, INTA, Madrid, Spain
Margarita Yela González
National Institute for Aerospace technology, INTA, Madrid, Spain
Ankie Piters
Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
Julia Remmers
Max Planck Institute for Chemistry, Mainz, Germany
Yang Wang
Max Planck Institute for Chemistry, Mainz, Germany
Thomas Wagner
Max Planck Institute for Chemistry, Mainz, Germany
Shanshan Wang
Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid, Spain
Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental
Science & Engineering, Fudan University, Shanghai, China
Alfonso Saiz-Lopez
Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid, Spain
David García-Nieto
Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid, Spain
Carlos A. Cuevas
Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid, Spain
Nuria Benavent
Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid, Spain
Richard Querel
National Institute of Water and Atmospheric Research (NIWA), Lauder, New Zealand
Paul Johnston
National Institute of Water and Atmospheric Research (NIWA), Lauder, New Zealand
Oleg Postylyakov
A. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, Russia
Alexander Borovski
A. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, Russia
Alexander Elokhov
A. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, Russia
Ilya Bruchkouski
National Ozone Monitoring Research and Education Center BSU (NOMREC BSU), Belarusian State University (BSU), Minsk, Belarus
Haoran Liu
School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
Cheng Liu
School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
CAS Center for Excellence in Regional Atmospheric Environment, Xiamen, 361021, China
Key Lab of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031, China
Qianqian Hong
Key Lab of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031, China
Claudia Rivera
Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
Michel Grutter
Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City, Mexico
Wolfgang Stremme
Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City, Mexico
M. Fahim Khokhar
Institute of Environmental Sciences and Engineering (IESE), National University of Sciences and Technology (NUST) Islamabad, Islamabad, Pakistan
Junaid Khayyam
Institute of Environmental Sciences and Engineering (IESE), National University of Sciences and Technology (NUST) Islamabad, Islamabad, Pakistan
John P. Burrows
Institute of Environmental Physics, University of Bremen, Bremen, Germany
Viewed
Total article views: 5,498 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 11 Nov 2016)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
3,415 | 1,901 | 182 | 5,498 | 138 | 144 |
- HTML: 3,415
- PDF: 1,901
- XML: 182
- Total: 5,498
- BibTeX: 138
- EndNote: 144
Total article views: 3,897 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 10 Mar 2017)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,279 | 1,447 | 171 | 3,897 | 129 | 134 |
- HTML: 2,279
- PDF: 1,447
- XML: 171
- Total: 3,897
- BibTeX: 129
- EndNote: 134
Total article views: 1,601 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 11 Nov 2016)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,136 | 454 | 11 | 1,601 | 9 | 10 |
- HTML: 1,136
- PDF: 454
- XML: 11
- Total: 1,601
- BibTeX: 9
- EndNote: 10
Viewed (geographical distribution)
Total article views: 5,498 (including HTML, PDF, and XML)
Thereof 5,323 with geography defined
and 175 with unknown origin.
Total article views: 3,897 (including HTML, PDF, and XML)
Thereof 3,782 with geography defined
and 115 with unknown origin.
Total article views: 1,601 (including HTML, PDF, and XML)
Thereof 1,541 with geography defined
and 60 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
15 citations as recorded by crossref.
- Validation of Aura-OMI QA4ECV NO<sub>2</sub> climate data records with ground-based DOAS networks: the role of measurement and comparison uncertainties S. Compernolle et al. 10.5194/acp-20-8017-2020
- MAX-DOAS measurements of HONO slant column densities during the MAD-CAT campaign: inter-comparison, sensitivity studies on spectral analysis settings, and error budget Y. Wang et al. 10.5194/amt-10-3719-2017
- Intercomparison of Pandora stratospheric NO<sub>2</sub> slant column product with the NDACC-certified M07 spectrometer in Lauder, New Zealand T. Knepp et al. 10.5194/amt-10-4363-2017
- Inter-comparison of MAX-DOAS measurements of tropospheric HONO slant column densities and vertical profiles during the CINDI-2 campaign Y. Wang et al. 10.5194/amt-13-5087-2020
- Five Years of Spatially Resolved Ground-Based MAX-DOAS Measurements of Nitrogen Dioxide in the Urban Area of Athens: Synergies with In Situ Measurements and Model Simulations M. Gratsea et al. 10.3390/atmos12121634
- Intercomparison of four airborne imaging DOAS systems for tropospheric NO<sub>2</sub> mapping – the AROMAPEX campaign F. Tack et al. 10.5194/amt-12-211-2019
- MAX-DOAS measurements of tropospheric NO<sub>2</sub> and HCHO in Munich and the comparison to OMI and TROPOMI satellite observations K. Chan et al. 10.5194/amt-13-4499-2020
- Ozone profiles without blind area retrieved from MAX-DOAS measurements and comprehensive validation with multi-platform observations X. Ji et al. 10.1016/j.rse.2022.113339
- The Network for the Detection of Atmospheric Composition Change (NDACC): history, status and perspectives M. De Mazière et al. 10.5194/acp-18-4935-2018
- Patterns and trends of ozone and carbon monoxide at Ushuaia (Argentina) observatory J. Adame et al. 10.1016/j.atmosres.2021.105551
- Russian Studies of Atmospheric Ozone and Its Precursors in 2015–2018 N. Elansky 10.1134/S0001433820020048
- The tilt effect in DOAS observations J. Lampel et al. 10.5194/amt-10-4819-2017
- Reactive bromine in the low troposphere of Antarctica: estimations at two research sites C. Prados-Roman et al. 10.5194/acp-18-8549-2018
- Intercomparison of NO<sub>2</sub>, O<sub>4</sub>, O<sub>3</sub> and HCHO slant column measurements by MAX-DOAS and zenith-sky UV–visible spectrometers during CINDI-2 K. Kreher et al. 10.5194/amt-13-2169-2020
- Ground-based validation of the Copernicus Sentinel-5P TROPOMI NO<sub>2</sub> measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia global networks T. Verhoelst et al. 10.5194/amt-14-481-2021
15 citations as recorded by crossref.
- Validation of Aura-OMI QA4ECV NO<sub>2</sub> climate data records with ground-based DOAS networks: the role of measurement and comparison uncertainties S. Compernolle et al. 10.5194/acp-20-8017-2020
- MAX-DOAS measurements of HONO slant column densities during the MAD-CAT campaign: inter-comparison, sensitivity studies on spectral analysis settings, and error budget Y. Wang et al. 10.5194/amt-10-3719-2017
- Intercomparison of Pandora stratospheric NO<sub>2</sub> slant column product with the NDACC-certified M07 spectrometer in Lauder, New Zealand T. Knepp et al. 10.5194/amt-10-4363-2017
- Inter-comparison of MAX-DOAS measurements of tropospheric HONO slant column densities and vertical profiles during the CINDI-2 campaign Y. Wang et al. 10.5194/amt-13-5087-2020
- Five Years of Spatially Resolved Ground-Based MAX-DOAS Measurements of Nitrogen Dioxide in the Urban Area of Athens: Synergies with In Situ Measurements and Model Simulations M. Gratsea et al. 10.3390/atmos12121634
- Intercomparison of four airborne imaging DOAS systems for tropospheric NO<sub>2</sub> mapping – the AROMAPEX campaign F. Tack et al. 10.5194/amt-12-211-2019
- MAX-DOAS measurements of tropospheric NO<sub>2</sub> and HCHO in Munich and the comparison to OMI and TROPOMI satellite observations K. Chan et al. 10.5194/amt-13-4499-2020
- Ozone profiles without blind area retrieved from MAX-DOAS measurements and comprehensive validation with multi-platform observations X. Ji et al. 10.1016/j.rse.2022.113339
- The Network for the Detection of Atmospheric Composition Change (NDACC): history, status and perspectives M. De Mazière et al. 10.5194/acp-18-4935-2018
- Patterns and trends of ozone and carbon monoxide at Ushuaia (Argentina) observatory J. Adame et al. 10.1016/j.atmosres.2021.105551
- Russian Studies of Atmospheric Ozone and Its Precursors in 2015–2018 N. Elansky 10.1134/S0001433820020048
- The tilt effect in DOAS observations J. Lampel et al. 10.5194/amt-10-4819-2017
- Reactive bromine in the low troposphere of Antarctica: estimations at two research sites C. Prados-Roman et al. 10.5194/acp-18-8549-2018
- Intercomparison of NO<sub>2</sub>, O<sub>4</sub>, O<sub>3</sub> and HCHO slant column measurements by MAX-DOAS and zenith-sky UV–visible spectrometers during CINDI-2 K. Kreher et al. 10.5194/amt-13-2169-2020
- Ground-based validation of the Copernicus Sentinel-5P TROPOMI NO<sub>2</sub> measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia global networks T. Verhoelst et al. 10.5194/amt-14-481-2021
Latest update: 05 Oct 2024
Short summary
This work is about harmonization of differential optical absorption spectroscopy retrieval codes, which is a remote sensing technique widely used to derive atmospheric trace gas amounts. The study is based on ground-based measurements performed during the Multi-Axis DOAS Comparison campaign for Aerosols and Trace gases (MAD-CAT) in Mainz, Germany, in summer 2013. In total, 17 international groups working in the field of the DOAS technique participated in this study.
This work is about harmonization of differential optical absorption spectroscopy retrieval...