Articles | Volume 11, issue 2
https://doi.org/10.5194/amt-11-1207-2018
https://doi.org/10.5194/amt-11-1207-2018
Research article
 | 
02 Mar 2018
Research article |  | 02 Mar 2018

Interlaboratory comparison of δ13C and δD measurements of atmospheric CH4 for combined use of data sets from different laboratories

Taku Umezawa, Carl A. M. Brenninkmeijer, Thomas Röckmann, Carina van der Veen, Stanley C. Tyler, Ryo Fujita, Shinji Morimoto, Shuji Aoki, Todd Sowers, Jochen Schmitt, Michael Bock, Jonas Beck, Hubertus Fischer, Sylvia E. Michel, Bruce H. Vaughn, John B. Miller, James W. C. White, Gordon Brailsford, Hinrich Schaefer, Peter Sperlich, Willi A. Brand, Michael Rothe, Thomas Blunier, David Lowry, Rebecca E. Fisher, Euan G. Nisbet, Andrew L. Rice, Peter Bergamaschi, Cordelia Veidt, and Ingeborg Levin

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Taku Umezawa on behalf of the Authors (04 Jan 2018)  Author's response   Manuscript 
ED: Publish subject to minor revisions (review by editor) (10 Jan 2018) by Frank Keppler
AR by Taku Umezawa on behalf of the Authors (16 Jan 2018)  Author's response   Manuscript 
ED: Publish as is (17 Jan 2018) by Frank Keppler
AR by Taku Umezawa on behalf of the Authors (17 Jan 2018)
Download
Short summary
Isotope measurements are useful for separating different methane sources. However, the lack of widely accepted standards and calibration methods for stable carbon and hydrogen isotopic ratios of methane in air has caused significant measurement offsets among laboratories. We conducted worldwide interlaboratory comparisons, surveyed the literature and assessed them systematically. This study may be of help in future attempts to harmonize data sets of isotopic composition of atmospheric methane.