Articles | Volume 11, issue 4
https://doi.org/10.5194/amt-11-2159-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-11-2159-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The water vapour self-continuum absorption in the infrared atmospheric windows: new laser measurements near 3.3 and 2.0 µm
Loic Lechevallier
Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble,
France
Semen Vasilchenko
Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
Laboratory of Molecular Spectroscopy, V. E. Zuev Institute
of Atmospheric Optics, SB, Russian Academy of Science, 1
Akademician Zuev square, 634021 Tomsk, Russia
Roberto Grilli
Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble,
France
Didier Mondelain
Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
Daniele Romanini
Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
Alain Campargue
CORRESPONDING AUTHOR
Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
Viewed
Total article views: 3,263 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 05 Dec 2017)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,912 | 1,244 | 107 | 3,263 | 92 | 98 |
- HTML: 1,912
- PDF: 1,244
- XML: 107
- Total: 3,263
- BibTeX: 92
- EndNote: 98
Total article views: 2,628 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 16 Apr 2018)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,589 | 944 | 95 | 2,628 | 90 | 87 |
- HTML: 1,589
- PDF: 944
- XML: 95
- Total: 2,628
- BibTeX: 90
- EndNote: 87
Total article views: 635 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 05 Dec 2017)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
323 | 300 | 12 | 635 | 2 | 11 |
- HTML: 323
- PDF: 300
- XML: 12
- Total: 635
- BibTeX: 2
- EndNote: 11
Viewed (geographical distribution)
Total article views: 3,263 (including HTML, PDF, and XML)
Thereof 3,212 with geography defined
and 51 with unknown origin.
Total article views: 2,628 (including HTML, PDF, and XML)
Thereof 2,589 with geography defined
and 39 with unknown origin.
Total article views: 635 (including HTML, PDF, and XML)
Thereof 623 with geography defined
and 12 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
35 citations as recorded by crossref.
- The water vapor self-continuum absorption at 8.45 µm by optical feedback cavity ring down spectroscopy Q. Fournier et al. 10.1016/j.jqsrt.2023.108875
- Absorption in exoplanet atmospheres: Combining experimental and theoretical databases to facilitate calculations of the molecular opacities of water V. Kofman & G. Villanueva 10.1016/j.jqsrt.2021.107708
- Sensitivity of near‐infrared transmittance calculations for remote sensing applications to recent changes in spectroscopic information K. Menang 10.1002/asl.942
- The atmospheric continuum in the “terahertz gap” region (15–700 cm−1): Review of experiments at SOLEIL synchrotron and modeling T. Odintsova et al. 10.1016/j.jms.2022.111603
- The water vapor foreign-continuum in the 1.6 µm window by CRDS at room temperature D. Mondelain et al. 10.1016/j.jqsrt.2020.106923
- Atmospheric observations of the water vapour continuum in the near-infrared windows between 2500 and 6600 cm−1 J. Elsey et al. 10.5194/amt-13-2335-2020
- The HITRAN2020 molecular spectroscopic database I. Gordon et al. 10.1016/j.jqsrt.2021.107949
- Absorption by Water Dimers in Water Vapor IR Spectra at Different Temperatures O. Rodimova 10.1134/S1024856023040140
- Collision-induced absorption and electric quadrupole transitions of N2 by OF-CEAS near 4.0 µm and CRDS near 2.1 µm L. Richard et al. 10.1016/j.jqsrt.2019.01.014
- Boundary layer water vapour statistics from high-spatial-resolution spaceborne imaging spectroscopy M. Richardson et al. 10.5194/amt-14-5555-2021
- 3 µm Water vapor self- and foreign-continuum: New method for determination and new insights into the self-continuum M. Birk et al. 10.1016/j.jqsrt.2020.107134
- Simultaneous collision-induced transitions in H2O+CO2 gas mixtures H. Fleurbaey et al. 10.1016/j.jqsrt.2022.108162
- Measurement of Downwelling Radiance Using a Low-Cost Compact Fourier-Transform Infrared System for Monitoring Atmospheric Conditions H. Choi & J. Seo 10.3390/rs16071136
- The water vapor self-continuum absorption at room temperature in the 1.25 µm window А. Koroleva et al. 10.1016/j.jqsrt.2022.108206
- The inclusion of the MT_CKD water vapor continuum model in the HITRAN molecular spectroscopic database E. Mlawer et al. 10.1016/j.jqsrt.2023.108645
- Characterization of the H2O+CO2 continuum within the infrared transparency windows H. Fleurbaey et al. 10.1016/j.jqsrt.2022.108119
- Temperature Dependence of the Collision‐Induced Absorption Band of O2 Near 1.27 µm S. Kassi et al. 10.1029/2021JD034860
- Simultaneous detection of C<sub>2</sub>H<sub>6</sub>, CH<sub>4</sub>, and <i>δ</i><sup>13</sup>C-CH<sub>4</sub> using optical feedback cavity-enhanced absorption spectroscopy in the mid-infrared region: towards application for dissolved gas measurements L. Lechevallier et al. 10.5194/amt-12-3101-2019
- The water vapor foreign continuum in the 8100-8500 cm−1 spectral range A. Koroleva et al. 10.1016/j.jqsrt.2022.108432
- A cool runaway greenhouse without surface magma ocean F. Selsis et al. 10.1038/s41586-023-06258-3
- Systematization of Published Scientific Graphics Characterizing the Water Vapor Continuum Absorption: III–Publications of 2001–2020 N. Lavrentiev et al. 10.1134/S102485602306012X
- The effect of the differences in near-infrared water vapour continuum models on the absorption of solar radiation K. Menang et al. 10.1007/s00703-021-00781-6
- Dimer Absorption within Water Vapor Bands in the IR Region Y. Bogdanova et al. 10.1134/S1024856020020013
- Far-infrared self-continuum absorption of H216O and H218O (15–500 cm−1) T. Odintsova et al. 10.1016/j.jqsrt.2019.02.012
- The water vapour self- and foreign-continua in the 1.6 µm and 2.3 µm windows by CRDS at room temperature S. Vasilchenko et al. 10.1016/j.jqsrt.2019.02.016
- Experimental research on ppb-level ozone detection method based on gas phase chemiluminescence technology M. Zhang et al. 10.1080/03067319.2024.2307981
- A membrane inlet laser spectrometer for in situ measurement of triple water isotopologues A. Wohleber et al. 10.1002/lom3.10660
- Detection of nuclear spin isomers of water molecules using self-scanning Tm-doped fiber laser A. Budarnykh et al. 10.1088/1612-202X/ab88d5
- The Role of the Continuum Absorption Definition in the Case of H2O–N2 Absorption O. Rodimova 10.1134/S1024856022020099
- Accurate Laboratory Measurement of the O2 Collision‐Induced Absorption Band Near 1.27 μm D. Mondelain et al. 10.1029/2018JD029317
- Potential of AOD Retrieval Using Atmospheric Emitted Radiance Interferometer (AERI) J. Seo et al. 10.3390/rs14020407
- Measurements of the water vapor continuum absorption by OFCEAS at 3.50 µm and 2.32 µm H. Fleurbaey et al. 10.1016/j.jqsrt.2021.108004
- The binary absorption coefficients for H2 + CO2 mixtures in the 2.12–2.35 µm spectral region determined by CRDS and by semi-empirical calculations D. Mondelain et al. 10.1016/j.jqsrt.2020.107454
- Foreign-Continuum Absorption in the Wings of IR H2O Bands O. Rodimova & T. Klimeshina 10.1134/S1024856021030131
- Water vapor and lapse rate feedbacks in the climate system R. Colman & B. Soden 10.1103/RevModPhys.93.045002
35 citations as recorded by crossref.
- The water vapor self-continuum absorption at 8.45 µm by optical feedback cavity ring down spectroscopy Q. Fournier et al. 10.1016/j.jqsrt.2023.108875
- Absorption in exoplanet atmospheres: Combining experimental and theoretical databases to facilitate calculations of the molecular opacities of water V. Kofman & G. Villanueva 10.1016/j.jqsrt.2021.107708
- Sensitivity of near‐infrared transmittance calculations for remote sensing applications to recent changes in spectroscopic information K. Menang 10.1002/asl.942
- The atmospheric continuum in the “terahertz gap” region (15–700 cm−1): Review of experiments at SOLEIL synchrotron and modeling T. Odintsova et al. 10.1016/j.jms.2022.111603
- The water vapor foreign-continuum in the 1.6 µm window by CRDS at room temperature D. Mondelain et al. 10.1016/j.jqsrt.2020.106923
- Atmospheric observations of the water vapour continuum in the near-infrared windows between 2500 and 6600 cm−1 J. Elsey et al. 10.5194/amt-13-2335-2020
- The HITRAN2020 molecular spectroscopic database I. Gordon et al. 10.1016/j.jqsrt.2021.107949
- Absorption by Water Dimers in Water Vapor IR Spectra at Different Temperatures O. Rodimova 10.1134/S1024856023040140
- Collision-induced absorption and electric quadrupole transitions of N2 by OF-CEAS near 4.0 µm and CRDS near 2.1 µm L. Richard et al. 10.1016/j.jqsrt.2019.01.014
- Boundary layer water vapour statistics from high-spatial-resolution spaceborne imaging spectroscopy M. Richardson et al. 10.5194/amt-14-5555-2021
- 3 µm Water vapor self- and foreign-continuum: New method for determination and new insights into the self-continuum M. Birk et al. 10.1016/j.jqsrt.2020.107134
- Simultaneous collision-induced transitions in H2O+CO2 gas mixtures H. Fleurbaey et al. 10.1016/j.jqsrt.2022.108162
- Measurement of Downwelling Radiance Using a Low-Cost Compact Fourier-Transform Infrared System for Monitoring Atmospheric Conditions H. Choi & J. Seo 10.3390/rs16071136
- The water vapor self-continuum absorption at room temperature in the 1.25 µm window А. Koroleva et al. 10.1016/j.jqsrt.2022.108206
- The inclusion of the MT_CKD water vapor continuum model in the HITRAN molecular spectroscopic database E. Mlawer et al. 10.1016/j.jqsrt.2023.108645
- Characterization of the H2O+CO2 continuum within the infrared transparency windows H. Fleurbaey et al. 10.1016/j.jqsrt.2022.108119
- Temperature Dependence of the Collision‐Induced Absorption Band of O2 Near 1.27 µm S. Kassi et al. 10.1029/2021JD034860
- Simultaneous detection of C<sub>2</sub>H<sub>6</sub>, CH<sub>4</sub>, and <i>δ</i><sup>13</sup>C-CH<sub>4</sub> using optical feedback cavity-enhanced absorption spectroscopy in the mid-infrared region: towards application for dissolved gas measurements L. Lechevallier et al. 10.5194/amt-12-3101-2019
- The water vapor foreign continuum in the 8100-8500 cm−1 spectral range A. Koroleva et al. 10.1016/j.jqsrt.2022.108432
- A cool runaway greenhouse without surface magma ocean F. Selsis et al. 10.1038/s41586-023-06258-3
- Systematization of Published Scientific Graphics Characterizing the Water Vapor Continuum Absorption: III–Publications of 2001–2020 N. Lavrentiev et al. 10.1134/S102485602306012X
- The effect of the differences in near-infrared water vapour continuum models on the absorption of solar radiation K. Menang et al. 10.1007/s00703-021-00781-6
- Dimer Absorption within Water Vapor Bands in the IR Region Y. Bogdanova et al. 10.1134/S1024856020020013
- Far-infrared self-continuum absorption of H216O and H218O (15–500 cm−1) T. Odintsova et al. 10.1016/j.jqsrt.2019.02.012
- The water vapour self- and foreign-continua in the 1.6 µm and 2.3 µm windows by CRDS at room temperature S. Vasilchenko et al. 10.1016/j.jqsrt.2019.02.016
- Experimental research on ppb-level ozone detection method based on gas phase chemiluminescence technology M. Zhang et al. 10.1080/03067319.2024.2307981
- A membrane inlet laser spectrometer for in situ measurement of triple water isotopologues A. Wohleber et al. 10.1002/lom3.10660
- Detection of nuclear spin isomers of water molecules using self-scanning Tm-doped fiber laser A. Budarnykh et al. 10.1088/1612-202X/ab88d5
- The Role of the Continuum Absorption Definition in the Case of H2O–N2 Absorption O. Rodimova 10.1134/S1024856022020099
- Accurate Laboratory Measurement of the O2 Collision‐Induced Absorption Band Near 1.27 μm D. Mondelain et al. 10.1029/2018JD029317
- Potential of AOD Retrieval Using Atmospheric Emitted Radiance Interferometer (AERI) J. Seo et al. 10.3390/rs14020407
- Measurements of the water vapor continuum absorption by OFCEAS at 3.50 µm and 2.32 µm H. Fleurbaey et al. 10.1016/j.jqsrt.2021.108004
- The binary absorption coefficients for H2 + CO2 mixtures in the 2.12–2.35 µm spectral region determined by CRDS and by semi-empirical calculations D. Mondelain et al. 10.1016/j.jqsrt.2020.107454
- Foreign-Continuum Absorption in the Wings of IR H2O Bands O. Rodimova & T. Klimeshina 10.1134/S1024856021030131
- Water vapor and lapse rate feedbacks in the climate system R. Colman & B. Soden 10.1103/RevModPhys.93.045002
Latest update: 20 Jan 2025
Short summary
The amplitude, the temperature dependence, and the physical origin of the water vapour absorption continuum are a long standing issue in molecular spectroscopy with a direct impact in atmospheric and planetary sciences. Using highly sensitive laser spectrometers, the water self continuum has been determined with unprecedented sensitivity in infrared atmospheric transparency windows.
The amplitude, the temperature dependence, and the physical origin of the water vapour...