Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
AMT | Articles | Volume 11, issue 4
Atmos. Meas. Tech., 11, 2257–2277, 2018
https://doi.org/10.5194/amt-11-2257-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 11, 2257–2277, 2018
https://doi.org/10.5194/amt-11-2257-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 19 Apr 2018

Research article | 19 Apr 2018

Spatial distribution analysis of the OMI aerosol layer height: a pixel-by-pixel comparison to CALIOP observations

Julien Chimot et al.

Viewed

Total article views: 1,533 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
886 614 33 1,533 35 42
  • HTML: 886
  • PDF: 614
  • XML: 33
  • Total: 1,533
  • BibTeX: 35
  • EndNote: 42
Views and downloads (calculated since 07 Nov 2017)
Cumulative views and downloads (calculated since 07 Nov 2017)

Viewed (geographical distribution)

Total article views: 1,444 (including HTML, PDF, and XML) Thereof 1,430 with geography defined and 14 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

Discussed (preprint)

No discussed metrics found.
Latest update: 19 Sep 2020
Publications Copernicus
Download
Short summary
Aerosol layer height (ALH) was retrieved from the OMI 477 nm O2–O2 band and its spatial pattern evaluated over selected cloud-free scenes. We used a neural network approach previously trained and developed. Comparison with CALIOP aerosol level 2 products over urban and industrial pollution in east China shows consistent spatial patterns. In addition, we show the possibility to determine the height of thick aerosol layers released by intensive biomass burning events in South America and Russia.
Aerosol layer height (ALH) was retrieved from the OMI 477 nm O2–O2 band and its spatial pattern...
Citation