Articles | Volume 12, issue 7
https://doi.org/10.5194/amt-12-3551-2019
https://doi.org/10.5194/amt-12-3551-2019
Research article
 | Highlight paper
 | 
04 Jul 2019
Research article | Highlight paper |  | 04 Jul 2019

Description of a formaldehyde retrieval algorithm for the Geostationary Environment Monitoring Spectrometer (GEMS)

Hyeong-Ahn Kwon, Rokjin J. Park, Gonzalo González Abad, Kelly Chance, Thomas P. Kurosu, Jhoon Kim, Isabelle De Smedt, Michel Van Roozendael, Enno Peters, and John Burrows

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Rokjin Park on behalf of the Authors (16 May 2019)  Author's response   Manuscript 
ED: Publish as is (23 May 2019) by Helen Worden
AR by Rokjin Park on behalf of the Authors (29 May 2019)  Manuscript 
Download
Short summary
The Geostationary Environment Monitoring Spectrometer (GEMS) will be launched by South Korea in 2019, and it will measure radiances ranging from 300 to 500 nm every hour with a fine spatial resolution of 7 km x 8 km over Seoul in South Korea to monitor column concentrations of air pollutants including O3, NO2, SO2, and HCHO, as well as aerosol optical properties. This paper describes a GEMS formaldehyde retrieval algorithm including a number of sensitivity tests for algorithm evaluation.