Articles | Volume 12, issue 11
https://doi.org/10.5194/amt-12-5979-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-12-5979-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
TCCON and NDACC XCO measurements: difference, discussion and application
Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Bavo Langerock
Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Corinne Vigouroux
Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Mahesh Kumar Sha
Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Christian Hermans
Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Jean-Marc Metzger
UMS 3365 – OSU Réunion, Université de La Réunion, Saint-Denis, Réunion, France
Huilin Chen
Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen (RUG), Groningen, the Netherlands
Michel Ramonet
Laboratoire des Sciences du Climat et de l'Environnement (LSCE/IPSL), UMR CEA-CNRS-UVSQ, Gif-sur-Yvette, France
Rigel Kivi
Finnish Meteorological Institute (FMI), Space and Earth Observation Centre, Sodankylä, Finland
Pauli Heikkinen
Finnish Meteorological Institute (FMI), Space and Earth Observation Centre, Sodankylä, Finland
Dan Smale
National Institute of Water and Atmospheric Research (NIWA), Lauder, New Zealand
David F. Pollard
National Institute of Water and Atmospheric Research (NIWA), Lauder, New Zealand
Nicholas Jones
Centre for Atmospheric Chemistry, University of Wollongong, Wollongong, Australia
Voltaire A. Velazco
Centre for Atmospheric Chemistry, University of Wollongong, Wollongong, Australia
Omaira E. García
Izaña Atmospheric Research Centre (IARC), Meteorological State Agency of Spain (AEMET), Santa Cruz de Tenerife, Spain
Matthias Schneider
Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research, Karlsruhe, Germany
Mathias Palm
Institute of Environmental Physics, University of Bremen, Bremen, Germany
Thorsten Warneke
Institute of Environmental Physics, University of Bremen, Bremen, Germany
Martine De Mazière
Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Viewed
Total article views: 4,195 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 10 Jul 2019)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,913 | 1,215 | 67 | 4,195 | 94 | 81 |
- HTML: 2,913
- PDF: 1,215
- XML: 67
- Total: 4,195
- BibTeX: 94
- EndNote: 81
Total article views: 2,969 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 18 Nov 2019)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,290 | 617 | 62 | 2,969 | 86 | 75 |
- HTML: 2,290
- PDF: 617
- XML: 62
- Total: 2,969
- BibTeX: 86
- EndNote: 75
Total article views: 1,226 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 10 Jul 2019)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
623 | 598 | 5 | 1,226 | 8 | 6 |
- HTML: 623
- PDF: 598
- XML: 5
- Total: 1,226
- BibTeX: 8
- EndNote: 6
Viewed (geographical distribution)
Total article views: 4,195 (including HTML, PDF, and XML)
Thereof 3,742 with geography defined
and 453 with unknown origin.
Total article views: 2,969 (including HTML, PDF, and XML)
Thereof 2,804 with geography defined
and 165 with unknown origin.
Total article views: 1,226 (including HTML, PDF, and XML)
Thereof 938 with geography defined
and 288 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
19 citations as recorded by crossref.
- Intercomparison of CO measurements from TROPOMI, ACE-FTS, and a high-Arctic ground-based Fourier transform spectrometer T. Wizenberg et al. 10.5194/amt-14-7707-2021
- The carbon sink of the Coral Sea, the world's second largest marginal sea, weakened during 2006–2018 S. Zhang et al. 10.1016/j.scitotenv.2023.162219
- Tropospheric and stratospheric NO retrieved from ground-based Fourier-transform infrared (FTIR) measurements M. Zhou et al. 10.5194/amt-14-6233-2021
- Impact of Molecular Spectroscopy on Carbon Monoxide Abundances from SCIAMACHY P. Hochstaffl & F. Schreier 10.3390/rs12071084
- Long-range transport of CO and aerosols from Siberian biomass burning over northern Japan during 18–20 May 2016 T. Ngoc Trieu et al. 10.1016/j.envpol.2023.121129
- Evidence of a dual African and Australian biomass burning influence on the vertical distribution of aerosol and carbon monoxide over the southwest Indian Ocean basin in early 2020 N. Bègue et al. 10.5194/acp-24-8031-2024
- 2019–20 Australian Bushfires and Anomalies in Carbon Monoxide Surface and Column Measurements S. John et al. 10.3390/atmos12060755
- Observations of atmospheric CO2 and CO based on in-situ and ground-based remote sensing measurements at Hefei site, China C. Shan et al. 10.1016/j.scitotenv.2022.158188
- Significance of Various Sensing Mechanisms for Detecting Local and Atmospheric Greenhouse Gases: A Review N. Bassous et al. 10.1002/adsr.202300094
- A comparison of carbon monoxide retrievals between the MOPITT satellite and Canadian high-Arctic ground-based NDACC and TCCON FTIR measurements A. Jalali et al. 10.5194/amt-15-6837-2022
- Retrieval of Metop-A/IASI N2O Profiles and Validation with NDACC FTIR Data B. Barret et al. 10.3390/atmos12020219
- Transport and Variability of Tropospheric Ozone over Oceania and Southern Pacific during the 2019–20 Australian Bushfires N. Bègue et al. 10.3390/rs13163092
- Australian Fire Emissions of Carbon Monoxide Estimated by Global Biomass Burning Inventories: Variability and Observational Constraints M. Desservettaz et al. 10.1029/2021JD035925
- A Coupled CH4, CO and CO2 Simulation for Improved Chemical Source Modeling B. Bukosa et al. 10.3390/atmos14050764
- Analysis of CO<sub>2</sub>, CH<sub>4</sub>, and CO surface and column concentrations observed at Réunion Island by assessing WRF-Chem simulations S. Callewaert et al. 10.5194/acp-22-7763-2022
- Shipborne measurements of XCO<sub>2</sub>, XCH<sub>4</sub>, and XCO above the Pacific Ocean and comparison to CAMS atmospheric analyses and S5P/TROPOMI M. Knapp et al. 10.5194/essd-13-199-2021
- Inferring the vertical distribution of CO and CO2 from TCCON total column values using the TARDISS algorithm H. Parker et al. 10.5194/amt-16-2601-2023
- Validation of methane and carbon monoxide from Sentinel-5 Precursor using TCCON and NDACC-IRWG stations M. Sha et al. 10.5194/amt-14-6249-2021
- Remote Sensing of Atmospheric Hydrogen Fluoride (HF) over Hefei, China with Ground-Based High-Resolution Fourier Transform Infrared (FTIR) Spectrometry H. Yin et al. 10.3390/rs13040791
19 citations as recorded by crossref.
- Intercomparison of CO measurements from TROPOMI, ACE-FTS, and a high-Arctic ground-based Fourier transform spectrometer T. Wizenberg et al. 10.5194/amt-14-7707-2021
- The carbon sink of the Coral Sea, the world's second largest marginal sea, weakened during 2006–2018 S. Zhang et al. 10.1016/j.scitotenv.2023.162219
- Tropospheric and stratospheric NO retrieved from ground-based Fourier-transform infrared (FTIR) measurements M. Zhou et al. 10.5194/amt-14-6233-2021
- Impact of Molecular Spectroscopy on Carbon Monoxide Abundances from SCIAMACHY P. Hochstaffl & F. Schreier 10.3390/rs12071084
- Long-range transport of CO and aerosols from Siberian biomass burning over northern Japan during 18–20 May 2016 T. Ngoc Trieu et al. 10.1016/j.envpol.2023.121129
- Evidence of a dual African and Australian biomass burning influence on the vertical distribution of aerosol and carbon monoxide over the southwest Indian Ocean basin in early 2020 N. Bègue et al. 10.5194/acp-24-8031-2024
- 2019–20 Australian Bushfires and Anomalies in Carbon Monoxide Surface and Column Measurements S. John et al. 10.3390/atmos12060755
- Observations of atmospheric CO2 and CO based on in-situ and ground-based remote sensing measurements at Hefei site, China C. Shan et al. 10.1016/j.scitotenv.2022.158188
- Significance of Various Sensing Mechanisms for Detecting Local and Atmospheric Greenhouse Gases: A Review N. Bassous et al. 10.1002/adsr.202300094
- A comparison of carbon monoxide retrievals between the MOPITT satellite and Canadian high-Arctic ground-based NDACC and TCCON FTIR measurements A. Jalali et al. 10.5194/amt-15-6837-2022
- Retrieval of Metop-A/IASI N2O Profiles and Validation with NDACC FTIR Data B. Barret et al. 10.3390/atmos12020219
- Transport and Variability of Tropospheric Ozone over Oceania and Southern Pacific during the 2019–20 Australian Bushfires N. Bègue et al. 10.3390/rs13163092
- Australian Fire Emissions of Carbon Monoxide Estimated by Global Biomass Burning Inventories: Variability and Observational Constraints M. Desservettaz et al. 10.1029/2021JD035925
- A Coupled CH4, CO and CO2 Simulation for Improved Chemical Source Modeling B. Bukosa et al. 10.3390/atmos14050764
- Analysis of CO<sub>2</sub>, CH<sub>4</sub>, and CO surface and column concentrations observed at Réunion Island by assessing WRF-Chem simulations S. Callewaert et al. 10.5194/acp-22-7763-2022
- Shipborne measurements of XCO<sub>2</sub>, XCH<sub>4</sub>, and XCO above the Pacific Ocean and comparison to CAMS atmospheric analyses and S5P/TROPOMI M. Knapp et al. 10.5194/essd-13-199-2021
- Inferring the vertical distribution of CO and CO2 from TCCON total column values using the TARDISS algorithm H. Parker et al. 10.5194/amt-16-2601-2023
- Validation of methane and carbon monoxide from Sentinel-5 Precursor using TCCON and NDACC-IRWG stations M. Sha et al. 10.5194/amt-14-6249-2021
- Remote Sensing of Atmospheric Hydrogen Fluoride (HF) over Hefei, China with Ground-Based High-Resolution Fourier Transform Infrared (FTIR) Spectrometry H. Yin et al. 10.3390/rs13040791
Latest update: 20 Nov 2024
Short summary
The differences between the TCCON and NDACC XCO measurements are investigated and discussed based on six NDACC–TCCON sites (Ny-Ålesund, Bremen, Izaña, Saint-Denis, Wollongong and Lauder) using data over the period 2007–2017. The smoothing errors from both TCCON and NDACC measurements are estimated. In addition, the scaling factor of the TCCON XCO data is reassessed by comparing with the AirCore measurements at Sodankylä and Orléans.
The differences between the TCCON and NDACC XCO measurements are investigated and discussed...