Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
Download
Short summary
We present a methodology to infer the contribution of mineral dust and non-dust aerosol to the absorbing aerosol optical depth (AAOD) of mixed aerosol layers. The method presents an adaptation of a lidar-based aerosol-type separation technique to passive measurements with AERONET sun photometers by using lidar-specific parameters obtained from the AERONET inversion. The findings on BC-related AAOD are compared to CAMS aerosol reanalysis data with promising results for sites in east Asia.
AMT | Articles | Volume 12, issue 1
Atmos. Meas. Tech., 12, 607–618, 2019
https://doi.org/10.5194/amt-12-607-2019
Atmos. Meas. Tech., 12, 607–618, 2019
https://doi.org/10.5194/amt-12-607-2019

Research article 30 Jan 2019

Research article | 30 Jan 2019

Technical note: Absorption aerosol optical depth components from AERONET observations of mixed dust plumes

Sung-Kyun Shin et al.

Viewed

Total article views: 1,623 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,084 517 22 1,623 30 40
  • HTML: 1,084
  • PDF: 517
  • XML: 22
  • Total: 1,623
  • BibTeX: 30
  • EndNote: 40
Views and downloads (calculated since 22 Oct 2018)
Cumulative views and downloads (calculated since 22 Oct 2018)

Viewed (geographical distribution)

Total article views: 1,310 (including HTML, PDF, and XML) Thereof 1,298 with geography defined and 12 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 19 Jan 2021
Publications Copernicus
Download
Short summary
We present a methodology to infer the contribution of mineral dust and non-dust aerosol to the absorbing aerosol optical depth (AAOD) of mixed aerosol layers. The method presents an adaptation of a lidar-based aerosol-type separation technique to passive measurements with AERONET sun photometers by using lidar-specific parameters obtained from the AERONET inversion. The findings on BC-related AAOD are compared to CAMS aerosol reanalysis data with promising results for sites in east Asia.
Citation