Articles | Volume 12, issue 12
https://doi.org/10.5194/amt-12-6449-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-12-6449-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Intercomparison of nitrous acid (HONO) measurement techniques in a megacity (Beijing)
Leigh R. Crilley
School of Geography, Earth and Environmental Science, University of
Birmingham, Edgbaston, Birmingham, B15 2TT, UK
Louisa J. Kramer
School of Geography, Earth and Environmental Science, University of
Birmingham, Edgbaston, Birmingham, B15 2TT, UK
Bin Ouyang
Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
Key Laboratory of Environment Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031, China
Wenqian Zhang
Beijing National Laboratory for Molecular Sciences (BNLMS), State Key
Laboratory for Structural Chemistry of Unstable and Stable Species, CAS
Research/Education Center for Excellence in Molecular Sciences, Institute of
Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Shengrui Tong
Beijing National Laboratory for Molecular Sciences (BNLMS), State Key
Laboratory for Structural Chemistry of Unstable and Stable Species, CAS
Research/Education Center for Excellence in Molecular Sciences, Institute of
Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Beijing National Laboratory for Molecular Sciences (BNLMS), State Key
Laboratory for Structural Chemistry of Unstable and Stable Species, CAS
Research/Education Center for Excellence in Molecular Sciences, Institute of
Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Ke Tang
Key Laboratory of Environment Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031, China
Min Qin
Key Laboratory of Environment Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031, China
Pinhua Xie
Key Laboratory of Environment Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031, China
Marvin D. Shaw
Wolfson Atmospheric Chemistry Laboratories, University of York,
Heslington, York, YO10 5DD, UK
National Centre for Atmospheric Science, UK
Alastair C. Lewis
Wolfson Atmospheric Chemistry Laboratories, University of York,
Heslington, York, YO10 5DD, UK
National Centre for Atmospheric Science, UK
Archit Mehra
Centre for Atmospheric Science, School of Earth and Environmental
Sciences, University of Manchester, Manchester, M13 9PL, UK
Thomas J. Bannan
Centre for Atmospheric Science, School of Earth and Environmental
Sciences, University of Manchester, Manchester, M13 9PL, UK
Stephen D. Worrall
Centre for Atmospheric Science, School of Earth and Environmental
Sciences, University of Manchester, Manchester, M13 9PL, UK
now at: Chemical Engineering and Applied Chemistry, School of
Engineering and Applied Sciences, Aston University, Birmingham, B4 7ET, UK
Michael Priestley
Centre for Atmospheric Science, School of Earth and Environmental
Sciences, University of Manchester, Manchester, M13 9PL, UK
now at: Atmospheric Science, Department of Chemistry and
Molecular Biology, University of Gothenburg, Gothenburg, Sweden
Asan Bacak
Centre for Atmospheric Science, School of Earth and Environmental
Sciences, University of Manchester, Manchester, M13 9PL, UK
Centre for Atmospheric Science, School of Earth and Environmental
Sciences, University of Manchester, Manchester, M13 9PL, UK
James Allan
Centre for Atmospheric Science, School of Earth and Environmental
Sciences, University of Manchester, Manchester, M13 9PL, UK
National Centre for Atmospheric Science, UK
Carl J. Percival
Centre for Atmospheric Science, School of Earth and Environmental
Sciences, University of Manchester, Manchester, M13 9PL, UK
now at: Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
Olalekan A. M. Popoola
Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
Roderic L. Jones
Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
School of Geography, Earth and Environmental Science, University of
Birmingham, Edgbaston, Birmingham, B15 2TT, UK
Viewed
Total article views: 5,063 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 15 May 2019)
| HTML | XML | Total | Supplement | BibTeX | EndNote | |
|---|---|---|---|---|---|---|
| 3,539 | 1,422 | 102 | 5,063 | 467 | 147 | 187 |
- HTML: 3,539
- PDF: 1,422
- XML: 102
- Total: 5,063
- Supplement: 467
- BibTeX: 147
- EndNote: 187
Total article views: 3,727 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 09 Dec 2019)
| HTML | XML | Total | Supplement | BibTeX | EndNote | |
|---|---|---|---|---|---|---|
| 2,709 | 920 | 98 | 3,727 | 274 | 132 | 168 |
- HTML: 2,709
- PDF: 920
- XML: 98
- Total: 3,727
- Supplement: 274
- BibTeX: 132
- EndNote: 168
Total article views: 1,336 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 15 May 2019)
| HTML | XML | Total | Supplement | BibTeX | EndNote | |
|---|---|---|---|---|---|---|
| 830 | 502 | 4 | 1,336 | 193 | 15 | 19 |
- HTML: 830
- PDF: 502
- XML: 4
- Total: 1,336
- Supplement: 193
- BibTeX: 15
- EndNote: 19
Viewed (geographical distribution)
Total article views: 5,063 (including HTML, PDF, and XML)
Thereof 4,640 with geography defined
and 423 with unknown origin.
Total article views: 3,727 (including HTML, PDF, and XML)
Thereof 3,593 with geography defined
and 134 with unknown origin.
Total article views: 1,336 (including HTML, PDF, and XML)
Thereof 1,047 with geography defined
and 289 with unknown origin.
| Country | # | Views | % |
|---|
| Country | # | Views | % |
|---|
| Country | # | Views | % |
|---|
| Total: | 0 |
| HTML: | 0 |
| PDF: | 0 |
| XML: | 0 |
- 1
1
| Total: | 0 |
| HTML: | 0 |
| PDF: | 0 |
| XML: | 0 |
- 1
1
| Total: | 0 |
| HTML: | 0 |
| PDF: | 0 |
| XML: | 0 |
- 1
1
Latest update: 06 Nov 2025
Short summary
Nitrous acid (HONO) is key species for understanding tropospheric chemistry, yet accurate and precise measurements are challenging. Here we report an inter–comparison exercise of a number of instruments that measured HONO in a highly polluted location (Beijing). All instruments agreed on the temporal trends yet displayed divergence in absolute concentrations. The cause of this divergence was unclear, but it may in part be due to spatial variability in instrument location.
Nitrous acid (HONO) is key species for understanding tropospheric chemistry, yet accurate and...