Articles | Volume 13, issue 7
https://doi.org/10.5194/amt-13-3751-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-13-3751-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
TROPOMI–Sentinel-5 Precursor formaldehyde validation using an extensive network of ground-based Fourier-transform infrared stations
Corinne Vigouroux
CORRESPONDING AUTHOR
Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Bavo Langerock
Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Carlos Augusto Bauer Aquino
Instituto Federal de Educaçao, Ciência e Tecnologia de Rondônia (IFRO), Porto Velho, Brazil
Thomas Blumenstock
Karlsruhe Institute of Technology (KIT), Institute for Meteorology and Climate Research (IMK-ASF), Karlsruhe, Germany
Zhibin Cheng
German Aerospace Centre (DLR), Remote Sensing Technology Institute, Oberpfaffenhofen, 82234 Weßling, Germany
Martine De Mazière
Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Isabelle De Smedt
Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Michel Grutter
Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México (UNAM), Mexico City, México
James W. Hannigan
Atmospheric Chemistry, Observations & Modeling, National Center for Atmospheric Research (NCAR), Boulder, CO, USA
Nicholas Jones
Centre for Atmospheric Chemistry, University of Wollongong, Wollongong, Australia
Rigel Kivi
Finnish Meteorological Institute (FMI), Sodankylä, Finland
Diego Loyola
German Aerospace Centre (DLR), Remote Sensing Technology Institute, Oberpfaffenhofen, 82234 Weßling, Germany
Erik Lutsch
Department of Physics, University of Toronto, Toronto, Canada
Emmanuel Mahieu
Institut d'Astrophysique et de Géophysique, Université de Liège, Liège, Belgium
Maria Makarova
Saint Petersburg State University, Atmospheric Physics Department, St. Petersburg, Russia
Jean-Marc Metzger
Observatoire des Sciences de l’Univers Réunion (OSU-R), UMS 3365, Université de la Réunion,
Saint-Denis, France
Isamu Morino
National Institute for Environmental Studies (NIES), Tsukuba, Ibaraki 305-8506, Japan
Isao Murata
Graduate School of Environment Studies, Tohoku University, Sendai 980-8578, Japan
Tomoo Nagahama
Institute for Space-Earth Environmental Research (ISEE), Nagoya University, Nagoya, Japan
Justus Notholt
Institute of Environmental Physics, University of Bremen, Bremen, Germany
Ivan Ortega
Atmospheric Chemistry, Observations & Modeling, National Center for Atmospheric Research (NCAR), Boulder, CO, USA
Mathias Palm
Institute of Environmental Physics, University of Bremen, Bremen, Germany
Gaia Pinardi
Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Amelie Röhling
Karlsruhe Institute of Technology (KIT), Institute for Meteorology and Climate Research (IMK-ASF), Karlsruhe, Germany
Dan Smale
National Institute of Water and Atmospheric Research Ltd (NIWA), Lauder, New Zealand
Wolfgang Stremme
Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México (UNAM), Mexico City, México
Kim Strong
Department of Physics, University of Toronto, Toronto, Canada
Ralf Sussmann
Karlsruhe Institute of Technology, IMK-IFU, Garmisch-Partenkirchen, Germany
LERMA-IPSL, Sorbonne Université, CNRS, Observatoire de Paris, PSL Université, 75005 Paris, France
Michel van Roozendael
Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Pucai Wang
Institute of Atmospheric Physics, Chinese Academy of Sciences (CAS), Beijing, China
Holger Winkler
Institute of Environmental Physics, University of Bremen, Bremen, Germany
Viewed
Total article views: 5,878 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 17 Feb 2020)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
3,857 | 1,933 | 88 | 5,878 | 111 | 107 |
- HTML: 3,857
- PDF: 1,933
- XML: 88
- Total: 5,878
- BibTeX: 111
- EndNote: 107
Total article views: 4,536 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 10 Jul 2020)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
3,177 | 1,281 | 78 | 4,536 | 94 | 97 |
- HTML: 3,177
- PDF: 1,281
- XML: 78
- Total: 4,536
- BibTeX: 94
- EndNote: 97
Total article views: 1,342 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 17 Feb 2020)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
680 | 652 | 10 | 1,342 | 17 | 10 |
- HTML: 680
- PDF: 652
- XML: 10
- Total: 1,342
- BibTeX: 17
- EndNote: 10
Viewed (geographical distribution)
Total article views: 5,878 (including HTML, PDF, and XML)
Thereof 5,367 with geography defined
and 511 with unknown origin.
Total article views: 4,536 (including HTML, PDF, and XML)
Thereof 4,183 with geography defined
and 353 with unknown origin.
Total article views: 1,342 (including HTML, PDF, and XML)
Thereof 1,184 with geography defined
and 158 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
80 citations as recorded by crossref.
- Network for the Detection of Atmospheric Composition Change (NDACC) Fourier transform infrared (FTIR) trace gas measurements at the University of Toronto Atmospheric Observatory from 2002 to 2020 S. Yamanouchi et al. 10.5194/essd-15-3387-2023
- Assessment of Updated Fuel‐Based Emissions Inventories Over the Contiguous United States Using TROPOMI NO2 Retrievals M. Li et al. 10.1029/2021JD035484
- Spatial assessment of the seasonal impact of brickfields on air pollution in Dhaka metropolitan area using ordination techniques M. Mahboob et al. 10.1007/s11869-023-01345-w
- Unveiling Air Pollution in Crimean Mountain Rivers: Analysis of Sentinel-5 Satellite Images Using Google Earth Engine (GEE) V. Tabunschik et al. 10.3390/rs15133364
- Sources of Formaldehyde in U.S. Oil and Gas Production Regions B. Dix et al. 10.1021/acsearthspacechem.3c00203
- Comparative assessment of TROPOMI and OMI formaldehyde observations and validation against MAX-DOAS network column measurements I. De Smedt et al. 10.5194/acp-21-12561-2021
- First Chinese ultraviolet–visible hyperspectral satellite instrument implicating global air quality during the COVID-19 pandemic in early 2020 C. Liu et al. 10.1038/s41377-022-00722-x
- Evaluating CHASER V4.0 global formaldehyde (HCHO) simulations using satellite, aircraft, and ground-based remote-sensing observations H. Hoque et al. 10.5194/gmd-17-5545-2024
- Investigation of 2021 wildfire impacts on air quality in southwestern Turkey M. Eke et al. 10.1016/j.atmosenv.2024.120445
- Global Formaldehyde Products From the Ozone Mapping and Profiler Suite (OMPS) Nadir Mappers on Suomi NPP and NOAA‐20 C. Nowlan et al. 10.1029/2022EA002643
- Observing Downwind Structures of Urban HCHO Plumes From Space: Implications to Non‐Methane Volatile Organic Compound Emissions X. Zuo et al. 10.1029/2023GL106062
- Russian Investigations in the Field of Amtospheric Radiation in 2019–2022 Y. Timofeyev et al. 10.31857/S000235152307012X
- Kilometer-level glyoxal retrieval via satellite for anthropogenic volatile organic compound emission source and secondary organic aerosol formation identification Y. Chen et al. 10.1016/j.rse.2021.112852
- Air quality monitoring in Ukraine during 2022 military conflict using Sentinel-5P imagery M. Mehrabi et al. 10.1007/s11869-023-01488-w
- Aggravated surface O3 pollution primarily driven by meteorological variations in China during the 2020 COVID-19 pandemic lockdown period Z. Lu et al. 10.5194/acp-24-7793-2024
- Role of chemical production and depositional losses on formaldehyde in the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM) T. Skipper et al. 10.5194/acp-24-12903-2024
- Atmospheric Impacts of COVID-19 on NOx and VOC Levels over China Based on TROPOMI and IASI Satellite Data and Modeling T. Stavrakou et al. 10.3390/atmos12080946
- Optimizing the Isoprene Emission Model MEGAN With Satellite and Ground‐Based Observational Constraints C. DiMaria et al. 10.1029/2022JD037822
- Different Response Mechanisms of N‐Bearing Components to Emission Reduction Across China During COVID‐19 Lockdown Period R. Li et al. 10.1029/2023JD039496
- Validation of OMPS Suomi NPP and OMPS NOAA‐20 Formaldehyde Total Columns With NDACC FTIR Observations H. Kwon et al. 10.1029/2022EA002778
- Direct measurements of ozone response to emissions perturbations in California S. Wu et al. 10.5194/acp-22-4929-2022
- Comparison of TROPOMI NO2, CO, HCHO, and SO2 data against ground‐level measurements in close proximity to large anthropogenic emission sources in the example of Ukraine M. Savenets et al. 10.1002/met.2108
- Spatiotemporal changes in tropospheric nitrogen dioxide hotspot due to emission switch-off condition in the view of lockdown emergency in India S. Sarkar & D. Mondal 10.1007/s11869-022-01240-w
- Characterization and potential for reducing optical resonances in Fourier transform infrared spectrometers of the Network for the Detection of Atmospheric Composition Change (NDACC) T. Blumenstock et al. 10.5194/amt-14-1239-2021
- Intercomparison of CO measurements from TROPOMI, ACE-FTS, and a high-Arctic ground-based Fourier transform spectrometer T. Wizenberg et al. 10.5194/amt-14-7707-2021
- Cross-evaluating WRF-Chem v4.1.2, TROPOMI, APEX, and in situ NO2 measurements over Antwerp, Belgium C. Poraicu et al. 10.5194/gmd-16-479-2023
- Impact of Drought on Isoprene Fluxes Assessed Using Field Data, Satellite-Based GLEAM Soil Moisture and HCHO Observations from OMI B. Opacka et al. 10.3390/rs14092021
- Bias correction of OMI HCHO columns based on FTIR and aircraft measurements and impact on top-down emission estimates J. Müller et al. 10.5194/acp-24-2207-2024
- Atmospheric propane (C3H8) column retrievals from ground-based FTIR observations in Xianghe, China M. Zhou et al. 10.5194/amt-17-6385-2024
- The influence of vegetation drought stress on formaldehyde and ozone distributions over a central European city H. Trimmel et al. 10.1016/j.atmosenv.2023.119768
- Spatiotemporal estimation of TROPOMI NO2 column with depthwise partial convolutional neural network Y. Lops et al. 10.1007/s00521-023-08558-1
- Inferring vertical variability and diurnal evolution of O3 formation sensitivity based on the vertical distribution of summertime HCHO and NO2 in Guangzhou, China Q. Hong et al. 10.1016/j.scitotenv.2022.154045
- Atmospheric Formaldehyde Monitored by TROPOMI Satellite Instrument throughout 2020 over São Paulo State, Brazil A. Freitas & A. Fornaro 10.3390/rs14133032
- Tropospheric NO2 Pollution Monitoring with the GF-5 Satellite Environmental Trace Gases Monitoring Instrument over the North China Plain during Winter 2018–2019 D. Yang et al. 10.3390/atmos12030398
- Using machine learning approach to reproduce the measured feature and understand the model-to-measurement discrepancy of atmospheric formaldehyde H. Yin et al. 10.1016/j.scitotenv.2022.158271
- Reduction in Anthropogenic Emissions Suppressed New Particle Formation and Growth: Insights From the COVID‐19 Lockdown V. Kanawade et al. 10.1029/2021JD035392
- Russian Investigations in the Field of Atmospheric Radiation in 2019–2022 Y. Timofeyev et al. 10.1134/S0001433823150124
- An improved TROPOMI tropospheric HCHO retrieval over China W. Su et al. 10.5194/amt-13-6271-2020
- Global Significant Changes in Formaldehyde (HCHO) Columns Observed From Space at the Early Stage of the COVID‐19 Pandemic W. Sun et al. 10.1029/2020GL091265
- Ambient Formaldehyde over the United States from Ground-Based (AQS) and Satellite (OMI) Observations P. Wang et al. 10.3390/rs14092191
- Next‐Generation Isoprene Measurements From Space: Detecting Daily Variability at High Resolution K. Wells et al. 10.1029/2021JD036181
- First retrievals of peroxyacetyl nitrate (PAN) from ground-based FTIR solar spectra recorded at remote sites, comparison with model and satellite data E. Mahieu et al. 10.1525/elementa.2021.00027
- Validation of formaldehyde products from three satellite retrievals (OMI SAO, OMPS-NPP SAO, and OMI BIRA) in the marine atmosphere with four seasons of Atmospheric Tomography Mission (ATom) aircraft observations J. Liao et al. 10.5194/amt-18-1-2025
- Integrated satellite observations unravel the relationship between urbanization and anthropogenic non-methane volatile organic compound emissions globally D. Pu et al. 10.1038/s41612-024-00683-5
- Analysis of Ozone Formation Sensitivity in Chinese Representative Regions Using Satellite and Ground-Based Data Y. Li et al. 10.3390/rs16020316
- Vertical distribution characteristics and potential sources of atmospheric pollutants in the North China Plain basing on the MAX-DOAS measurement G. Liu & Y. Wang 10.1186/s12302-024-00902-z
- Glyoxal tropospheric column retrievals from TROPOMI – multi-satellite intercomparison and ground-based validation C. Lerot et al. 10.5194/amt-14-7775-2021
- Characterization of errors in satellite-based HCHO ∕ NO2 tropospheric column ratios with respect to chemistry, column-to-PBL translation, spatial representation, and retrieval uncertainties A. Souri et al. 10.5194/acp-23-1963-2023
- Investigating vertical distributions and photochemical indications of formaldehyde, glyoxal, and NO2 from MAX-DOAS observations in four typical cities of China Q. Hong et al. 10.1016/j.scitotenv.2024.176447
- Substantially underestimated global health risks of current ozone pollution Y. Wang et al. 10.1038/s41467-024-55450-0
- Implementation and evaluation of the automated model reduction (AMORE) version 1.1 isoprene oxidation mechanism in GEOS-Chem B. Yang et al. 10.1039/D3EA00121K
- Comparison of formaldehyde tropospheric columns in Australia and New Zealand using MAX-DOAS, FTIR and TROPOMI R. Ryan et al. 10.5194/amt-13-6501-2020
- First evaluation of the GEMS formaldehyde product against TROPOMI and ground-based column measurements during the in-orbit test period G. Lee et al. 10.5194/acp-24-4733-2024
- Assessment of Formaldehyde’s Impact on Indoor Environments and Human Health via the Integration of Satellite Tropospheric Total Columns and Outdoor Ground Sensors E. Barrese et al. 10.3390/su16229669
- Recommendations for HCHO and SO2 Retrieval Settings from MAX-DOAS Observations under Different Meteorological Conditions Z. Javed et al. 10.3390/rs13122244
- Weekly derived top-down volatile-organic-compound fluxes over Europe from TROPOMI HCHO data from 2018 to 2021 G. Oomen et al. 10.5194/acp-24-449-2024
- Modified Fourier transform and its properties D. Khan et al. 10.20948/mathmontis-2021-51-5
- Source and variability of formaldehyde (HCHO) at northern high latitudes: an integrated satellite, aircraft, and model study T. Zhao et al. 10.5194/acp-22-7163-2022
- OMI-observed HCHO in Shanghai, China, during 2010–2019 and ozone sensitivity inferred by an improved HCHO ∕ NO2 ratio D. Li et al. 10.5194/acp-21-15447-2021
- Twenty years of ground-based NDACC FTIR spectrometry at Izaña Observatory – overview and long-term comparison to other techniques O. García et al. 10.5194/acp-21-15519-2021
- Investigating Changes in Ozone Formation Chemistry during Summertime Pollution Events over the Northeastern United States M. Tao et al. 10.1021/acs.est.2c02972
- Long-term observations of NO2, SO2, HCHO, and CHOCHO over the Himalayan foothills: Insights from MAX-DOAS, TROPOMI, and GOME-2 P. Rawat et al. 10.1016/j.atmosenv.2024.120746
- An improved TROPOMI tropospheric NO<sub>2</sub> research product over Europe S. Liu et al. 10.5194/amt-14-7297-2021
- MAX-DOAS observation in the midlatitude marine boundary layer: Influences of typhoon forced air mass R. Zhang et al. 10.1016/j.jes.2021.12.010
- Response of Anthropogenic Volatile Organic Compound Emissions to Urbanization in Asia Probed With TROPOMI and VIIRS Satellite Observations D. Pu et al. 10.1029/2022GL099470
- Enhanced validation and application of satellite-derived formaldehyde data for assessing photochemical pollution in the Chinese Greater Bay Area Y. Zhao et al. 10.1016/j.envpol.2024.125553
- Evolution of global O3-NOx-VOCs sensitivity before and after the COVID-19 from the ratio of formaldehyde to NO2 from satellites observations D. Wang et al. 10.1016/j.jes.2024.07.029
- Multi-scale correlation reveals the evolution of socio-natural contributions to tropospheric HCHO over China from 2005 to 2022 H. Xia et al. 10.1016/j.scitotenv.2024.176197
- Air Quality Index (AQI) Did Not Improve during the COVID-19 Lockdown in Shanghai, China, in 2022, Based on Ground and TROPOMI Observations Q. Ma et al. 10.3390/rs15051295
- Mobile MAX-DOAS observations of tropospheric NO2 and HCHO during summer over the Three Rivers' Source region in China S. Cheng et al. 10.5194/acp-23-3655-2023
- Examining TROPOMI formaldehyde to nitrogen dioxide ratios in the Lake Michigan region: implications for ozone exceedances J. Acdan et al. 10.5194/acp-23-7867-2023
- Air quality impacts of COVID-19 lockdown measures detected from space using high spatial resolution observations of multiple trace gases from Sentinel-5P/TROPOMI P. Levelt et al. 10.5194/acp-22-10319-2022
- Identification of volatile organic compound emissions from anthropogenic and biogenic sources based on satellite observation of formaldehyde and glyoxal Y. Chen et al. 10.1016/j.scitotenv.2022.159997
- Fiducial Reference Measurement for Greenhouse Gases (FRM4GHG) M. Sha et al. 10.3390/rs16183525
- A Neural Network-Based Approach for Real-Time Measurement of the Concentration of Gaseous Pollutants in Tehran Using MODIS M. Saleh et al. 10.61186/jgit.11.4.55
- Constraining non-methane VOC emissions with TROPOMI HCHO observations: impact on summertime ozone simulation in August 2022 in China S. Feng et al. 10.5194/acp-24-7481-2024
- Ground-based Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations of NO2 and H2CO at Kinshasa and comparisons with TROPOMI observations R. Yombo Phaka et al. 10.5194/amt-16-5029-2023
- Interannual variability of summertime formaldehyde (HCHO) vertical column density and its main drivers at northern high latitudes T. Zhao et al. 10.5194/acp-24-6105-2024
- City-scale methane emissions from the midstream oil and gas industry: A satellite survey of the Zhoushan archipelago X. Yang et al. 10.1016/j.jclepro.2024.141673
- Satellite remote-sensing capability to assess tropospheric-column ratios of formaldehyde and nitrogen dioxide: case study during the Long Island Sound Tropospheric Ozone Study 2018 (LISTOS 2018) field campaign M. Johnson et al. 10.5194/amt-16-2431-2023
80 citations as recorded by crossref.
- Network for the Detection of Atmospheric Composition Change (NDACC) Fourier transform infrared (FTIR) trace gas measurements at the University of Toronto Atmospheric Observatory from 2002 to 2020 S. Yamanouchi et al. 10.5194/essd-15-3387-2023
- Assessment of Updated Fuel‐Based Emissions Inventories Over the Contiguous United States Using TROPOMI NO2 Retrievals M. Li et al. 10.1029/2021JD035484
- Spatial assessment of the seasonal impact of brickfields on air pollution in Dhaka metropolitan area using ordination techniques M. Mahboob et al. 10.1007/s11869-023-01345-w
- Unveiling Air Pollution in Crimean Mountain Rivers: Analysis of Sentinel-5 Satellite Images Using Google Earth Engine (GEE) V. Tabunschik et al. 10.3390/rs15133364
- Sources of Formaldehyde in U.S. Oil and Gas Production Regions B. Dix et al. 10.1021/acsearthspacechem.3c00203
- Comparative assessment of TROPOMI and OMI formaldehyde observations and validation against MAX-DOAS network column measurements I. De Smedt et al. 10.5194/acp-21-12561-2021
- First Chinese ultraviolet–visible hyperspectral satellite instrument implicating global air quality during the COVID-19 pandemic in early 2020 C. Liu et al. 10.1038/s41377-022-00722-x
- Evaluating CHASER V4.0 global formaldehyde (HCHO) simulations using satellite, aircraft, and ground-based remote-sensing observations H. Hoque et al. 10.5194/gmd-17-5545-2024
- Investigation of 2021 wildfire impacts on air quality in southwestern Turkey M. Eke et al. 10.1016/j.atmosenv.2024.120445
- Global Formaldehyde Products From the Ozone Mapping and Profiler Suite (OMPS) Nadir Mappers on Suomi NPP and NOAA‐20 C. Nowlan et al. 10.1029/2022EA002643
- Observing Downwind Structures of Urban HCHO Plumes From Space: Implications to Non‐Methane Volatile Organic Compound Emissions X. Zuo et al. 10.1029/2023GL106062
- Russian Investigations in the Field of Amtospheric Radiation in 2019–2022 Y. Timofeyev et al. 10.31857/S000235152307012X
- Kilometer-level glyoxal retrieval via satellite for anthropogenic volatile organic compound emission source and secondary organic aerosol formation identification Y. Chen et al. 10.1016/j.rse.2021.112852
- Air quality monitoring in Ukraine during 2022 military conflict using Sentinel-5P imagery M. Mehrabi et al. 10.1007/s11869-023-01488-w
- Aggravated surface O3 pollution primarily driven by meteorological variations in China during the 2020 COVID-19 pandemic lockdown period Z. Lu et al. 10.5194/acp-24-7793-2024
- Role of chemical production and depositional losses on formaldehyde in the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM) T. Skipper et al. 10.5194/acp-24-12903-2024
- Atmospheric Impacts of COVID-19 on NOx and VOC Levels over China Based on TROPOMI and IASI Satellite Data and Modeling T. Stavrakou et al. 10.3390/atmos12080946
- Optimizing the Isoprene Emission Model MEGAN With Satellite and Ground‐Based Observational Constraints C. DiMaria et al. 10.1029/2022JD037822
- Different Response Mechanisms of N‐Bearing Components to Emission Reduction Across China During COVID‐19 Lockdown Period R. Li et al. 10.1029/2023JD039496
- Validation of OMPS Suomi NPP and OMPS NOAA‐20 Formaldehyde Total Columns With NDACC FTIR Observations H. Kwon et al. 10.1029/2022EA002778
- Direct measurements of ozone response to emissions perturbations in California S. Wu et al. 10.5194/acp-22-4929-2022
- Comparison of TROPOMI NO2, CO, HCHO, and SO2 data against ground‐level measurements in close proximity to large anthropogenic emission sources in the example of Ukraine M. Savenets et al. 10.1002/met.2108
- Spatiotemporal changes in tropospheric nitrogen dioxide hotspot due to emission switch-off condition in the view of lockdown emergency in India S. Sarkar & D. Mondal 10.1007/s11869-022-01240-w
- Characterization and potential for reducing optical resonances in Fourier transform infrared spectrometers of the Network for the Detection of Atmospheric Composition Change (NDACC) T. Blumenstock et al. 10.5194/amt-14-1239-2021
- Intercomparison of CO measurements from TROPOMI, ACE-FTS, and a high-Arctic ground-based Fourier transform spectrometer T. Wizenberg et al. 10.5194/amt-14-7707-2021
- Cross-evaluating WRF-Chem v4.1.2, TROPOMI, APEX, and in situ NO2 measurements over Antwerp, Belgium C. Poraicu et al. 10.5194/gmd-16-479-2023
- Impact of Drought on Isoprene Fluxes Assessed Using Field Data, Satellite-Based GLEAM Soil Moisture and HCHO Observations from OMI B. Opacka et al. 10.3390/rs14092021
- Bias correction of OMI HCHO columns based on FTIR and aircraft measurements and impact on top-down emission estimates J. Müller et al. 10.5194/acp-24-2207-2024
- Atmospheric propane (C3H8) column retrievals from ground-based FTIR observations in Xianghe, China M. Zhou et al. 10.5194/amt-17-6385-2024
- The influence of vegetation drought stress on formaldehyde and ozone distributions over a central European city H. Trimmel et al. 10.1016/j.atmosenv.2023.119768
- Spatiotemporal estimation of TROPOMI NO2 column with depthwise partial convolutional neural network Y. Lops et al. 10.1007/s00521-023-08558-1
- Inferring vertical variability and diurnal evolution of O3 formation sensitivity based on the vertical distribution of summertime HCHO and NO2 in Guangzhou, China Q. Hong et al. 10.1016/j.scitotenv.2022.154045
- Atmospheric Formaldehyde Monitored by TROPOMI Satellite Instrument throughout 2020 over São Paulo State, Brazil A. Freitas & A. Fornaro 10.3390/rs14133032
- Tropospheric NO2 Pollution Monitoring with the GF-5 Satellite Environmental Trace Gases Monitoring Instrument over the North China Plain during Winter 2018–2019 D. Yang et al. 10.3390/atmos12030398
- Using machine learning approach to reproduce the measured feature and understand the model-to-measurement discrepancy of atmospheric formaldehyde H. Yin et al. 10.1016/j.scitotenv.2022.158271
- Reduction in Anthropogenic Emissions Suppressed New Particle Formation and Growth: Insights From the COVID‐19 Lockdown V. Kanawade et al. 10.1029/2021JD035392
- Russian Investigations in the Field of Atmospheric Radiation in 2019–2022 Y. Timofeyev et al. 10.1134/S0001433823150124
- An improved TROPOMI tropospheric HCHO retrieval over China W. Su et al. 10.5194/amt-13-6271-2020
- Global Significant Changes in Formaldehyde (HCHO) Columns Observed From Space at the Early Stage of the COVID‐19 Pandemic W. Sun et al. 10.1029/2020GL091265
- Ambient Formaldehyde over the United States from Ground-Based (AQS) and Satellite (OMI) Observations P. Wang et al. 10.3390/rs14092191
- Next‐Generation Isoprene Measurements From Space: Detecting Daily Variability at High Resolution K. Wells et al. 10.1029/2021JD036181
- First retrievals of peroxyacetyl nitrate (PAN) from ground-based FTIR solar spectra recorded at remote sites, comparison with model and satellite data E. Mahieu et al. 10.1525/elementa.2021.00027
- Validation of formaldehyde products from three satellite retrievals (OMI SAO, OMPS-NPP SAO, and OMI BIRA) in the marine atmosphere with four seasons of Atmospheric Tomography Mission (ATom) aircraft observations J. Liao et al. 10.5194/amt-18-1-2025
- Integrated satellite observations unravel the relationship between urbanization and anthropogenic non-methane volatile organic compound emissions globally D. Pu et al. 10.1038/s41612-024-00683-5
- Analysis of Ozone Formation Sensitivity in Chinese Representative Regions Using Satellite and Ground-Based Data Y. Li et al. 10.3390/rs16020316
- Vertical distribution characteristics and potential sources of atmospheric pollutants in the North China Plain basing on the MAX-DOAS measurement G. Liu & Y. Wang 10.1186/s12302-024-00902-z
- Glyoxal tropospheric column retrievals from TROPOMI – multi-satellite intercomparison and ground-based validation C. Lerot et al. 10.5194/amt-14-7775-2021
- Characterization of errors in satellite-based HCHO ∕ NO2 tropospheric column ratios with respect to chemistry, column-to-PBL translation, spatial representation, and retrieval uncertainties A. Souri et al. 10.5194/acp-23-1963-2023
- Investigating vertical distributions and photochemical indications of formaldehyde, glyoxal, and NO2 from MAX-DOAS observations in four typical cities of China Q. Hong et al. 10.1016/j.scitotenv.2024.176447
- Substantially underestimated global health risks of current ozone pollution Y. Wang et al. 10.1038/s41467-024-55450-0
- Implementation and evaluation of the automated model reduction (AMORE) version 1.1 isoprene oxidation mechanism in GEOS-Chem B. Yang et al. 10.1039/D3EA00121K
- Comparison of formaldehyde tropospheric columns in Australia and New Zealand using MAX-DOAS, FTIR and TROPOMI R. Ryan et al. 10.5194/amt-13-6501-2020
- First evaluation of the GEMS formaldehyde product against TROPOMI and ground-based column measurements during the in-orbit test period G. Lee et al. 10.5194/acp-24-4733-2024
- Assessment of Formaldehyde’s Impact on Indoor Environments and Human Health via the Integration of Satellite Tropospheric Total Columns and Outdoor Ground Sensors E. Barrese et al. 10.3390/su16229669
- Recommendations for HCHO and SO2 Retrieval Settings from MAX-DOAS Observations under Different Meteorological Conditions Z. Javed et al. 10.3390/rs13122244
- Weekly derived top-down volatile-organic-compound fluxes over Europe from TROPOMI HCHO data from 2018 to 2021 G. Oomen et al. 10.5194/acp-24-449-2024
- Modified Fourier transform and its properties D. Khan et al. 10.20948/mathmontis-2021-51-5
- Source and variability of formaldehyde (HCHO) at northern high latitudes: an integrated satellite, aircraft, and model study T. Zhao et al. 10.5194/acp-22-7163-2022
- OMI-observed HCHO in Shanghai, China, during 2010–2019 and ozone sensitivity inferred by an improved HCHO ∕ NO2 ratio D. Li et al. 10.5194/acp-21-15447-2021
- Twenty years of ground-based NDACC FTIR spectrometry at Izaña Observatory – overview and long-term comparison to other techniques O. García et al. 10.5194/acp-21-15519-2021
- Investigating Changes in Ozone Formation Chemistry during Summertime Pollution Events over the Northeastern United States M. Tao et al. 10.1021/acs.est.2c02972
- Long-term observations of NO2, SO2, HCHO, and CHOCHO over the Himalayan foothills: Insights from MAX-DOAS, TROPOMI, and GOME-2 P. Rawat et al. 10.1016/j.atmosenv.2024.120746
- An improved TROPOMI tropospheric NO<sub>2</sub> research product over Europe S. Liu et al. 10.5194/amt-14-7297-2021
- MAX-DOAS observation in the midlatitude marine boundary layer: Influences of typhoon forced air mass R. Zhang et al. 10.1016/j.jes.2021.12.010
- Response of Anthropogenic Volatile Organic Compound Emissions to Urbanization in Asia Probed With TROPOMI and VIIRS Satellite Observations D. Pu et al. 10.1029/2022GL099470
- Enhanced validation and application of satellite-derived formaldehyde data for assessing photochemical pollution in the Chinese Greater Bay Area Y. Zhao et al. 10.1016/j.envpol.2024.125553
- Evolution of global O3-NOx-VOCs sensitivity before and after the COVID-19 from the ratio of formaldehyde to NO2 from satellites observations D. Wang et al. 10.1016/j.jes.2024.07.029
- Multi-scale correlation reveals the evolution of socio-natural contributions to tropospheric HCHO over China from 2005 to 2022 H. Xia et al. 10.1016/j.scitotenv.2024.176197
- Air Quality Index (AQI) Did Not Improve during the COVID-19 Lockdown in Shanghai, China, in 2022, Based on Ground and TROPOMI Observations Q. Ma et al. 10.3390/rs15051295
- Mobile MAX-DOAS observations of tropospheric NO2 and HCHO during summer over the Three Rivers' Source region in China S. Cheng et al. 10.5194/acp-23-3655-2023
- Examining TROPOMI formaldehyde to nitrogen dioxide ratios in the Lake Michigan region: implications for ozone exceedances J. Acdan et al. 10.5194/acp-23-7867-2023
- Air quality impacts of COVID-19 lockdown measures detected from space using high spatial resolution observations of multiple trace gases from Sentinel-5P/TROPOMI P. Levelt et al. 10.5194/acp-22-10319-2022
- Identification of volatile organic compound emissions from anthropogenic and biogenic sources based on satellite observation of formaldehyde and glyoxal Y. Chen et al. 10.1016/j.scitotenv.2022.159997
- Fiducial Reference Measurement for Greenhouse Gases (FRM4GHG) M. Sha et al. 10.3390/rs16183525
- A Neural Network-Based Approach for Real-Time Measurement of the Concentration of Gaseous Pollutants in Tehran Using MODIS M. Saleh et al. 10.61186/jgit.11.4.55
- Constraining non-methane VOC emissions with TROPOMI HCHO observations: impact on summertime ozone simulation in August 2022 in China S. Feng et al. 10.5194/acp-24-7481-2024
- Ground-based Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations of NO2 and H2CO at Kinshasa and comparisons with TROPOMI observations R. Yombo Phaka et al. 10.5194/amt-16-5029-2023
- Interannual variability of summertime formaldehyde (HCHO) vertical column density and its main drivers at northern high latitudes T. Zhao et al. 10.5194/acp-24-6105-2024
- City-scale methane emissions from the midstream oil and gas industry: A satellite survey of the Zhoushan archipelago X. Yang et al. 10.1016/j.jclepro.2024.141673
- Satellite remote-sensing capability to assess tropospheric-column ratios of formaldehyde and nitrogen dioxide: case study during the Long Island Sound Tropospheric Ozone Study 2018 (LISTOS 2018) field campaign M. Johnson et al. 10.5194/amt-16-2431-2023
Latest update: 21 Jan 2025
Short summary
We validate the TROPOMI HCHO product with ground-based FTIR (Fourier-transform infrared) measurements from 25 stations. We find that TROPOMI overestimates HCHO under clean conditions, while it underestimates it at high HCHO levels. Both TROPOMI precision and accuracy reach the pre-launch requirements, and its precision can even be 2 times better. The observed TROPOMI seasonal variability is in agreement with the FTIR data. The TROPOMI random uncertainty and data filtering should be refined.
We validate the TROPOMI HCHO product with ground-based FTIR (Fourier-transform infrared)...