Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
AMT | Articles | Volume 13, issue 7
Atmos. Meas. Tech., 13, 3751–3767, 2020
https://doi.org/10.5194/amt-13-3751-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: TROPOMI on Sentinel-5 Precursor: first year in operation (AMT/ACP...

Atmos. Meas. Tech., 13, 3751–3767, 2020
https://doi.org/10.5194/amt-13-3751-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 10 Jul 2020

Research article | 10 Jul 2020

TROPOMI–Sentinel-5 Precursor formaldehyde validation using an extensive network of ground-based Fourier-transform infrared stations

Corinne Vigouroux et al.

Viewed

Total article views: 1,069 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
724 325 20 1,069 26 15
  • HTML: 724
  • PDF: 325
  • XML: 20
  • Total: 1,069
  • BibTeX: 26
  • EndNote: 15
Views and downloads (calculated since 17 Feb 2020)
Cumulative views and downloads (calculated since 17 Feb 2020)

Viewed (geographical distribution)

Total article views: 861 (including HTML, PDF, and XML) Thereof 860 with geography defined and 1 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 18 Sep 2020
Publications Copernicus
Download
Short summary
We validate the TROPOMI HCHO product with ground-based FTIR (Fourier-transform infrared) measurements from 25 stations. We find that TROPOMI overestimates HCHO under clean conditions, while it underestimates it at high HCHO levels. Both TROPOMI precision and accuracy reach the pre-launch requirements, and its precision can even be 2 times better. The observed TROPOMI seasonal variability is in agreement with the FTIR data. The TROPOMI random uncertainty and data filtering should be refined.
We validate the TROPOMI HCHO product with ground-based FTIR (Fourier-transform infrared)...
Citation