Articles | Volume 13, issue 8
https://doi.org/10.5194/amt-13-4261-2020
https://doi.org/10.5194/amt-13-4261-2020
Research article
 | 
13 Aug 2020
Research article |  | 13 Aug 2020

Evaluation of a method for converting Stratospheric Aerosol and Gas Experiment (SAGE) extinction coefficients to backscatter coefficients for intercomparison with lidar observations

Travis N. Knepp, Larry Thomason, Marilee Roell, Robert Damadeo, Kevin Leavor, Thierry Leblanc, Fernando Chouza, Sergey Khaykin, Sophie Godin-Beekmann, and David Flittner

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Travis N. Knepp on behalf of the Authors (29 May 2020)  Author's response    Manuscript
ED: Publish as is (02 Jul 2020) by Chris McLinden
Download
Short summary
Two common measurements that represent atmospheric aerosol loading are the backscatter and extinction coefficients. Measuring backscatter and extinction coefficients requires different viewing geometries and fundamentally different instrument systems. Further, these coefficients are not directly comparable. We present an algorithm to convert SAGE-observed extinction coefficients to backscatter coefficients for intercomparison with lidar backscatter products, followed by evaluation of the method.