Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
AMT | Articles | Volume 13, issue 8
Atmos. Meas. Tech., 13, 4317–4331, 2020
https://doi.org/10.5194/amt-13-4317-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 13, 4317–4331, 2020
https://doi.org/10.5194/amt-13-4317-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 17 Aug 2020

Research article | 17 Aug 2020

A compact incoherent broadband cavity-enhanced absorption spectrometer for trace detection of nitrogen oxides, iodine oxide and glyoxal at levels below parts per billion for field applications

Albane Barbero et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Albane Barbero on behalf of the Authors (09 Jul 2020)  Author's response    Manuscript
ED: Publish as is (14 Jul 2020) by Hendrik Fuchs
Publications Copernicus
Download
Short summary
In this paper, we present a compact, affordable and robust instrument for in situ measurements of different trace gases: NOx, IO, CHOCHO and O3 with very low detection limits. The device weighs 15 kg and has a total electrical power consumption of < 300 W. Its very low detection limits and its design make it suitable for field applications to address different questions such as how to better constrain the oxidative capacity of the atmosphere and study the chemistry of highly reactive species.
In this paper, we present a compact, affordable and robust instrument for in situ measurements...
Citation