Articles | Volume 13, issue 8
https://doi.org/10.5194/amt-13-4539-2020
https://doi.org/10.5194/amt-13-4539-2020
Research article
 | 
25 Aug 2020
Research article |  | 25 Aug 2020

CALIOP V4 cloud thermodynamic phase assignment and the impact of near-nadir viewing angles

Melody A. Avery, Robert A. Ryan, Brian J. Getzewich, Mark A. Vaughan, David M. Winker, Yongxiang Hu, Anne Garnier, Jacques Pelon, and Carolus A. Verhappen

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Melody Avery on behalf of the Authors (20 May 2020)  Author's response   Manuscript 
ED: Publish as is (04 Jun 2020) by James Campbell
AR by Melody Avery on behalf of the Authors (13 Jun 2020)
Download
Short summary
CALIOP data users will find more cloud layers detected in V4, with edges that extend further than in V3, for an increase in total atmospheric cloud volume of 6 %–9 % for high-confidence cloud phases and 1 %–2 % for all cloudy bins, including cloud fringes and unknown cloud phases. In V4 there are many fewer cloud layers identified as horizontally oriented ice, particularly in the 3° off-nadir view. Depolarization at 532 nm is the predominant parameter determining cloud thermodynamic phase.