Articles | Volume 13, issue 10
https://doi.org/10.5194/amt-13-5697-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-13-5697-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Wuhan MST radar: technical features and validation of wind observations
Lei Qiao
Communication Engineering School, Hangzhou Dianzi University,
Hangzhou 310018, China
Electronic Information School, Wuhan University, Wuhan 430072, China
Electronic Information School, Wuhan University, Wuhan 430072, China
Shaodong Zhang
Electronic Information School, Wuhan University, Wuhan 430072, China
Qi Yao
Nanjing Research Institute of Electronics Technology, Nanjing 210013,
China
Wanlin Gong
Electronic Information School, Wuhan University, Wuhan 430072, China
Mingkun Su
Communication Engineering School, Hangzhou Dianzi University,
Hangzhou 310018, China
Feilong Chen
Information Engineering School, Nanchang Hangkong University,
Nanchang 330063, China
Erxiao Liu
Communication Engineering School, Hangzhou Dianzi University,
Hangzhou 310018, China
Weifan Zhang
Electronic Information School, Wuhan University, Wuhan 430072, China
Huangyuan Zeng
Electronic Information School, Wuhan University, Wuhan 430072, China
Xuesi Cai
Communication Engineering School, Hangzhou Dianzi University,
Hangzhou 310018, China
Huina Song
Communication Engineering School, Hangzhou Dianzi University,
Hangzhou 310018, China
Huan Zhang
Communication Engineering School, Hangzhou Dianzi University,
Hangzhou 310018, China
Liangliang Zhang
Communication Engineering School, Hangzhou Dianzi University,
Hangzhou 310018, China
Related authors
No articles found.
Yu Gou, Jian Zhang, Wuke Wang, Kaiming Huang, and Shaodong Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-3452, https://doi.org/10.5194/egusphere-2025-3452, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Tropopause height is a key climate change indicator, with accurate long-term trends vital for climate research. Radiosonde data, while reliable, has limited coverage. ERA5 is a reanalysis dataset that provides global data, enabling comparisons of tropopause height estimates and then analyzed for long-term trends. Results show a 32 m mean difference (radiosonde – ERA5) with trends of +5 m/year (radiosonde) and +3 m/year (ERA5), crucial for characterizing tropopause changes under climate change.
Gang Chen, Yimeng Xu, Guotao Yang, Shaodong Zhang, Zhipeng Ren, Pengfei Hu, Tingting Yu, Fuju Wu, Lifang Du, Haoran Zheng, Xuewu Cheng, Faquan Li, and Min Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1888, https://doi.org/10.5194/egusphere-2025-1888, 2025
Short summary
Short summary
We usually believe that the impact of magnetic storms will not reach the mesosphere. However, in the storm on 4 Nov. 2021, the mesospheric metal layer depletion was recorded by three lidars for different metal components at mid-latitudes. The storm induced oxygen density enhancement is considered to consume more metal atoms in the metal layer. It implies that the effects of storm have reached mesosphere, and the influence of storm on metal layer is achieved through chemical processes.
Yu Gou, Jian Zhang, Wuke Wang, Kaiming Huang, and Shaodong Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-4198, https://doi.org/10.5194/egusphere-2024-4198, 2025
Preprint withdrawn
Short summary
Short summary
The most commonly used tropopause height detection algorithm is based on the World Meteorological Organization (WMO) definition from 1957. However, with the increasing vertical resolution of atmospheric data, this definition has been found to fail in high-resolution radiosonde data. Thus, we propose an improved method to address this issue. This method can effectively bypassing thin inversions while preserving the fine–scale structure of the tropopause.
Jia Shao, Jian Zhang, Wuke Wang, Shaodong Zhang, Tao Yu, and Wenjun Dong
Atmos. Chem. Phys., 23, 12589–12607, https://doi.org/10.5194/acp-23-12589-2023, https://doi.org/10.5194/acp-23-12589-2023, 2023
Short summary
Short summary
Kelvin–Helmholtz instability (KHI) is indicated by the critical value of the Richardson (Ri) number, which is usually predicted to be 1/4. Compared to high-resolution radiosondes, the threshold value of Ri could be approximated as 1 rather than 1/4 when using ERA5-based Ri as a proxy for KHI. The occurrence frequency of subcritical Ri exhibits significant seasonal cycles over all climate zones and is closely associated with gravity waves and background flows.
Zheng Ma, Yun Gong, Shaodong Zhang, Qiao Xiao, Chunming Huang, and Kaiming Huang
Atmos. Chem. Phys., 22, 13725–13737, https://doi.org/10.5194/acp-22-13725-2022, https://doi.org/10.5194/acp-22-13725-2022, 2022
Short summary
Short summary
We present a novel method to measure the amplitudes of traveling quasi-5-day oscillations (Q5DOs) in the middle atmosphere during sudden stratospheric warming events based on satellite observations. Simulations and observations demonstrate that the previously reported traveling Q5DOs might be contaminated by stationary planetary waves (SPWs). The new fitting method is developed by inhibiting the effect of a rapid and large change in SPWs.
Xiansi Huang, Kaiming Huang, Hao Cheng, Shaodong Zhang, Wei Cheng, Chunming Huang, and Yun Gong
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-407, https://doi.org/10.5194/acp-2022-407, 2022
Revised manuscript not accepted
Short summary
Short summary
Using radar observations and reanalysis data for 9 years, we demonstrate clearly for the first time that resonant interactions between tides and annual and semiannual oscillations do occur in the mesosphere and lower thermosphere. The resonant matching conditions of frequency and wavenumber are exactly satisfied for the interacting triad. At some altitudes, the secondary waves are stronger than the tides, thus in tidal studies, the secondary waves may be mistaken for the tides if no carefully.
Jianping Guo, Jian Zhang, Kun Yang, Hong Liao, Shaodong Zhang, Kaiming Huang, Yanmin Lv, Jia Shao, Tao Yu, Bing Tong, Jian Li, Tianning Su, Steve H. L. Yim, Ad Stoffelen, Panmao Zhai, and Xiaofeng Xu
Atmos. Chem. Phys., 21, 17079–17097, https://doi.org/10.5194/acp-21-17079-2021, https://doi.org/10.5194/acp-21-17079-2021, 2021
Short summary
Short summary
The planetary boundary layer (PBL) is the lowest part of the troposphere, and boundary layer height (BLH) is the depth of the PBL and is of critical importance to the dispersion of air pollution. The study presents the first near-global BLH climatology by using high-resolution (5-10 m) radiosonde measurements. The variations in BLH exhibit large spatial and temporal dependence, with a peak at 17:00 local solar time. The most promising reanalysis product is ERA-5 in terms of modeling BLH.
Minkang Du, Kaiming Huang, Shaodong Zhang, Chunming Huang, Yun Gong, and Fan Yi
Atmos. Chem. Phys., 21, 13553–13569, https://doi.org/10.5194/acp-21-13553-2021, https://doi.org/10.5194/acp-21-13553-2021, 2021
Short summary
Short summary
El Niño has an important influence on climate systems. There are obviously negative water vapor anomalies from radiosonde observations in the tropical western Pacific during El Niño. The tropical Hadley, Walker, and monsoon circulation variations are revealed to play different roles in the observed water vapor anomaly in different types of El Niños. The Walker (monsoon) circulation anomaly made a major contribution in the 2015/16 (2009/10) strong eastern Pacific (central Pacific) El Niño event.
Cited articles
Anandan, V. K., Reddy, G. R., and Rao, P. B.: Spectral analysis of atmospheric
radar signal using higher order spectral estimation technique, IEEE T.
Geosci. Remote, 39, 1890–1895, https://doi.org/10.1109/36.951079, 2001.
Balsley, B. B., Ecklund, W. L., Carter, D. A., and Johnston, P. E.: The MST radar at Poker
Flat, Alaska, Radio Sci., 15, 213–223, https://doi.org/10.1029/RS015i002p00213, 1980.
Belu, R. G., Hocking, W. K., Donaldson, N., and Thayaparan, T.: Comparisons of CLOVAR
windprofiler horizontal winds with radiosondes and CMC regional analyses,
Atmos. Ocean, 39, 107–126, https://doi.org/10.1080/07055900.2001.9649669, 2010.
Berrisford, P., Dee, D. P., Poli, P., Brugge, R., Fielding, M., Fuentes, M., Kallberg, P. W., Kobayashi, S., Uppala, S., and Simmons, A.: The ERA-Interim Archive, ERA Report Series, 2009.
Chau, J. L., Hoffmann, P., Pedatella, N. M., Matthias, V., and Stober, G.: Upper mesospheric lunar
tides over middle and high latitudes during sudden stratospheric warming
events, J. Geophys. Res., 120, 3084–3096, https://doi.org/10.1002/2015JA020998, 2015.
Chen, F., Chen, G., Tian, Y., Zhang, S., Huang, K., Wu, C., and Zhang, W.: High-resolution Beijing mesosphere–stratosphere–troposphere (MST) radar detection of tropopause structure and variability over Xianghe (39.75∘ N, 116.96∘ E), China, Ann. Geophys., 37, 631–643, https://doi.org/10.5194/angeo-37-631-2019, 2019.
Chen, G., Cui, X., Chen, F., Zhao, Z., Wang, Y., Yao, Q., Wang, C., Lü, D., Zhang, S., Zhang, X., Zhou, X., Huang, L., and Gong, W.: MST Radars of Chinese Meridian Project:
System Description and Atmospheric Wind Measurement, IEEE T. Geosci.
Remote, 54, 4513–4523, https://doi.org/10.1109/TGRS.2016.2543507, 2016.
Chilson, P. B., Kirkwood, S., and Nilsson, A.: The Esrange MST radar: A brief
introduction and procedure for range validation using balloons, Radio Sci.,
34, 427–436, https://doi.org/10.1029/1998rs900023, 1999.
Chu, Y. and Yang, K.: Reconstruction of spatial structure of thin layer in
sporadic E region by using VHF coherent scatter radar, Radio Sci., 44,
RS5003, https://doi.org/10.1029/2008RS003911, 2009.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Kohler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., Rosnay, P., Tavolato, C., Thepaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance
of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Drob, D. P., Emmert, J. T., Meriwether, J. W., Makela, J. J., Doornbos, E., Conde, M., Hernandez, G., Noto, J., Zawdie, K. A., McDonald, S. E., Huba, J. D., and Klenzing, J. H.: An update to the
Horizontal Wind Model (HWM): The quiet time thermosphere, Earth Space
Science, 2, 301–319, https://doi.org/10.1002/2014EA000089, 2015.
Eswaraiah, S., Ratnam, M. V., Kim, Y. H., Kumar, K. N., Chalapathi, G. V., Ramanajaneyulu, L., Lee, J., Prasanth, P. V., and Thyagarajan, S. V. B.: Advanced meteor radar observations of mesospheric
dynamics during 2017 minor SSW over the tropical region, Adv. Space
Res., 64, 1940–1947, https://doi.org/10.1016/j.asr.2019.05.039, 2019.
Fukao, S., Tsuda, T., Sato, T., Kato, S., Wakasugi, K., and Makihira, T.: The mu
radar with an active phased array system: 1. Antenna and power amplifiers,
Radio Sci., 20, 1155–1168, https://doi.org/10.1029/rs020i006p01155, 1985.
Fukao, S., Hashiguchi, H., Yamamoto, M., Tsuda, T., Nakamura, T., and Yamamoto, M. K.: Equatorial Atmosphere Radar
(EAR): System description and first results, Radio Sci., 38, 19-1–19-17,
https://doi.org/10.1029/2002RS002767, 2003.
Green, J. L., Gage, K. S., and Van Zandt, T. E.: Atmospheric measurements by
VHF pulsed Doppler radar, IEEE Trans. Geosci. Electron., GE-17, 262–280,
https://doi.org/10.1109/TGE.1979.294655, 1979.
Hocking, W. K.: Measurement of turbulent energy dissipation rates in the
middle atmosphere by radar techniques: A review, Radio Sci., 20, 1403–1422,
https://doi.org/10.1029/rs020i006p01403, 1985.
Hocking, W. K.: VHF tropospheric scatterer anisotropy at Resolute Bay and its
implications for tropospheric radar-derived wind accuracies, Radio Sci., 36,
1777–1793, https://doi.org/10.1029/2000rs001002, 2001.
Hocking, A. A.: A review of Mesosphere–Stratosphere–Troposphere (MST) radar
developments and studies, circa 1997–2008, J. Atmos. Sci., 73, 848–882,
https://doi.org/10.1016/j.jastp.2010.12.009, 2011.
Hooper, D. A., Bradford, J., Dean, L., Eastment, J. D., Hess, M., Hibbett, E., Jacobs, J., and Mayo, R.: Renovation of the Aberystwyth MST radar: evaluation,
in: Proceedings of the Thirteenth International Workshop on Technical and
Scientific Aspects of MST Radar, Leibniz-Institute of Atmospheric Physics at
the Rostock University, Kühlungsborn, Germany, 86–90, 2013.
Houchi, K., Stoffelen, A., Marseille, G. J., and De Kloe, J.: Comparison of wind and
wind shear climatologies derived from high-resolution radiosondes and the
ECMWF model, J. Geophys. Res., 115, D22123, https://doi.org/10.1029/2009jd013196, 2010.
Kawahigashi, H., Kato, S., Kimura, I., Tsuda, T., Sato, T., and Yamamoto, M.: History of Development of the MU (Middle and Upper
Atmosphere) Radar, the First Large-Scale Atmospheric Radar with
Two-Dimensional Active Phased Array Antenna System, 2017 IEEE HISTory of
ELectrotechnolgy CONference (HISTELCON), Kobe, 47–52, https://doi.org/10.1109/HISTELCON.2017.8535930, 2017.
Kumar, G. K., Ratnam, M. V., Patra, A. K., Rao, V. V. M. J., Rao, S. V. B., and Rao, D. N.: Climatology of low-latitude
mesospheric echo characteristics observed by Indian mesosphere,
stratosphere, and troposphere radar, J. Geophys. Res., 112, D06109, https://doi.org/10.1029/2006JD007609, 2007.
Kumar, G. K., Ratnam, M. V., Patra, A. K., Rao, V. V. M. J., Rao, S. V. B., Kumar, K. K., Gurubaran, S., Ramkumar, G., and Rao, D. N.: Low-latitude mesospheric
mean winds observed by Gadanki mesosphere-stratosphere-troposphere (MST)
radar and comparison with rocket, High Resolution Doppler Imager (HRDI), and
MF radar measurements and HWM93, J. Geophys. Res., 113, D19117, https://doi.org/10.1029/2008JD009862, 2008.
Kumar, S., Rao, T. N., and Radhakrishna, B.: Identification and Separation of
Turbulence Echo From the Multipeaked VHF Radar Spectra During Precipitation,
IEEE T. Geosci. Remote., 57, 5729–5737, https://doi.org/10.1109/TGRS.2019.2901832, 2019.
Latteck, R., Singer, W., Rapp, M., Vandepeer, B., Renkwitz, T., Zecha, M., and Stober, G.: MAARSY: The new MST radar on
Andøya – System description and first results, Radio Sci., 47, 222–237,
https://doi.org/10.1029/2011RS004775, 2012.
Mbatha, N., Sivakumar, V., Malinga, S. B., Bencherif, H., and Pillay, S. R.: Study on the impact of sudden stratosphere warming in the upper mesosphere–lower thermosphere regions using satellite and HF radar measurements, Atmos. Chem. Phys., 10, 3397–3404, https://doi.org/10.5194/acp-10-3397-2010, 2010.
Medvedeva, I. and Ratovsky, K.: Effects of the 2016 February minor sudden
stratospheric warming on the MLT and ionosphere over Eastern Siberia,
J. Atmos. Solar-Terr. Phy., 180, 116–125, https://doi.org/10.1016/j.jastp.2017.09.007, 2017.
Meridian Project Data Center: Meridian project, available at: https://data.meridianproject.ac.cn/instrument-option/?s_id=27 (last access: 6 July 2019), 2020.
Nakamura, T., Tsuda, T., and Fukao, S.: Mean winds at 60–90 km observed with the
MU radar (35∘ N), J. Atmos. Sci., 58, 655–660, https://doi.org/10.1016/0021-9169(95)00064-X, 1996.
Namboothiri, S. P., Tsuda, T., and Nakamura, T.: Interannual variability of
mesospheric mean winds observed with the MU radar, J. Atmos. Sci., 61,
1111–1122, https://doi.org/10.1016/S1364-6826(99)00076-0, 1999.
Rao, P. B., Jain, A. R., Kishore, P., Balamuralidhar, P., Damle, S. H., and
Viswanathan, G.: Indian MST radar 1. System description and sample vector
wind measurements in ST mode, Radio Sci., 30, 1125–1138, https://doi.org/10.1029/95RS00787, 1995.
Rao, Q., Hashiguchi, H., and Fukao, S.: Study on ground clutter prevention fences
for boundary layer radars, Radio Sci., 38, 13-1–13-15, https://doi.org/10.1029/2001rs002489, 2003.
Rao, S. V. B., Eswaraiah, S., Ratnam, M. V., Kosalendra, E., Kumar, K. K., Kumar, S. S., Patil, P. T., and Gurubaran, S.: Advanced meteor radar
installed at Tirupati: System details and comparison with different radars,
J. Geophys. Res., 119, 11893–11904, https://doi.org/10.1002/2014JD021781, 2014.
Rottger, J., Liu, C. H., Chao, J. K., Chen, A. J., Chu, Y. H., Fu, I.-J., Huang, C. M., Kiang, Y. W., Kuo, F. S., Lin C. H., and Pan C. J.: The Chung-Li VHF radar: Technical
layout and a summary of initial results, Radio Sci., 25, 487–502, https://doi.org/10.1029/RS025i004p00487, 1990.
Sato, K., Tsutsumi, M., Sato, T., Nakamura, T., Saito, A., Tomikawa, Y., Nishimura, K., Kohma, M., Yamagishi, H., and Yamanouchi, T.: Program of the Antarctic Syowa MST/IS
radar (PANSY), J. Atmos. Sci., 118, 2–15, https://doi.org/10.1016/j.jastp.2013.08.022,
2014.
Schmidt, G., Ruster, R., and Czechowsky, P.: Complementary Code and Digital
Filtering for Detection of Weak VHF Radar Signals from the Mesosphere, IEEE
Trans. Geosci. Electron., 17, 154–161, https://doi.org/10.1109/tge.1979.294643, 1979.
Vaughan, G.: The UK MST radar, Weather, 57, 69–73, https://doi.org/10.1002/wea.6080570206, 2002.
Venkat Ratnam, M., Narayana Rao, D., Narayana Rao, T., Thulasiraman, S., Nee, J. B., Gurubaran, S., and Rajaram, R.: Mean winds observed with Indian MST radar over tropical mesosphere and comparison with various techniques, Ann. Geophys., 19, 1027–1038, https://doi.org/10.5194/angeo-19-1027-2001, 2001.
Wang, C.: Development of the Chinese Meridian Project, Chin. J. Space. Sci.,
30, 382–384, https://doi.org/10.1360/972009-470, 2010.
Woodman, R. F. and Guillen, A.: Radar observations of winds and turbulence in
the stratosphere and mesosphere, J. Atmos. Sci., 31, 493–505,
https://doi.org/10.1175/1520-0469(1974)031<0493:ROOWAT>2.0.CO;2,
1974.
Xiong, J. G., Wan, W., Ning, B., and Liu, L.: First results of the tidal structure
in the MLT revealed by Wuhan Meteor Radar (30∘40′ N,
114∘30′ E), J. Atmos. Sci., 66, 675–682, https://doi.org/10.1016/j.jastp.2004.01.018, 2004.
Zhao, G., Liu, L., Wan, W., Ning, B., and Xiong, J.: Seasonal behavior of meteor radar winds over
Wuhan, Earth Planets Space, 57, 393–398, https://doi.org/10.1186/BF03351806,
2005.