Articles | Volume 13, issue 11
Atmos. Meas. Tech., 13, 6193–6213, 2020
https://doi.org/10.5194/amt-13-6193-2020
Atmos. Meas. Tech., 13, 6193–6213, 2020
https://doi.org/10.5194/amt-13-6193-2020

Research article 19 Nov 2020

Research article | 19 Nov 2020

Interferences with aerosol acidity quantification due to gas-phase ammonia uptake onto acidic sulfate filter samples

Benjamin A. Nault et al.

Data sets

ATom: Measurements of Soluble Acidic Gases and Aerosols (SAGA) J. E. Dibb https://doi.org/10.3334/ORNLDAAC/1748

ATom: L2 Measurements from CU High-Resolution Aerosol Mass Spectrometer (HR-AMS) J. L. Jimenez, P. Campuzano-Jost, D. A. Day, B. A. Nault, D. J. Price, and J. C. Schroder https://doi.org/10.3334/ORNLDAAC/1716

ATom: Aircraft Flight Track and Navigational Data S. C. Wofsy and ATom Science Team https://doi.org/10.3334/ORNLDAAC/1613

SEAC4RS Data SEAC4RS Science Team https://doi.org/10.5067/Aircraft/SEAC4RS/Aerosol-TraceGas-Cloud

ARCTAS Data ARCTAS Science Team https://doi.org/10.5067/SUBORBITAL/ARCTAS2008/DATA001

WINTER Data WINTER Science Team https://data.eol.ucar.edu/master_lists/generated/winter/

CSN and CASTNET Data FED (The Federal Land Management Environmental Database) https://views.cira.colostate.edu/fed/

ATom: Merged Atmospheric Chemistry, Trace Gases, and Aerosols S. C. Wofsy, S. Afshar, H. M. Allen, E. C. Apel, E. C. Asher, B. Barletta, J. Bent, H. Bian, B. C. Biggs, D. R. Blake, N. Blake, I. Bourgeois, C. A. Brock, W. H. Brune, J. W. Budney, T. P. Bui, A. Butler, P. Campuzano-Jost, C. S. Chang, M. Chin, R. Commane, G. Correa, J. D. Crounse, P. D. Cullis, B. C. Daube, D. A. Day, J. M. Dean-Day, J. E. Dibb, J. P. DiGangi, G. S. Diskin, M. Dollner, J. W. Elkins, F. Erdesz, A. M. Fiore, C. M. Flynn, K. D. Froyd, D. W. Gesler, S. R. Hall, T. F. Hanisco, R. A. Hannun, A. J. Hills, E. J. Hintsa, A. Hoffman, R. S. Hornbrook, L. G. Huey, S. Hughes, J. L. Jimenez, B. J. Johnson, J. M. Katich, R. F. Keeling, M. J. Kim, A. Kupc, L. R. Lait, J.-F. Lamarque, J. Liu, K. McKain, R. J. Mclaughlin, S. Meinardi, D. O. Miller, S. A. Montzka, F. L. Moore, E. J. Morgan, D. M. Murphy, L. T. Murray, B. A. Nault, J. A. Neuman, P. A. Newman, J. M. Nicely, X. Pan, W. Paplawsky, J. Peischl, M. J. Prather, D. J. Price, E. A. Ray, J. M. Reeves, M. Richardson, A. W. Rollins, K. H. Rosenlof, T. B. Ryerson, E. Scheuer, G. P. Schill, J. C. Schroder, J. P. Schwarz, J. M. St.Clair, S. D. Steenrod, B. B. Stephens, S. A. Strode, C. Sweeney, D. Tanner, A. P. Teng, A. B. Thames, C. R. Thompson, K. Ullmann, P. R. Veres, N. Vieznor, N. L. Wagner, A. Watt, R. Weber, B. Weinzierl, P. O. Wennberg, C. J. Williamson, J. C. Wilson, G. M. Wolfe, C. T. Woods, and L. H. Zeng https://doi.org/10.3334/ORNLDAAC/1581

Jimenez Group Peer-Reviewed Journal Publications J. L. Jimenez http://cires1.colorado.edu/jimenez/group_pubs.html

Download
Short summary
Collecting particulate matter, or aerosols, onto filters to be analyzed offline is a widely used method to investigate the mass concentration and chemical composition of the aerosol, especially the inorganic portion. Here, we show that acidic aerosol (sulfuric acid) collected onto filters and then exposed to high ammonia mixing ratios (from human emissions) will lead to biases in the ammonium collected onto filters, and the uptake of ammonia is rapid (< 10 s), which impacts the filter data.